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Abstract

We study fusion rings for degenerate minimal models= g case) forN =0andN =1
(super)conformal algebras. We consider a distinguished family of modules at the level
¢ =1 andc = 3/2 and show that the corresponding fusion rings are isomorphic to the
representation rings fai(2, C) andosp(1|2), respectively.

0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

The Virasoro algebra and its minimal models are a good source of interesting
vertex operator algebras. In [W] the rationality of the Virasoro vertex operator
algebrad.(c, 4, 0) was proved, where, ;, =1—6(p — 9)%/(pg) and(p, q) =1,

p.q = 2. This result is used for the construction of the corresponding vertex
tensor categories (cf. [H1]). A similar result is obtained f¥r= 1 case in
[AHM].

In this paper we study a non-rational vertex operator algél§ia0) (p = ¢
case) and the corresponding fusion ring ftegenerateminimal models, i.e.,
the casep = ¢, with central charge = 1. We also consider & = 1 vertex
operator superalgebra version basedl8/2, 0) (see below). These cases are
substantially different for many reasons (let us focus on the £4%e0) since

E-mail addressesamilas@math.rutgers.edu, milas@math.arizona.edu.
1 current address: Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA.

0021-8693/02/$ — see front mattér 2002 Elsevier Science (USA). All rights reserved.
PIl: S0021-8693(02)00096-0


https://core.ac.uk/display/81992728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. Milas / Journal of Algebra 254 (2002) 300-335 301

the same problem persists fx3/2, 0). The vertex operator algebia(1, 0) is
not rational (cf. [FZ]) but it has a distinguished family of irreducible modules
(those that are not irreducible Verma modul&g) which consists of classes of
irreducible modules isomorphic tb(1, m2/4) for somem € N. These modules
have a quite simple embedding structure [KR,FF2].

We show that the fusion ring for the family; is isomorphic to the
representation ring Régi(2, C)), i.e., we “formally” have

2 2
n m
L<1, Z) X L<1, T)

2 o2 N2
_ (1’ (n +m) >+L<1, (n—HZ 2) >+---+L<1, (n 4m) )

wherem,n € Nandn > m.

This result seems to be known—in some form—for a while by physicists (also
in [FKRW] is stated as a part of more general conjecture concerning fusion rings
for W(gly) algebras—see also [FM]). The author of the current paper could not
trace any proof in the language of vertex operator algebras. Some computations
are done in [DG] but not complete. But instead of trying to patch missing proofs,
there are two more important reasons for seeking such a proof.

e So far, not many computations of the fusion coefficients has been known for
non-rational vertex operator algebras (here non-rational meamsational
in any reasonable category). In particular, we offer a proof that uses universal
construction (induced modules), therefore it is very general.

e As noticed by H. Liin [L1,L2], Frenkel-Zhu'’s formula [FZ] does not hold
for non-rational vertex operator algebras. The right formula was provided
in [L2] but it is a non-trivial matter to use it for computational purposes in
non-rational setting.

We believe that our method can be used for more complicated models—like
degenerate models associatedealgebras.

We have to stress that the fusion coefficients are simply derived from the
space of intertwining operators among irreducible modules. In other words, it
is not true that the only modules which “fuse” with(1, n2/4), and L (1, m?/4)
are completely reducible. This fact makes impossible to implermRént-tensor
product construction from [HL1,HL2]. The resolution might be to construct
(a new) tensor product which takes only irreducible modules into account, but
this approach will assume a good knowledge of matrix coefficients for product
of intertwining operators. A different approach would be working in the larger
family F1, which consists of all quotients of Verma modulég1, m?/4). The
possible constructions will be discussed elsewhere.
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We also provide a different proof of the fusion formulas by constructing
all intertwining operators from the lattice vertex operator algebraand its
irreducible modulé/y ;1,2 (cf. [DG]).

A superN = 1 versions of the above result stems from f{ie= 1 Neveu—
Schwarz Lie superalgebra at the level23 Again, there are essentially two
approaches: one which uses the lattice construction (extended with a suitable
fermionic Fock space) and the other which uses the singular vectors and
projection formulas. For the future purposes we use the latter approach. We
consider a set of equivalence classes of irreducible modules fovtee 1
superconformal algebra (see Section 3) with representalit@<, ¢2/2) where
g € N. We proved (see Theorem 10.1 and Corollary 10.1) that the corresponding
fusion ring is isomorphic to the representation ringdei(1|2), i.e., we formally
have:

3 2 3q2
L2, =) xL(2 L
22 2° 2

(3 r+q)? 3 (r+q—1)72 3 (r—q)?
—L<z’ 2 )“(a#)*‘““(z’ 2 )

for everyr,qg € N, r > g, where x stands for the fusion product (see the last
section).

In particular, as in the Virasoro algebra case, these fusion coefficients are 0
or 1. However in [HM] we showed that foN = 1 case has some interesting
features; for some vertex operator algeléas 0), fusion coefficients might be 2.

In Proposition 11.1 we construct a non-trivial example with 15/2 — 3/5.

At the very end, we construct an example oflagarithmic intertwining
operator (for the definition see [M]) for theV = 1 vertex operator superalgebra
L(27/2,0).

These results can be extended for a more general class of vertex operator
algebrasL(c, 0) wherec # ¢, 4, because of simplicity we treat only the case
c¢=1andc=3/2.

2. Representationsof the Virasoro algebra at thelevel ¢ =1

The representation theory for the Virasoro algebra has been studied intensively
in the last two decades [KR,FF1,FF2,FF3]. Kac's determinant formula is the most
important tool in the highest (or lowest) weight theory. From the determinant
formula it follows that the lowest weight Verma module with the central charge
c(r) = 13— 61 — 6t~ and the weight

1- 1- 1-
hpq(t) = 4P 1 2P61+ 4‘1 ‘,
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has a singular vector of the weight, ,(r) + pq, t € C. We are interested in
the caser =1, i.e.,,c = 1. It is easy to see tha¥ (1, h) is irreducible if and
only if & # m?/4 for somem e N. In the caseh = m?/4 we have the following
description.

Proposition 2.1. The Verma modul#é/ (1, m?/4) has a unique singular vector of
weightm?/4 + (m + 1). This vector generates the maximal submodule. In other
words, we have the following exact sequence

2 2 2
o—>M<1,M)—>M(1,’"—>—>L(1, m—>—>o. 1)
4 4 4

Even though they do not exist in general, in the dagg(?), if p =1 there are
explicit formulas at each level(r) (in particularr = 1). Whenc = 1 Benoit and
S. Aubin’s formula [BSA1] implies that

Psinguig = Y ¢q(it, ... in)L(=i1)... L(=in)v1g 2

is a singular vector foM (1, k1 4(1)), where

crlin...in= [ k@ —h.
1<k<r

k#ZLl Vi

Remark 2.1. Note that every singular vector (2) has forb{—1)"*+1 + ...,
where dots represent lower degree terms (with respect to the universal enveloping
algebra grading).

3. Vertex operator algebra L(1, 0)
3.1. Zhu's algebra and intertwining operators

We will use the definition of vertex operator algebra and modules as stated in
[FHL] or [FLM]. Let L(1,0) = M(1,0)/(L(—1)1) be a simple vertex operator
algebra associated to irreducible representation of the Virasoro algebra (cf. [FZ,
W)).

