Let q be a power of an odd prime p, and let G denote the symplectic group $Sp(2n, q)$. The Weil representation W of G is a complex representation of degree q^n that can be obtained from the action of G on an extraspecial group of order pq^{2n}. See, for example, [3], [5], or [11] for a more general approach. W is the sum of two irreducible representations that have degrees $(q^n - 1)/2$ and $(q^n + 1)/2$. One of these representations, which we will denote by W_1, is faithful, and the other representation, W_2, has the central involution σ of G in its kernel. It is easy to see that W_1 is the irreducible constituent of W that has even degree. Thus W_1 has degree $(q^n - 1)/2$ if and only if $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$ and n is even. The representation W_2 has odd degree. We will refer to W_1 and W_2 as Weil representations.

Suppose now that $q \equiv 3 \pmod{4}$. We will show that the characters ψ_i of the W_i, $1 \leq i \leq 2$, each generate the field $Q(\sqrt{-p})$ over the rational field Q and have Schur index 1 over Q. Thus, in particular, there exists a faithful irreducible QG-module M affording the character $\psi_1 + \overline{\psi_1}$, where the bar denotes complex conjugation. Our main result (Theorem 3.2) is that when n is even and $q = p$ is a prime with $p \equiv 3 \pmod{4}$, there exists a G-invariant rational integral lattice L in M that supports an even symmetric positive definite unimodular form. This means that L is a free abelian group that contains a basis e_1, \ldots, e_m ($m = q^n - 1$) of M and there is a G-invariant integral symmetric form

$$f: L \times L \to \mathbb{Z}$$

such that $f(v, v) \in 2\mathbb{Z}$ for all $v \in L$ and $f(v, v) > 0$ if $v \neq 0$. The fact that f is unimodular means that the determinant of the $m \times m$ integral matrix whose i, j entry is $f(e_i, e_j)$, $1 \leq i, j \leq m$, is 1. More precisely, f is invariant under
the action of an over-group H of G, where $|H: G| = 2$, and L is an absolutely irreducible H-module. Information about integral symmetric forms can be found, for example, in [6, Chapter V].

At the end of the paper, we discuss possible extensions of our main result when n is odd. Section 1 of the paper contains some information of independent interest on Schur indices of irreducible characters of $Sp(2n, q)$ that are not real-valued.

1. Schur Indices of Certain Characters of $Sp(2n, q)$

In order to investigate invariant integral lattices associated with the Weil representation W_1, we will first determine the rational Schur indices of the characters ψ_1, ψ_2 when $q \equiv 3 \pmod{4}$.

Let $\text{Irr}(G)$ denote the set of complex irreducible characters of G. In [1], we showed that if $q \equiv 1 \pmod{4}$, any $\chi \in \text{Irr}(G)$ is real-valued and if χ is faithful, it has Schur index 2 over the real field, and hence over Q, by the Brauer–Speiser theorem.

When $q \equiv 3 \pmod{4}$, not all characters in $\text{Irr}(G)$ are real-valued and we intend to investigate the Schur indices over Q of such characters. Let V be the natural vector space of dimension $2n$ over $GF(q)$ on which G acts and let

$$b : V \times V \to GF(q)$$

be the non-singular G-invariant alternating form. The conformal symplectic group \bar{G} is the group of all automorphisms h of V that satisfy

$$b(hu, hv) = \lambda(h) b(u, v)$$

for all u, v in V, where $\lambda(h)$ is a non-zero scalar in $GF(q)$. It is clear that G is normal in \bar{G} and it can be shown that the quotient group \bar{G}/G is isomorphic to the multiplicative group of $GF(q)$. Any scalar multiple of the identity is in \bar{G}. Suppose now that $q \equiv 3 \pmod{4}$ and let μ be a primitive element of order $(q - 1)/2$ in $GF(q)$. Using an obvious notation, we can see that \bar{G} is expressible as a direct product

$$G \cong H \times \langle \mu I \rangle,$$

where $|H: G| = 2$ and μI generates a cyclic central subgroup of order $(q - 1)/2$. The elements h of $H - G$ are sometimes called skew-symplectic transformations, as we have

$$b(hu, hv) = -b(u, v)$$
for such an \(h \). We will use the group \(H \) to investigate Schur indices of characters of \(G \).

We begin by analyzing the action of \(H \) on the conjugacy classes of \(G \). We need to quote a theorem of Wonenburger [12].

(1.1) Lemma. Any element of \(G \) is expressible as a product of two involutions of \(H - G \). Thus, each element of \(G \) is a real element of \(H \).