It is known that to every vertex operator algelifawe can associate Zhu's
associative algebra (V) (cf. [FZ,Z]). In the special cas& = L(1, 0), we know
(see [FZ,W]) thatA (V) = C[y], wherey = [L(—2) — L(—1)]. We have chosen
the multiplication inA (V) as in [W] (which is slightly different then the one in
[FZ]).

1— dedga)
a*xb=Res Y(a,x)ﬁb,
X
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wherea,b € A(V).
By using standard techniques (see [FZ,W]) we have the following proposition.

Proposition 3.1. Every irreducible module for the vertex operator algelrd., 0)
is isomorphic taL (1, i), for somes € C.

Proof. According to [Z], there is a one-to-one equivalence between equivalence
classes oN-gradable irreduciblé (1, 0)-modules and irreducibl€[ y]-modules.
Every irreducible L(1, 0)-module is a Vir-module. Any such module I§-
gradable and isomorphic tb(1, #) for someh € C. On the other hand every
finite-dimensional irreducibleC[y]-module is one-dimensional so the proof
follows. O

Since the notion of intertwining operator is more subtle we include here the
original definition [FHL].

Definition 3.1. Let W1, W2, and W3 be a triple of modules for vertex operator
algebrav. A mapping

Vi W1 ® Wa — Wa{x},
is called an intertwining operator of typ( vlvgvz) if it satisfies the following
properties:

1. Thetruncationproperty: For anw; € W;,i =1, 2, (w1),w2 = 0, forn large
enough.
2. TheL(—1)-derivative propertyFor anyv € V,

d
V(L(-Dw1,x) = 7 Y, ).
3. TheJacobiidentity In Hom(W1 ® W2, W3){xo, x1, x2}, we have

xg 8 (“; xz) Y (u, x)Y (w1, x2)
0

—xpts (“__x:l>y(w1, x2)Y (u, x1)

_ X1 — X
=1, 15( lxz 0>y(Y(u,xo)w1,xz) (3)
foru e V andwy € W1.

We denote the space of all intertwining operators of the t(/p‘lga,z) by

I(Wvlvgvz). The dimension of the space of intertwining operators (also known as

“fusion rule”) of the type(W%Vz) we denote va% Wy
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Our goal is to find the fusion rules for the degenerate minimal models, i.e.,
L(1,r%/4
diml( (L.r%/4) )
L(l,p /4) L(l,q /4)
Since our modules are irreducible we want to introduce Frenkel-Zhu's formula

which gives us (roughly) a prescription for calculating fusion rules. It is not hard
to see, by using the Jacobi identity, that the space

; ( L(1,r%/4) )
L(1, p?/4) L(1,q%/4)
is at most one-dimensional.
Now for every moduleM, we associate amA(V)-bimodule A(M) =
M/O (M) (cf. [FZ]), whereO (M) is spanned by the elements of the form

1— deda)
Res Y(u,x)%v,
X
ueV,veM.Inthe caseM = M(c, h),
O0(M(c, h))

={(L(-n—=3)—2L(-n—2)+ L(-D)v: n >0, ve M(c,h)}. (4)
If we let
y=[L(=2)~L(-D],  x=[L(-2)—2L(-D+L(©O)],
then it follows from the formulas
[L(—n)v] = [(ny —x+ wt(v))v] and [x, y]lw=0modO (M(c, h))
([x, y]=xy — yx) that
A(M(c, h)) =Clx, y],

as aC[y]-bimodule (cf. [L2]) where the lowest weight vector is identified with
1 e C[x, y] and the actions of are

y*p(x,y) =xp(x,y), plx,y)xy=yp(x,y),
for everyp(x, y) € C[x, y].

The Frenkel-zZhu's formula [FZ] states that it is possible to calculate the
dimension of the spac@w’ﬁhz) by knowing A(V), A(M1), M2(0), and M3(0).
Instead of giving the original statement from [FZ], we state the following
refinement obtained in [L1,L2].

Theorem 3.1. Let M1, M>, and M3 be lowest weigh¥ -modules. Suppose that
M> and M} are generalized Verm# -modulegsee SectioB.2). Then we have

Nngz = dim Homy v (A(M1 ®a(v) M2(0), M3(0)),

whereM;(0),i =1, 2, 3, is the “top” level of M;, respectively, equipped with the
A(V)-module structures.
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This theorem is not so useful as it stands. On the other hand, its proof is
important. Hence it will be necessary to understand a little bit deeper assumptions
on M2 and M3 in our situation. For warm up let us start with the “easy-half” of
the Frenkel-zZhu's formula which says:

Lemma 3.1. Let M3 be an irreducible lowest weigit-module. Then

Ny, < dim Homy v (A(M1) ®a(v) Ma(0). M3(0)).

Define an infinite-dimensional Lie algebfaspanned by
L(—n—2)—2L(—n —1)+ L(—n),

for n > 1. In the case of minimal models—which is the most interesting case—
the homology group$f, (L, L(c, h)) where calculated in [FF2]. For the Verma
modules the Oth homologyo(L, M (1, k)) with the coefficients in the Verma
modules is isomorphic t€[x, y] as anA (L (1, 0))-bimodule (cf. [W]).

The following result is an application of a more general theory [FF1].

Theorem 3.2. We have
m
@ Ho(ﬁ, L<1, T)) is infinite-dimensional.

(b) Ho(L,L(1,m?/4)) isfinitely generated as @eft) A(L(1, 0))-module.

2 2 .
1 m- n“\\ _]JC if|m—n|=2,
© EXt\m,o<L(1’ 2 ) L<1’ 2 >> = {0 otherwise
where Ext\lm’o stands for the relativeExt with respect to the one-
dimensional abelian subalgebra generated/ti).

Proof. (a) Since the maximal submodule df (1, m2/4) is generated by
one vector, in the projection (or homology)(L (1, m2/4)) is isomorphic to
Clx, y]1/I, where I is a cyclic submodule (with respect to the left and right
actions) generated by some polynompék, y) which is a projection ob1 ,, in
Clx, y]. Itis clear that this space is infinite-dimensional.
(b) Note first thaf L(—1)v] = (y — x + degv))[v]. By using Remark 2.1 it

follows that

m+1

[vsingl = p(x, y) = [ [ (x =y +1) +q(x, y),

i=1
where de¢y) < (m + 1). Thus, the pure monomials ip(x, y) with the highest
powers are”t1 andy” 1. Since,l is spanned by (x, y)C[x], here we consider
only the left action, it follows thatC[x, y]/I finitely generated. The similar
argument holds for the right action.
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(c) The idea is the same as in [FF1]. The result is however different. It is known
that

Ext;, (M, N) = H*(Vir, O, Hom(M, N)).
Therefore
H*(Vir, 0, Hom(M, N)) = Tor/"© (N*, M),

whereN* is the dual module. Hence we can compute our cohomology by using
the tensor product of complexes

2 2
M(l, M) _>M(1, ’"_),
4 4

22 opp 2\ opp
M(l, ("J;)> —>M<1,%) ,

whereM (c, h)°PPis the opposite Verma module (cf. [FF1,FF2]). The correspond-
ing spectral sequencié?M collapses at the second term. Therefore

Vir, O n?\* m? 1,0
Tor ™ (L<1’Z> ,L(l, T))%EZ’ =Cor0,

where non-trivial homology occurs only if the Verma modidél, m?2/4) embeds
inside M (1, n2/4) as the maximal submodule or vice-versa. This happens if and
only if |n —m| = 2. Therefore we have the pro®fhe corresponding short exact
sequences are clearly

2 2 2 2
O—>L(1, (m+2)7 )—>M(1,m—>/M<1, (m+ 47 )—>L<1, ’"—)—>o,
a 2 a a

(®)

and the one obtained from (5) by applying (exact) fun¢tdrtaking modules to
the corresponding contragradient modules!