We can now characterize the action of \(H \) on the conjugacy classes of \(G \).

(1.2) Lemma. Suppose that \(q \equiv 3 \pmod{4} \). A conjugacy class \(K \) of \(G \) remains a conjugacy class in \(H \) if and only if \(K \) is a real class in \(G \).

Proof. Let \(x \in K \). By Wonenburger's theorem, we can write

\[
x = uv,
\]

where \(u, v \) are involutions in \(H - G \). We have now

\[
x'' = uv = x^{-1}
\]

and thus \(K'' = K \) if and only if \(K \) is real, and \(K'' = K^{-1} \) precisely when \(K \) forms a class of \(H \). This proves the lemma.

It is now simple to see how \(H \) acts on \(\text{Irr}(G) \).

(1.3) Lemma. Suppose that \(q \equiv 3 \pmod{4} \). Then \(\chi \in \text{Irr}(G) \) is fixed by \(H \) if and only if \(\chi \) is real-valued.

Proof. Let \(u \in H - G \) and let \(K \) be a class of \(G \). The argument used in Lemma 1.2 shows that

\[
K'' = K^{-1},
\]

where \(K^{-1} \) is the class of \(G \) containing the inverses of the elements of \(K \). Thus we have

\[
\chi''(g) = \chi(g''') = \chi(g^{-1}) = \bar{\chi}(g),
\]

for any \(g \in G \), where \(\chi \) is the complex conjugate of \(\chi \). This proves our claim.

We are now in a position to calculate the Schur indices of certain characters in \(\text{Irr}(G) \) that are not real-valued.

(1.4) Theorem. Suppose that \(q \equiv 3 \pmod{4} \). Let \(\chi \in \text{Irr}(G) \) and suppose that \(\chi \) is not real-valued. Then if \(\chi(1) \) is relatively prime to \(p \), \(\chi \) has Schur index 1 over \(Q \).
EVEN UNIMODULAR LATTICES

Proof. By Lemma 1.3, χ is not fixed by H and hence θ = χ^H ∈ Irr(H). Moreover, θ(1) is relatively prime to p. Now consider the conformal symplectic group \(\overline{G} \) previously introduced. We know that \(\overline{G} \) is a direct product of \(H \) and a cyclic central subgroup. Therefore, θ is extendible to a character of \(\overline{G} \), which we will also denote by θ. However, \(\overline{G} \) is the group of \(GF(q) \)-rational points of a connected reductive algebraic group with connected center (namely, the conformal symplectic group over the algebraic closure of \(GF(q) \)). Therefore, a result of Green, Lehrer, and Lusztig [2, Theorem 3] shows that if \(w \) is a regular unipotent element of \(G \), we have

\[\theta(w) = \pm 1. \]

Since \((\theta(1), p) = 1 \), Theorems 1 and 2 of Ohmori [4] imply that \(m(\theta) = 1 \), where \(m(\theta) \) denotes the Schur index of θ over \(Q \).

We claim finally that \(m(\chi) = 1 \) also. For let \(\theta_1 = \theta, ..., \theta_r \) be all the Galois conjugates of θ. As \(m(\theta) = 1 \), we have that

\[\phi = \theta_1 + \cdots + \theta_r \]

is the character of a \(Q \)-representation of \(H \). However, as χ induces to the irreducible character θ of \(H \), it is clear that θ is the unique irreducible character of \(H \) lying over χ. Thus, \(\phi_G \) is the character of a \(Q \)-representation of \(G \) and \(\chi \) occurs exactly once as a constituent of \(\phi_G \). This proves our claim and completes the proof.

We mention a corollary of the argument above. It will not be needed in the rest of the paper.

(1.5) Corollary. Suppose that \(q \equiv 3 \pmod{4} \). Let \(w \) be a regular unipotent element of \(G \) and let \(\chi \in Irr(G) \). Suppose that \((\chi(1), p) = 1 \). Then \(\chi(w) = \pm 1 \) if \(\chi \) is real-valued, whereas \(\chi(w) \) is not real if \(\chi \) is not real-valued.