For everym,n € N (we exclude the casein = 0), fix a multisetJ,, , =
{m+nm+n—-2,...,m—n} LetF, , bea“density” module for the Virasoro
algebraF, , is spanned by,, r € Z, and the action is given by

L, w, = (u +r+A(m+ 1))wr_,,.

In [FF1] the projection formula for the singular vectors (considered as an element
of the enveloping algebra) afi, , (more preciselywo) was found. We want to
relate the projection of the singular vectors Bp ,, with the projection inside
A(M (1, m?/48) ®cly) L(1,n%/4). Itis easy to see that

2 It is crucial to notice that our cohomology is relative one, otherwise our extension are not
controllable inside categor§®. Such (non-relative) extensions are studied in [M].
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k 2
[L(=j1).. . L(=j)v,ea) = [ ] (]% —y+ B0, k>>.[vmz/41
r=1

2

k
= ]‘[(j,% —x+ B, k)).[vmz/4] (6)
r=1

wherev,,2 4 is the lowest weight vector and

2

. ..m
B k) =jryat- -+ e+

But the last factor in (6) is the same as th€jy, .. ., ji) where

L(=j1)...L(—=jr).wo= P(j1, ., JOWji+-tji
and the projection is itF;, ,, for A = —n?/4 andu = n?/4+m?/4 — x.

In the remarkable paper [FF2], projection formulas for all singular vectors on
the density modules were found. In the slightly different notation, for the singular
vectors we consider, these formulas appeared in [KA]. The result is

;2
VL m41.W0 = ]_[ <x - Z>wm+1, Q)
15]111,n
up to a multiplicative constant.
Now, by using (7) fact and the discussion above (cf. [W]) we obtain

Lemma 3.2. As aA(L(Z, 0))-moduleA (L (1, m?/4)) ® a0y L(L1,n?/4)(0) is
isomorphic toC[x1/([ 1, , (x — i%/4)).

If n < m notice that as ard (L (1, 0))-module
2

Al Z L1 0= Cv; 8
(<,7)>®A(L(1,0)) (’Z>()_@ Vi, (8)

ie-’m,n

wherev; is an irreducibleA(L(1, 0))-module such thay.v; = i%/4v;. But if
m < n, then we have two-dimensional submodule in the above decomposition
(and this module imot completely reducible). Thus, (8) st symmetric if we
switchm andn.

The similar failure was already noticed in [L1]. Anyhow, by using Lemmas 3.2
and 3.1 we obtain the following proposition.

Proposition 3.2. Let L(1,m?/4), L(1,n?/4), and M be irreducible L(1, 0)-
modules. Then we have the following upper bounds

: M 1 'fMEL(lﬁ forr e J,
dim 7 2 2 < I s 4) € Jm,n» 9
<L(1’ ) L(1, n?)) {O otherwise ©

whereJ,, , ={m+n,...,m —n}.
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Now, we shall show that the equality holds in Eq. (9). We will provide two
different proofs. One which uses the properties of Verma modules and the other
which uses free field realization of the moduled., m?/4).

3.2. Lie algebrag(V)

Let V be a vertex operator algebra. Bét=V @ C[t,+ ], d=L(-1) ® 1+
1® %, andg(V) =V/dV. It has been noticed by several authors that the space
g(V) has a Lie algebra structure if we let

o
m .

[a(m). b(n)] = ; (l, )(aib)(m -,
If we define the grading with deg(m) =n —m — 1, wherea € V(,), then we have
the corresponding triangular decompositigiV) = g(V)_ ® g(V)o ® g(V) .
Let U be anyg(V)o-module. We let (as in [L2])

U(g)

FU) =Indy vy, ogvyp) Us
such thatg(V), acts as zero. We define also the quotiiit/) = F(U)/J(U)
(the so-called generalized Verma module [L2]), whé¥&/) is the intersection
of all kernels of allg(V)-homomorphisms fronF (U) to weak modules. Now,
the assumption in Theorem 3.1 afy and M; means that/, = F(M2(0)) and
M3 = F(M3(0))'.

In [L1,L2] it was shown that everyA (V) homomorphism fromA(W1) ®a(v)

W2(0) to W3(0) does not necessary lead to an intertwining operator of the type

(w's,) but rather to(vgl(fvf’(?’v(‘?;(*g;)) (actually F(W2(0)) might be replaced by
F(W2(0))).

In the case whefV is rational, F(W2(0)) = W» and F (W3(0)*)’ = W3 [L2].
But if the vertex operator algebiia is not rational, the main difficulty is that the
generalized Verma modulE(W»(0)) may not be isomorphic téV, (let alone
F(W2(0))!) (cf. [L2]). Also, the spaces (U) and F(U) are extremely difficult
to analyze explicitly. Still, because we are dealing with a particular example,
Virasoro vertex operator algebra, we can make use of singular vectors and Verma
modules to simplify the whole construction.

Let V = L(1,0). Pickw = L(—2)1 € L(1,0). Then, insideg(L(1,0)), we
have

m3—m

12

i.e., these operators close the Virasoro algebra. From the constructiai@/ofit
isclearthal/ (Mir L) ® U — U(g(V)-) @ U = F(U). In particular,M (1, h) —
F(M(1, h)(0)).

[0(m+ 1), 0(n+1)]=(m—no@m+n+1)+nino
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3.3. The fusion rules computations

Assume first that
m < n. (10)

First we replace the “big” spacE(M (1, h)) with the smaller Verma module for
the Virasoro algebra (we have seen already that the latter is a subspace inside
F(M(1, h))).

Now, let us pick a non-trivial (L (1, 0)) homomorphism fromA (L (1, m2/4))
®a(L.0) L(1,n2/4)(0) to L(1,r2/4)(0). Also letT = L(1,m?/4) ®C[t, 171 ®
M(1,n%/4) be a g(L(1,0))-module as in [L2]. Then the construction in
[L2] implies that there is a bilinear pairing betwedn and M (1, r2/4) —
F(M(1,r?/4)(0)%). This implies (again by applying Li’'s construction in the proof
of Theorem 2.11 in [L2]) that the corresponding intertwining operkodsin
M(1,r?/4),i.e., itis of the type

( M(L.r2/4) )
L(1,m?/4) M(1,n?/4)) "
HereM (1, r2/4)’ is the contragradient Verma module (cf. [FF2]). The contragra-

dient moduleM (1, r2/4)’ is notof the lowest weight type (becaus#(1, r2/4) is
reducible). In particular, i’ is the lowest weight vector

4

i.e., we can “paste” the whole irreducible module by acting on the lowest weight
subspace, but not the whole mod&1, m2/4)’. Now, the question is

2
U Vi = L(l, r-),

How to descend fromM (1, m?/4)’ to L(1, m?/4)?