Proof. If \(\chi \) is real-valued, we know that \(\chi \) extends to an irreducible character \(\theta \) of \(H \). The argument of Theorem 1.4 shows that

\[\chi(w) = \theta(w) = \pm 1. \]

If, instead, \(\chi \neq \overline{\chi} \), we know that for \(u \in H - G \), \(\chi^u = \overline{\chi} \). Thus if \(\chi(w) \) is real,

\[\chi^u(w) = \chi(w). \]

However, \(\theta = \chi^H \in Irr(H) \) and we have

\[\theta(w) = \pm 1 = \chi(w) + \chi^u(w) = 2\chi(w). \]

This is a contradiction as the algebraic integer \(\chi(w) \) is seen to equal \(\pm \frac{1}{2} \). Thus \(\chi(w) \) is not real if \(\chi \neq \overline{\chi} \).
We finish this section by finding the fields generated over Q by the characters ψ_i and determining their Schur indices. Let ψ be the character of the representation W, so that $\psi = \psi_1 + \psi_2$. The results of [3], in particular the discussion after Corollary 6.5, show that $Q(\psi) = Q(\sqrt{-p})$ when $q \equiv 3 \pmod{4}$.

(1.6) Lemma. Suppose that $q \equiv 3 \pmod{4}$. Then $Q(\psi_i) = Q(\sqrt{-p})$, $1 \leq i \leq 2$, and the ψ_i both have Schur index 1 over Q.

Proof. If x is any element of G and σ is the central involution, our choice of ψ_1 as the faithful constituent of ψ leads to the conclusion that

$$\begin{align*}
\psi_1(x) &= (\psi(x) - \psi(x\sigma))/2 \\
\psi_2(x) &= (\psi(x) + \psi(x\sigma))/2.
\end{align*}$$

See, for example, the argument of [3, p. 621]. Thus $Q(\psi_i) \leq Q(\psi)$, $1 \leq i \leq 2$. If w is a regular unipotent element of W, the fixed-point subspace of w acting on the underlying space V has dimension 1. Thus Corollary 6.4 of [3] yields that

$$\psi(w) = (-q)^{1/2}.$$

However as σ acts without fixed points on V, rule (b) of the algorithm given for computing ψ in [3, p. 619] shows that

$$\psi(w\sigma) = \pm 1.$$

Our earlier formulae for the ψ_i clearly imply that $\psi_i(w)$ is irrational for $i = 1, 2$. It follows that $Q(\psi_i) = Q(\sqrt{-p})$, $1 \leq i \leq 2$, as required. Also, as the ψ_i are not real-valued and have degree coprime to p, Theorem 1.4 shows that these characters have Schur index 1 over Q.

2. Invariant Alternating Forms Associated with $Sp(2n, q)$ Representations

In [1], we showed that any faithful complex irreducible module M for $G = Sp(2n, q)$ supports a non-singular G-invariant alternating form whenever $q \equiv 1 \pmod{4}$. Characters of self-dual modules that support invariant alternating forms are said to be of symplectic type. When $q \equiv 3 \pmod{4}$ not all faithful G-modules carry invariant bilinear forms, as not all characters of G are real-valued. However, we prove that any faithful absolutely irreducible G-module supports a non-singular G-invariant alternating form provided that we are working over a field of characteristic p.

This fact could probably be proved using the representation theory of algebraic groups. However, we will prove the result using characteristic zero representation theory. We need some preparatory lemmas.

(2.1) **Lemma.** Each p-regular element of \(G \) is real.

Proof. Let \(k \) denote the algebraic closure of \(GF(q) \) and put \(S = Sp(2n, k) \). By a result of Springer, [7, IV, 2.15], two elements of \(S \) are conjugate in \(S \) if and only if they are conjugate in \(GL(2n, k) \). As centralizers of semisimple elements of \(S \) are connected [7, II, 3.9] we see from [7, I. 3.4] that two semisimple (= p-regular) elements of \(G \) are conjugate in \(G \) if and only if they are conjugate in \(S \). However, elements of \(S \) are certainly conjugate to their inverses in \(GL(2n, k) \), as they preserve a non-singular bilinear form. Thus, all elements of \(S \) are conjugate in \(S \) to their inverses, by Springer's theorem, and our lemma follows by the observations above.

(2.2) **Corollary.** Each absolutely irreducible \(G \)-module \(M \) over a field of characteristic \(p \) is self-dual and hence supports a non-singular \(G \)-invariant symmetric or alternating form.

Proof. The isomorphism type of \(A_4 \) is determined by its Brauer character, \(\phi \), say. The Brauer character of the dual, \(M^* \), of \(M \) has Brauer character \(\phi^\ast \), the complex conjugate of \(\phi \). However, \(\phi = \phi^\ast \), as all p-regular elements of \(G \) are real. Thus \(M \) is isomorphic to \(M^* \). By well-known arguments, \(M \) supports a non-singular \(G \)-invariant form, which is either symmetric or alternating.

(2.3) **Theorem.** Let \(M \) be a faithful absolutely irreducible \(G \)-module over a field of characteristic \(p \). Then \(M \) supports a non-singular \(G \)-invariant alternating form and any other non-zero \(G \)-invariant bilinear form defined on \(M \) is a scalar multiple of this form.

Proof. We use a result of W. Willems, also proved by Thompson in [9]. Let \(\phi \) be the Brauer character of \(M \). There exists a real-valued \(\chi \in \text{Irr}(G) \) such that the \(p \)-modular decomposition number \(d_{\chi \phi} \) is odd. As \(\phi \) is faithful, \(\chi \) must also be faithful, and thus by Theorem 1 of [1], \(\chi \) is of symplectic type. By [9, p. 227], \(\phi \) is also of symplectic type, implying that \(M \) supports a non-singular \(G \)-invariant alternating form. The uniqueness of the form, up to scalar multiples, is a consequence of Schur's lemma, given that \(M \) is absolutely irreducible.
3. INVARIANT UNIMODULAR FORMS ASSOCIATED WITH THE WEIL REPRESENTATION W

The irreducible constituent of degree $(q^n - 1)/2$ of the Weil representation is known to define an irreducible Brauer character modulo any prime $r \neq p$, as shown in [5]. The character of degree $(q^n + 1)/2$ is irreducible modulo any prime $r \neq p$, but it is reducible modulo 2. See [11, Theorem 2.5]. For our main theorem, we need the following theorem of I. Suprunenko and A. Zaleskii [8].

(3.1) THEOREM. Suppose that $q = p$ is a prime. Then the irreducible characters ψ_1, ψ_2 of $G = Sp(2n, p)$ arising from the Weil representation define irreducible Brauer characters modulo p.

We assume now that $G = Sp(2n, p)$, where $p \equiv 3 \pmod{4}$, and recall that ψ_1 is the character of the faithful irreducible constituent of W. Let H be the extension of G consisting of all symplectic and skew-symplectic transformations. As $Q(\psi_1) = Q(\sqrt{-p})$, we know that $\theta = \psi_1''$ is irreducible by Lemma 1.3 and this character has Schur index 1 over Q by the proof of Theorem 1.4. Now we claim that θ is rational-valued, for θ vanishes on $H - G$ and equals $\psi_1 + \overline{\psi_1}$ on G. As ψ_1 has the single Galois conjugate $\overline{\psi_1}$, $\psi_1 + \overline{\psi_1}$ is rational-valued on G, as required. It follows therefore that θ is the character of an absolutely irreducible Q-representation of H. Let M be a QH-module affording the character θ and let L be an H-invariant rational integral lattice in M. We can find a non-singular positive definite integral symmetric form

$$f: L \times L \to \mathbb{Z}$$

that is H-invariant. For all primes r, we induce a symmetric form

$$\tilde{f}: \tilde{L} \times \tilde{L} \to GF(r),$$

where $\tilde{L} = L/rL$, and we can scale f so that \tilde{f} is not identically zero. Then \tilde{f} is an H-invariant symmetric form defined on \tilde{L}. Assuming this notation, we can prove our main result. The argument is derived from the proof of a theorem of Thompson [10].

(3.2) THEOREM. Suppose that n is even. Let f be a non-singular positive definite integral symmetric form defined on $L \times L$. Assume that f is scaled so that \tilde{f} is non-zero for all primes. Then \tilde{f} is unimodular and even.

Proof. Take any prime $r \neq p$. We claim that \tilde{L} is an absolutely irreducible module for H over $GF(r)$. To see this, we note that as n is even, ψ_1 has degree $(p^n - 1)/2$ and hence defines an absolutely irreducible r-modular Brauer character ϕ, by our remarks at the beginning of this
section. Now the H-conjugate Brauer character ϕ^u equals ψ_1^u on r-regular elements of G, for $u \in H - G$. We note that if w is a regular unipotent element of G, w has order coprime to r, and $\psi_1(w) \neq \overline{\psi_1(w)}$. It follows that $\phi(w) \neq \phi^u(w)$ and thus ϕ, ϕ^u are distinct Brauer characters of G. Since we have $\theta_G = \psi_1 + \psi_1^u$, the decomposition

$$\theta_G = \phi + \phi^u$$

holds for r-regular elements of G. It follows easily from Clifford's theorem that θ must define an irreducible Brauer character for H and hence L is absolutely irreducible.

Now the radical of f on L is H-invariant and not equal to L. As L is irreducible, this forces the radical to be zero and hence the discriminant of f is relatively prime to r. Thus the discriminant of f can only be a power of p and we will show that it is actually 1 by considering the reduction of L modulo p.