Here is the proof. We have either< r or r < n. For each of these two cases
we consider

; M(1,r%/4) 1
<L(1, m?/4) M (1, n2/4)> ’ ah

M(1,n%/4)
! <L(l, m?/4) M (1, r2/4)> ’ (12)

respectively. Notice that these two spaces are isomorphic because of

/
i Ms N MY
My Mo M1 Mj

Suppose that < r.

or
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Now the aim is to construct intertwining operator of the type
; ( M(1,r?/4) )
L(1,m?/4) M(1,n?/4) )"
Therefore if we can check
(w3, Y(w1, x)w) =0, (13)

for every w € M1, (m + 2)2/4) — ML m?/4), wy € M(1,r?/4" =
M1, r?/4), andw € L(1, n%/4), then by defining) (w1, x)[w2] := Y(w1, x)w>
where[wz] € M(1,m%/4)/M (1, (m + 2)2/4), we obtain a (well-defined) non-
trivial intertwining operator of the type
( M(1,r%/4) )
L(1,m?/4) L(L,n%/4))"
Let us check that (13) holds. First of all, because of the Jacobi identity and the
fact thatM (1, r2/4) is lowest weight module, it is enough to show that

(w3, Y(w1, x)vsing) =0, (14)

wherew} € M(1,r2/4)"(0) = M(1,r?/4)(0) is the lowest weight vector and
vsing IS the singular vector that generates the maximal submodul(df m?/4).
(w3, Y(w1, X)L(=j1) ... L(—ji)w)
k
[1- (x""‘“ax + (@A jxd

1

12
4

)(wé, V(we, x)w)
=
: 1 H 2 2 m2 n2
ZH_<Xji+1ax+(1—ﬁ)xﬁm7>cx7TT
i=1

k (2 2 2 k 2 2 2 2
= (—DZi H(% - mj - nz -2 Js+ (@1 — ji)mT)Cx4_4_4
i=1 s=i+1
k 2 2 k 2 2 2 2
=Cn<jim7_rz+ Z js—i—nz)c_x%anTZiji’ (15)

i=1 s=i+1
whereC is a constant that depends @n(we may assume that is equal to 1). If
we compare (15) with (6) we see that products appearing in both expressions
are the same if we interchangewith r2/4 andm?/4 with n?/4. In other
words, the expressio(wg, Y(w1, x)vsing = 0 if and only if the corresponding
projection insideA (L (L, n2/4)) ® aL 1.0 A(L(L, m?/4)) is zero (notice that now
L(1,n2/4) andL(1, m?/4) changed positions). We know that

oo 2)=
7)) ®acao 4 [lics,, (x —i%/4)

12
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Because of (10),.m C Ju.m (&S multisets). Therefore
(w/3, Y(wy, x)”sing) =0
holds. Thus we obtain a non-trivial intertwining opera3oof the type

M(1,r2/4)
<L(l, m?/4) L(1, n2/4)> ’
Now,

; < M(1,r%/4) ) ~, ( L(1,n?/4) )
L(1,m?/4) L(L,n%/4))  \L(L,m?/4) M(1,r%/4))"

Because of our initial assumptian< r, andm —n < r < m + n it follows that

m —r <n <m + r, therefore we can repeat the whole procedure\eL, r2/4)
so we end up with a non-trivial intertwining operator of the type

< L(1,n?/4) )

L(1,m?/4) L(1,r2/4) )"

If r < g then we pick the intertwining operator (12) and the same reasoning leads
to a non-trivial intertwining operator of the type

< L(1,r%/4) >

L(1,m?/4) L(1,n%/4))"

This also follows from the duality property for the intertwining operators. If we
summarized everything we obtain

Theorem 3.3.
L(1,r%/4
dim 1 < (L.7%/4) ) —1
L(1,m?/4) L(1,n%/4)
ifand only ifr € {m +n, ..., |m —n|}.
Theorem 3.4. Let A be a free Abelian group on the set(m): m € N} and
x:Ax A—> A

a binary operation defined by the formula

a(m) x a(n) = Z ./\/L(l’rz/4) a(r).

L(l,m2/4) L(l,n2/4)
reNU0

ThenA is a commutative associative ring with the multiplication
am)xam)=am+n)+am+n—2)+---+a(jm—n|),
i.e., A is isomorphic to the representation rilRpp(sl(2, C)).
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Remark 3.1. In general, ifM is anyL(1, 0)-module and

Yel M
L(1,m?/4) L(1,n%/4) )"
then M is not necessary completely reducible. Also, note that we excluded the
casemn = 0. If m or n are equal to zero then we deal with intertwining operators
among two irreducible modules and vertex operator algebras, which are well
known.
Another interesting fact is that in the case (10) the module

A(L(L. m?/4)) ® a0y L(L.n%/4)(0)

is not completely reducible. This fact was exploited in [M] where we study
logarithmicintertwining operators.

Note that in our proof we actually analyzed more carefully the failure of
Frenkel-Zhu's formula. One should not expect to apply our procedure in the more
general setting, because our Virasoro vertex operator algebra has a quite simple
structure. Certainly it would be interesting to study a class of vertex operator
algebra for which

A(W1) ®acvy W2(0) = A(W2) @4(v) W1(0), (16)

for any choice of irreducible modulé&; and W». Then we hope that for this
class of vertex algebras some version of Frenkel-Zhu’s formula indeed apply.
Assumption (16) turns out to be very natural since

W3 ~ W3
I(Wl W2)21<W2 W1>' (17)

4. Construction of all intertwining operatorsfor the family F;
4.1. Vi vertex operator algebra and its irreducible modules

Let L be a rank one even lattice with a genergfonormalized such that
(B, B) =1 and leta = +/28. Thus (, @) = 2. As in [FLM,DL] we defineV,,
as a vector space

V=M1 QC[L],

where M (1) is the level one irreducible module for Heisenberg algebga
associated to one-dimensional abelian algébtal. ®7 C andC[L] is the group
algebra ofL with a generator® Putw = %ﬁ(—l)z. ThenV; is a vertex operator
algebra (see [FLM]) with the Virasoro element We have a decomposition

Vi=Pu e

mez
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Let L° be a dual latticeL°/L = Z/27Z. Then (as in [DL]), for a nontrivial
coset representative, we obtain an irreducilemoduleV; 1,2, which can be
decomposed as

Viriz= P M @ etz
meZ

Moreover,Vy 11,2, Vi is (up to equivalence) complete list of irreducibig -
modules. Furthermore, one can equip the sgélce V; @ V112 (as in [DL])
with the structure of the generalized vertex operator algebra. We will neglect this
fact in our considerations.

For every modulé¥ for the Virasoro algebra on which(0) acts semisimple
we define a formal character (ogagraded dimension) by

chy(W)y= > dim(W,)q".

neSped.(0)
From the Proposition 2.1 it follows that

m2 qm2/4 _ q(m+2)2/4
Ch’j L l, T == _1/24 .
q n(q)

Then it is not hard to obtain

chy (VL) =) (2n+ 1chy(L(L n%),

n>0

2n+1)°2
chy(Viy12) = Z(Zn +2)ch, <L (l, %)) (18)

n>0

Consider the vectors
x =€, y=¢e9, h=a(=1).(0),

which span(V;)1. These vectors span a Lie algebra isomorphig, C). xo, yo,
andhg act as derivatives oW . The following result was obtained in [DG].

Proposition 4.1. As(L(1, 0), sl2)-module

V= @ L(1,m?) ® V(2m),
m>=0

whereV (2m) is an irreducible(2m + 1)-dimensionakl>-module.