We set $\overline{L} = L/pL$ now and again note that the radical R of f on \overline{L} is H-invariant and not equal to L. Moreover, \overline{L}/R is a module for H that supports a non-singular H-invariant symmetric form. We know that ψ_1 defines an irreducible Brauer character, ϕ say, modulo p, by Theorem 3.1, and ϕ must be real-valued by Lemma 2.1. Therefore $\overline{\psi_1} = \phi$ on p-regular elements of G and it follows that the Brauer character of G acting on \overline{L} is 2ϕ. If R is non-zero, the Brauer character of G acting on \overline{L}/R can only be ϕ. However we know from Theorem 2.3 that ϕ is of symplectic type, which contradicts the fact that \overline{L}/R supports a non-singular G-invariant symmetric form. Thus R must be zero and consequently f is non-singular. This forces the discriminant of f to be coprime to p, and hence to be 1, which means that f is unimodular. Finally, the fact that f is even follows from the argument of Thompson [10]. This completes the proof.

As an illustration of the theorem we take $G = Sp(4, 3)$ and H the corresponding group of symplectic and skew-symplectic transformations. By Theorem 3.2, we have an absolutely irreducible H-invariant integral lattice L of rank 8 that supports an H-invariant positive definite even unimodular form f. By a theorem of Mordell [6, p. 55], f is unique up to integral equivalence and we can identify L with the root lattice of type E_8. In particular, H is isomorphic to a subgroup of the derived group of the Weyl group of type E_8. We note that $H/\langle \sigma \rangle$, where σ is the central involution, is isomorphic to the Weyl group of type E_6.

4. Possible Extensions and Comments

We consider whether an analogue of Theorem 3.2 exists when n is odd and $p \equiv 3 \pmod{4}$. The faithful irreducible character ψ_1 of $G = Sp(2n, p)$ of
the Weil representation W_i has degree $(p^n+1)/2$ and we can obtain an H-invariant integral lattice L of rank p^n+1, where H is defined as previously, whose character on G equals $\psi_1 + \overline{\psi}_1$. Now ψ_1 defines an irreducible Brauer character modulo any prime different from 2 by [11, Theorem 2.5] and Theorem 3.1 of the previous section. Thus the discriminant of the H-invariant integral form f defined on L can be shown to equal a power of 2 by the arguments used to prove Theorem 3.2. However, we cannot necessarily prove that f is even and unimodular, as ψ_1 is reducible modulo 2, its modular constituents having degree $(p^n-1)/2$ and 1 [11, Theorem 2.5]. Indeed, as the rank of an even positive definite unimodular lattice is divisible by 8, by [6, p. 53, Corollary 2], f can only be even and unimodular if $p \equiv -1 \pmod{8}$. We do not know if this necessary condition for f to be even and unimodular is also sufficient, except in the rather simple case described in the next theorem.

(4.1) Theorem. Let $G = \text{Sp}(2, p)$, where p is a prime with $p \equiv -1 \pmod{8}$. There exists a G-invariant even unimodular integral lattice L of rank $p + 1$ that affords the character $\psi_1 + \overline{\psi}_1$.

Proof. The normalizer B of a Sylow p-subgroup U of G has order $p(p-1)$ and B/U is cyclic. Let λ be a linear character of B of order 2. As $p \equiv 3 \pmod{4}$, λ is non-trivial on the central involution of G, which is contained in B. The induced character λ^G is then faithful for G and the known character theory of G shows that $\lambda^G = \psi_1 + \overline{\psi}_1$.

We can see that G acts as group of signed permutation matrices in the monomial representation defined by λ^G. Let M be the corresponding rational vector space on which G acts. It is clear that there is naturally a G-invariant integral lattice L in M and the identity matrix defines a G-invariant unimodular form on L. As 8 divides the rank of L, a theorem of Thompson [13, Theorem 2.8] shows that there is an even unimodular lattice L_0 in M which is invariant under a subgroup G_0 of G, where $|G:G_0| \leq 2$. As G contains no subgroup of index 2, L_0 is a G-invariant lattice of the required type. This completes the proof.

Finally, we remark that when $p \equiv 1 \pmod{4}$, the fact that the faithful irreducible characters of degree $(p^n-1)/2$ of the group $\text{Sp}(2n, p)$ have Schur index 2 over Q makes an analogue of Theorem 3.2 for this group impossible to prove by our methods.

Acknowledgment

I thank Professor Zaleskii for helpful discussions on Theorem 3.1.
REFERENCES

1. R. Gow, Real representations of the finite orthogonal and symplectic groups of odd characteristic, *J. Algebra* 96 (1985), 249–274.