The proof uses the result from [DLM,DM1,DM2] about the decomposition
of the vertex operator algebiia with respect to a “dual” paifV %, G) where
G = Aut(G) is a compact (or finite) group and® is a G-stable subvertex
operator algebra. This can be modified when instead of gt@upge work with
the Lie algebra.
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SinceVr 11,2 is a module for the pai(rvs[z, slp) then by using (18) we derive
- 2m + 1)2
VL+1/2 = @)L(l, f ® V(2m + 1), (19)
m2z

where V(2m + 1) is a (2m + 2)-dimensionalsl>-module. It easy to see that
V(2m + 1) is irreduciblesl>-module.

Remark 4.1. Note thatV*"2 (sl,—stable vertex operator algebra) is exactly
VG where G = SQ@3) is a (full) group of automorphisms o . It is well
known that every irreducible representation can be obtain as a representation of
SL(2, C), sincePSL(2, C) = SQ3). In particular, every such finite-dimensional
representation is odd-dimensional.

Since,Vy41/2 is an irreducibleVz -module we have the Jacobi identity

xOlS(xl _ xz> Y(u,x)Y (v, xo)w — xOlS(xz _ xl) Y(v, x2)Y (u, x1)w
X0 —X0

=x218<x1_XO>Y(Y(u,xo)v,xz)w, (20)
X2
for everyu € Vi, v € Vi41/2, andw € W. Also, for

VL
el )
Y < Vit1/2 VL+1/2>

we have

X2 —X1

)y(v,xz)Y(u,m)w
%o

xOlS(xl _ xz) Y(u,x)Y(W, x2)w — x018<
X0

:x215<xlx— XO)y(Y(M,Xo)U,xz)w, (21)
2

Remark 4.2. Note thatW can not be equipped with a vertex operator superalge-
bra structure. e, v € Vy41/2 then we do not get Jacobi identity in the form (20)

or (21), but rather generalized identity where the delta function is suitably mul-
tiplied with the terms of the typé&(x1 — xo)/x2)Y/2. Studying this (generalized)
Jacobi identity is useful for studying convergence and the extension properties for
the intertwining operators (cf. [H1]).

4.2. Intertwining operators for the familf;

Let V(i), i € N, be an irreduciblesl;-module considered as a subspace
of W which corresponds to the decompositions in Proposition 4.1 and (19). Fix
a positive integey. We introduce a basis; (m), m € {j, j—2,...,—j} for V(j),
such that the following relations are satisfied:
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h.auj(m) =mu;(m),

VU+m+2)(—m)

x.uj(m) = 5 uj(m+2),
j + f—m + 2
v oy = YU m)(zj mte), m-2), (22)
whereu (k) =0 for k ¢ {j,...,—j}. Also, we choose a dual bas’ﬁ(m) for

V(j)* such that(ujf(m),uj(n)) = 8 n. Define (g.u*,v) = —(u*, g.v). Then
V(j)* became &l2-module and an isomorphism from(j) to V(j)* is given

by (u;j(m)) = (—1)f*mujf(—m). By using this identification, foy1, j2, j3 e N
and —j; <m; < j;i, i =1,2,3, we introduce real numbers (Clebsch-Gordan
coefficients)

1 Jj2 J3
mi1 m2 m3)’

such that

S v j2 J3
wjy(m) @up(ma) =Yy <m1 o ms)btjg(mﬁmz). (23)
J3=lj1—Jj2l
First we need an auxiliary result which is slightly modified result from [DM1,
DG].

Proposition 4.2. Suppose tha¥ is a vertex operator algebra an#i, W,
and W3 three irreducibleV-modules. Letv; € W1, w; € Wo, i = 1,...,k, be
homogeneous elements such thag 0 andw; are linearly independent. Then

k
> Y@ 0w #0.

i=1

Now let us go back to our vertex operator algebfa. Let ) be any
intertwining operator of the type

VL Vit1/2 Vi
, , or . 24
<VL+1/2 VL+1/2> <VL Vit1/2 VL VL (24)

By using the Proposition 4.2 the map
Y, x):V(j1) @ V(j2) — Wix}
is injective, and for everyi1, m2, andji, j» there is ap € C such that
J3=j1tj2
uj (m1) pu j,(m2) = Z k(j1, j2, j3, m1, m2, m1 +m2)u j(mi+ myz),
J3=lj1—Jj2l
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wherek(j1, j2, j3, m1, m2, m1 + m2) is a (non-zero) multiple of

i J2 J3
m1 mz mi+m2
(in the special cas®’ =Y this fact was noticed in [DG]).
Now it is clear that if

1 J2 J3
(m]_ mo m1+m2> #0,
then the L(1, 0)-module generated by (u j, (m1), x)u j,(m2) contains a copy

of L(1, j2/4). SinceL(1,0) is contained inV;, and L(1,m?/4) is an L(1, 0)-
module then we obtain the following Jacobi identity:

xOlS(xlx;Oxz> Y(u,x1) Y, x2)w — xalS <xz_;xoxl)y(v, x2)Y (u, x1)w

:x215<X1x—2)€0>y(Y(u,xo)v,xz)W, (25)

for u € L(1,0), v € L(1, j2/4) andw € L(1, j2/4) (herev andw lie in Vir-
submodules generated by, (m1) andu ;,(m>), respectively).

Now we can push dowp) to L(1, j32/4), which is generated by the vector
u j,(m1+ my), since for everyj, j» and|ji — jo| < jz < j1 + j2 we can choose
a pairm1, mp, and a) of the appropriate type (24) such that

1 Jje J3 £0
mi mz mi-+mp '

We obtain an intertwining operator of the

( L(1, j2/4) )
L(1, j2/4) L(1, j3/4) )’
and this is the end of the construction.

5. Liesuperalgebra osp(1]2) and Rep(osp(1]2))

The Lie superalgebrasp(1]2) is a graded extension of the finite-dimensional
Lie algebrasi(2,C). It has three even generatarsy and #, and two odd
generatorg andy that satisfy:

[, x] = 2x, [h, y]= -2y, [x,y]=h,

Lx, x1=x, [x. ¢l = —o, [y, x1=—x, [y, l=0,
[h, 9] = —0, (7, x]1=x,

{x,9}=2h, {x, x}=2x, {p, 0} =2y.
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Generator$x, y, 1} span a Lie algebra isomorphicdt&2, C), and this fact makes
the representation theory ofp(1|2) quite simple. All irreducibleosp(1]2)-
modules can be constructed in the following way. Fix a positive half intgger
(2j e N) and a(4; + 1)-dimensional vector spadé(;j) spanned by the vectors
{vj,vj—1/2, ..., v—j}, with the following actions:

xvi =/ —illj +i+ 1viqa,

y.ui = mvi—l,

h.v; = 2iv;. (26)
If 2(i — j) € Z then we define

Qv =—/j +ivi—1)2, XV =—+/j —ivit12, (27)

otherwise
Qv =+/j—i+1/2v;_1/2, XVi=—+Jj+i+1/2vi11/. (28)
In all these formulas; =0 if j ¢ {j, j —1/2,...,—j}. Itis easy to see that

eachV (j) is an irreduciblensp(1]2)-module and that every finite-dimensional
irreducible representation ofp(1|2) is isomorphic toV () for some;j € N/2.

The representations with € N we call even and the representations with
j € N+ 1/2 we callodd We extend this definition for an arbitrary element of
V € Rep(osp(1]2)). The corresponding decompositionis= Veven+ Voda

It is a pleasant exercise to decompose the tensor prdd@gt® V(). The
following result is well-known:

i+j
vihevihe @ V. (29)

k=li—j|, keN/2

6. N =1 Neveu—Schwarz superalgebra and its minimal models

The N = 1 Neveu—-Schwarz superalgebra is given by
ns = @ (CLn ® @ CGn+1/2 e CC,

nez nez
together with the followingV = 1 Neveu—Schwarz relations:

C
(Lo, Lyl = (m —n)Lyin + 1—2(m3 — M) 84,0,

m 1
[Lim, Gny1/2]l = >~ n—i-é Gmtnt1/2,

C
[Gm+1/2, Gn-1/2] = 2Lmn + g(mz + m)(strn,O,
[C,Ln]=0, [C, Gm+1/21=0
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for m,n € Z. We have the standard triangular decompositien= ns; &
nso®ns_ (cf. [KWa]). For every(h,c) € C?, we denote byM(c, h) Verma
module forns algebra. For eaclip, ¢) € N2, p = gmod?2, let us introduce a
family of complex ‘curves'(h, 4(¢), c(1)):

1-p® 1, 1-pg 1-¢g°

z,
8+4+8

15
="+ 343

hp,q(t) =

Then from the determinant formula (see [KWa]) it follows th@aft(c, h) is
reducible if and only if there is ac C and p,q € N, p = ¢mod2 such that
c=c(t) andh =h, 4(t). In this caseM (c, h) has asingular vector(i.e., a vector
annihilated byns, ) of the weight: 4- pg /2. Any such vector we denote by, ».

In this paper we are interested in the case —1. Thenc(—1) = 3/2 and
hpg(=D) =(p — q)%/8. hpg(=1) = h1p_g+1(—=1), so we consider only the
casehy 4 := h14(—1) (hereq is odd and positive). Hence, each Verma module
M(3/2, hy,4) is reducible.

The following result easily follows from [D] (or [AA]) and [KWa].

Proposition 6.1. For every oddg, M (3/2, h14) has the following embedding
structure

3 3 3
B M(E, hl,q+4) — M<§, hl,q+2> — M<§, hl’q) — 0. (30)
Moreover, we have the following exact sequence
3 3 3
O—-M > higy2) > M > hiq)— L > hiq ) —0, (32)

whereL(3/2, h1 4) is the corresponding irreducible quotient.

Benoit and Saint-Aubin (cf. [BSA2]) found an explicit expression for the
singular vector®Psingv,4 € M(3/2, hy ) that generates the maximal submodule:

3 Y DT ko ko) G(—k1/D) .. G~k /Dv1g,

N;ki,....ky 0€SN
(32)
where Sy is a symmetric group oW letters and the first summation is over all
the partitions of; into the odd integerk;, ..., ky and
(N-1)/2

(T( )""’ ‘7( ) (kl )/ j=
]_]

i=1

4
02jP2j’

whereo; = Y/_ kyandp; = Y k.
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Inthe special casg:= 1,411 =0, M (3/2, 0) has a singular vect@y (—1/2)v
which generate the maximal submodule. By quotienting we obtamcaium
moduleL(3/2,0) = M (3/2,0)/{G(—1/2)v3/2.0).

7. N =1 superconformal vertex operator superalgebra and intertwining
operators

We use the definition oN = 1 superconformal vertex operator superalgebra
(with and without odd variables) as in [B] (cf. [KV]) and [HM] (see also [KW]).
Let ¢ be a Grassman (odd) variable such th&t = 0. Every N = 1
superconformal vertex operator superalgefiraY, 1, t) can be equipped with
a structure ofv = 1 superconformal vertex operator algebra with an odd variable
via

Y((x,0): VOV = V()lel,
u®v > Y(u, (x,9)v,
where
Y(u, (x, (p))v =Y(u,x)v +(pY(G(—l/2)u,x)v

foru,veV.

The same formula can be used in the case of modules for the superconformal
vertex operator superalgel(d, Y, 1, 7) (see [HM]).

It is known (see [KW]) thatV (c, 0) := M(c,0)/(G(—1/2)v.0)° isaN =1
superconformal vertex operator superalgebra. Also, every lowest weight
module with the central chargds aV (¢, 0)-module. Ifc = 3/2thenV (3/2,0) =
L(3/2,0).

Proposition 7.1. Every irreducibleL (3/2, 0)-module is isomorphic té.(3/2, ),
for someh € C.

Proof. The proofis essentially the same as the one of Proposition 311.

Among all irreducibleL (3/2, 0)-modules we distinguish modules isomorphic
to L(3/2,h1,4), g € 2N — 1. These representations we cadlgenerate minimal
models

7.1. Intertwining operators and its matrix coefficients

The notation of an intertwining operators faf = 1 superconformal vertex
operator algebras is introduced in [KW,HM].

3 We write L(c, 0) if V(c, 0) is irreducible.
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Let W1, W2, andW3 be a triple ofV-modules an@d’ an intertwining operator
of type (W1W3W2). Then we consider the corresponding intertwining operator with

an odd variable (cf. [HM]):
V(- (x,9): W1 ® Wo — Wa{x}[gl,
w @ we > V(waw), (X, 9)we),
such that
V(wy, (x, 9))weey = V(wwy, Vwe) + V(G (—1/2way, x)w2).

Let w1 be a lowest weight vector for the Neveu—Schwarz algebra of the wight
From the Jacobi identity we derive the following formulas:

d
[L(—n), Y(w1,x2)] = (xz_"ﬂa—xz +(1- n)h>37(w1, x2),

[G(—n —1/2), Y(w1,x2)] = x3" V(G (—1/2)w1. x2).
[L(=n), Y(G(~1/2)w1, x2)]

= <)¢2”+1i +1—-n) (h + %))y(G(—l/Z)wl, xz),

0x2
[G(—n—1/2). Y(G(~1/2w1. x2)]

—n d —n—1
= <x2 o~ 21hn )y(wl, x2). (33)
In the odd formulation we obtain

[L(=n), Y(w1, (x2,9))]
= (5", + L= m)xy" (h+ 1/209,)) Y (w1, (x2, 9)),
[G(—n —1/2), Y(w1, (x2,9))]
= (x3"(3p — 9Bxy) — 212, " L (1)) V(w1, (x2, 9)), (34)
whered,, is the odd (Grassmann) derivative.

7.2. Even and odd intertwining operators

In [HM] we proved that every intertwining operator

L(c, h3)
yel <L(c,h1) L(c,hz))

is uniquely determined by the operat@’éw1, x) andY(G(—1/2)ws, x), where
w1 is the lowest weight vector of.(c, h1). This fact will be used later in
connection with the following definition.
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Definition 7.1. Let | | denote theZ./2Z-valued) parity operator from the union of

odd and even subspaces formodulesW;, i = 1, 2, 3. An intertwining operator
W3 T

Yel(y, w,)is

e evenif |Coeff.s YV (w1, x)w2| = |wi| + |wz],
e odd if [Coeff sV (w1, x)wz| = |wi| + [wz| + 1,

for everys € C and everyZ/2Z-homogeneous vectorg andwo.

The space of even (odd) intertwining operators of the t(%p‘f%, we denote
by I(W1 ‘,‘,z)even(l(w1 - odd) In general, we do not have a decomposition of
1(,,"3,.). into the even and odd subspaces.

W1 Wo

7.3. Frenkel-Zhu's theorem for vertex operator superalgebras

According to [KW] (after [Z]), to every vertex operator superalgebra we can
associate the Zhu's associative algel(&). If V = L(c,0), A(L(c, 0)) = C[y],
wherey = [(L(—2) — L(—1))1] = [L(—2)1] (because of the calculations that
follow it is convenient to usey = [(L(—2) — L(—1))1]). Also to everyV-
module W we associate & (V)-bimodule A(W) (cf. [KW]). In a special case
W = M(c, h), we have

A(Mns (c, h)) = Mxs(c, h)/O(Mns (c, h))’
where

O(Mns(c,h)) ={L(—n —3) = 2L(—n — 2) + L(—D)v,
G(—n—1/2)—G(-n—3/2v:n >0, ve M(c,h)}.
(35)
It is not hard to see that, & y]-bimodule,
A(M(c,h)) = Clx, y] ® Clx, y]v,
wherev = [G(—1/2)v,] and
y=[L(-2)— L(-1)], x=[L(=2) —2L(-1) + L(0)].

Let W1, W», and W3 be threeN/2-gradable irreduciblé/-modules such that
Sped.(O)|w, € h; + N, i =1,2,3, and) ¢ I(W W) We defineo(wy) :=
Coeff nz—ny-n, Y(w1, x). Because the fusion rules formula in [FZ] needs some
modifications (cf. [L1]) the same modification is necessary for the main theorem
in [KW] (this can be done with a minor super-modifications along the lines of
[L1]). Nevertheless (cf. [KW]) we have the following theorem.
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Theorem 7.1. The mapping

) W3
wil (Wl Wz) — Homy(v) (A(W1) ® a(v) W2(0), W3(0)),

such that

7(Y) (w1 ® w2) =o(w1)wa, (36)

is injective.

8. Some Lie superalgebra homology

In this section we recall some basic definition from the homology theory of
infinite-dimensional Lie superalgebras which is in the scope of the monograph [F]
(in the cohomology setting though).

Let £ be an any (possibly infinite-dimensiondl)2Z-graded Lie superalgebra
with the Z/2Z-decompositionC = Lo & £1 and letM = Mo & M1 be anyZ;-
gradedZ-module, such that the gradings are compatible. Then, we form a chain
complex(C, d, M) (for details see [F]),

0<% oL, My L e My L
where
CoL,M) = P M®APLo® Ly,

qo+q1=9

CiLM = P MATLES L,

qotq1=9
q1+r=p mod2

for p =0, 1. The mappingd are super-differentials. Fgre N andp =0, 1, we
definegth homology with coefficients i/ as

Hy (L, M) = Ker(dg (C5 (£, M))) ,/ (dr1(Cy 11 (L. M))) (37)

.
In a special casg = 0, we have

HQ(L, M) = Mo/(LoMo + L1M1)
and

H(L, M) = M1/(L1Mo + LoMy).

We want to calculatéd, (L,, L(3/2, hy4)) for the Lie superalgebra

L= @ Ly (n),

n=>0
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whereL;(n) is spanned by the vectofs(—n — 3) — 2L(—n — 2) + L(—n — 1)
andG(—n — 1/2) — G(—n — 3/2), n € N. From (35) we see (cf. [HM]) that
Ho(Lg, M(c, h)) is aC[y]-bimodule such that

Ho(Ly, M(c,h)) = A(M(c, h)) =Clx, y]1® Clx, y]v. (38)

Remark 8.1. It is more involved to calculatélo((L,, L(c, h)), SO we consider
only the special case = 3/2, h = h14, ¢ odd. As in the Virasoro case, it is
easy to show that the spa€s, (L, L(3/2, h1,4)) is infinite-dimensional for very
p,q,s € N, and finitely generated asA&(L(3/2, 0))-module. Moreover, it is not
hard to see (by using the same method as in the Virasoro case) that

3 3
EX¢5,0<L(E, hl,q>, L<§, h1>>
is non-trivial (and one-dimensional) if and onlyjif — ¢g| = 2.

In the case of minimal models we expect a substantially different result
(cf. [FF1]).
Conjecture8.1. Let

3 —_ )2 _ 2 _ 02
cra=—(1=2P =D ang g P =MD" = (P )”
T2 pq P 8pq

Then
d|m Hq (L:Sﬂ L(Cp,q’ hr[:l,,ll;)) <00,
for everyqg e N.

There is strong evidence that Conjecture 8.1 holds based on [A] and an
examplec = —%1 treated in Appendix of [HM].

The main difference between the minimal models and the degenerate models
is the fact that the maximal submodule for a minimal model is generated by
two singular vectors, compared M (3/2, h1 4) where the maximal submodule
is generated by a single singular vector.

9. Benoit—Saint-Aubin’sformula projection formulas
9.1. Odd variable formulation

We have seen before how to derive the commutation relation between
generators ofis superalgebra ang?(w1, x) wherew; is a lowest weight vector
for ns. We fix

L(3/2, )
Vel (L(s/z, hi,) L(3/2, hl,q>)



A. Milas / Journal of Algebra 254 (2002) 300-335 325

and consider the following matrix coefficient:

<w/3, V(w1 x, ¢) Psingw2>a (39)

wherePsingwz = v1,4 (cf. (7), dedPsing) = g/2) andw;, i =1, 2, 3, are the lowest
weight vectors.

Since all modules are irreducible, by using a result from [HM, Proposition 2.2],
we get

h—h1, h—hyg—h1,—~1/2

(w5, V(w1 x, @)w2) = c1x M 4 copx

wherec; andcz are constants with the property
c1=c2=0 implies Y =0. (40)
From the formula (34),
(wh, Y(w1, x, @) Psingwz) = P (dx,, @)(wh, Y(w1, x, @)w2),
whereP (dy,, ¢) is a certain super-differential operator such that
deq Psing) = degP (dx,, ¢) =q/2.
Therefore
P(Bxy, p)erx" a7 = o Cy(hy g, by, h)x"PLa=h1r=4/2
and
P 3y, @) peox M= r =012 = Co(hy g, by, H)x" Mg =42,

Constant€1(h1,4, h1,, h) andCa(hy 4, h1,r, h) (in slightly different form, but
in more general setting) were derived in [BSA2)]. Considering these coefficients
was motivated by deriving formulas for singular vectors from already known
singular vectors. By slightly modifying result from [BSA2] we obtain the
following proposition.

Proposition 9.1. Suppose that
L(3/2,h)
yel <L(3/2,hl,r)/us/z,hl,q))
and P(d,, ¢) are as the above. Then, up to a multiplicative constant,
Cilhrg i, )= [] (h—higra)
—J<k<j
and
Cao(h1,q4,h1,r,h) = l_[ <h + 1 hl,q+4k),
—j+1/2<k<j-1/2 2
for j=(r —1)/4, j > 0 (Whenj =0, Ca(h1,1, h1,,h) = 1).
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Proof. The superdifferential operatdt(d,, ¢) is obtained by replacing genera-
tors L(—m) andG(—n — 1/2) by the superdifferential operators

L(=m) > —(x;" 8y, + (L — m)x; ™ (h1 + 1/299,)) (41)

and

G(—n—1/2) > (x5 (3 — 9dy,) — 2nx;" L (h19)), (42)

acting on (w3, Y(w1, x, @)wp). This action was calculated in [BSA2]. Their
results [BSA2, Formula 3.10] implies the statem&nto

9.2. BSA formula without odd variables

Since Frenkel-Zhu's formula does not involve odd variables we need a version
of Proposition 9.1 without odd variables (which is of course equivalent). Again

L(3/2,h)
yel (L(s/z, hi) L(3/2 hl,q>)

is the same as the above. Then

(w3, V(w1 x) Psingw2) = P2(0,) (w3, V(G (—1/2)w1, x)wo)
and

(w3, V(G (=1/2)w1, x) Psingwz) = P1(8:) (w3, Y(w1, x)wa),
where P, and P; are certain differential operators. If

Po(d)cox" a7 Y2 = coKp(hy g, ha,p, h)x" e —h0rma/2
and

Pr(@x)erx” a7 = 1K (ha g, b, )" 0a =0/,
then, by comparing corresponding coefficients, we obtain

Ki(h1,q,h1,r,h) = Ci(hig, hayr, h),

Ka(hi,g, h1r, h) = Co(hyg, har, h). (43)

Let us mention that the projection formulas from Proposition 9.1 have a simple
explanation terms aguper density moduldsr the Neveu—Schwarz superalgebra.

4In [BSA2] a different sign was used in Eq. (41). Still, we obtain the same result if we consider an
isomorphic algebra with the generatdrén) := —L(n). The same generators were used in [FF2].
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10. Fusion ring for the degenerate minimal models

In order to obtain an upper bound for the fusion coefficients (cf. Theorem 7.1),
we first compute

3 3
A <L <§, h1,q>> ®AL3/2,0) L (5, h1,r> 0.

7./27Z-grading of the Oth homology group (37) enables us (see Theorem 10.1)
to study odd and even intertwining operators (see Definition 7.1). For that purpose
we introduce the following splitting:

3 3 ~ Clx,y]
(15 010)) = (85 00) ) = T2
2 2 I>

wherel; and/; are cyclic submodules (the maximal submoduleMid/2, i1 4)
is cyclic!). It seems hard to obtain explicitly these polynomials. First we obtain
some useful formulas. Insid&(M (c, h)) (cf. [W]),

[L(=nm)v] = [((n = D(L(=2) — L(-1)) + L(-D)v]
= [(n(L(=2) — L(-1)) — (L(=2) — 2L(-1) + L(0))
+ L(0)v]
= (ny — x + wt (v))[v] (45)

for everyn € N and every homogeneouss M(c, h). Therefore in

3 3
A <M (5, hl,q)) ®AL3/2,0) L (5, hl,r) 0)

we have
[L(—n)v] = (nh14 — x + L(0))[v],
[G(—n —1/2)v] =[G (-1/2)v]. (46)
Also, we have:
[G(—n —1/2)G(—m — 1/2)v]
=[G(-1/2)G(—m — 1/2)v]
=[(2L(-m — 1) — G(—=m — 1/2)G(-1/2))v]
=[(2L(—=m — 1) — L(-=D)v] = ((2m + Dy — x + wt (v))[v]. (47)
By using (45) and (47) we obtain
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[G(—m —-1-1/2)...G(—ma — 1/2)L(—n1) - - -L(—ns)vl,q]

r 2r
- H((Zmzi +Dha,—x+ Y (mp+1/2)+ hl,q)

i=1 p=2i+1
S S
'1_[<njhl,r_x+ Z np +hl,q>[v] (48)
Jj=1 p=j+1
inside
3 3
AlM > hig | ) ®aws/20) L > hi1r )(0).
It is easy to obtain a similar formula for the vector
[G(=m1—1/2)...G(—=m241—1/2)L(—n1) ... L(—ng)vig].

Lemma 10.1. Let [ Psingv1,4] = Q1(x)[G(—1/2)v14] and[G (—1/2) Psingv1,4] =
02(x)[v1,4] be the projections inside

3 3
A (M (5, h1,q>> ®AL3/2,0) L (E’ h1,r> 0.

Then

Ql(h) = KZ(hl,zp hl,r7 h)v Qz(h) = Kl(hl,q5 hl,r, h)a (49)
for everyh € C.

Proof. We use the notation from the Section 6.2, where

L(3/2, h)
Yyel (L(3/2,hl,r) L(3/2,h1,q>)'

By using (33), we obtain
(w’3, Y(w1,x)G(—m1—1/2)...G(—mo — 1/2)L(—n1) .. .L(—ns)w2>

,
— 1_[ — [ xymai-1—mai i — 2m2ih1’rx—m2[—1—m2i—l
i=1 0x

il 41 0 .
11 —<x”/+15 + @A —njhy,x f)(wé, V(wi, X)wp)

j=1

r 2r
= cll_[<(2m2i +Dhy, —h+h1g+ Z (mp + 1/2))

i=1 p=2i+1

S s
h—h1,—h1,—1r— N n
.H<njh1’r_h+ Z np +h1"’>x ba e m2m Z,n,’
=1 p=j+1

(50)
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for the constant1 (see Sections 6.1 and 6.2) that depends onlyoifihere is a
similar expression for
(wh, Vw1, x)G(—m1—1/2)...G(—mzr41 — 1/2)L(—n1) ... L(—ng)wa).
(51)
If we compare (48) with (50) (and corresponding formulas for (51)) it follows
that Q1(h) is, up to a non-zero multiplicative constant, equakig(hy -, h1,4, h)

(singular vector is odd!) an@2(h) is, up to a multiplicative constant, equal to
Ki(hi,,h14,h). O

Thus, Proposition 9.1 and Theorem 10.1 gives us the following theorem.

Theorem 10.1. (a) As aA(L(3/2, 0))-module

A(L(3/2,h1,4)) ®a(L3/2,0) L(3/2, h1,)(0)
Clx]
(H_jgkgj (x — hl,q+4k)>
Clx]

(T js1/2ckgjsryeth +1/2 = higia0))
(b) The space

I ( M(@3/2,h) )

L(3/2,h1,4) L(3/2,h1,r)

is non-trivial if and only ifh = hy ; forsomes e{g +r —1,q+r —3,...,q9 —
r+1}.
(c) The space

12

5]

(52)

1( L(3/2, h) )

L(3/2,h1,4) L(3/2,h1,)

is one-dimensional if and only it = h1,, sef{g+r—1,q+r —3,...,
lg —r| +1}.

Proof. (a) From Lemma 10.1 it follows that
Clx] Clx]
(01(x)) ~ (Q2(x))

A(L(3/2,h1,)) ®aw(3/2,0) L(3/2, h1,4) = (53)

Now we apply (43) and Proposition 9.1.

(b) As in the Virasoro case, by examining carefully the main construc-
tion of intertwining operators in [L1] with a minor super-modifications, for
everyA(L(3/2,0))-morphism fromA(L(3/2, h1,4)) ®ar(3/2,0) L(3/2, h1,) to
L(3/2, h)(0) we can construct a non-trivial intertwining operator of the form

; ( M(3/2,h) )
L(3/2,h1,4) L(3/2,h1,) )"
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(c) The proof and all the arguments involved are the same as in Section 3, so
we omit the details. We obtain a non-trivial intertwining operator of the type

< L(3/2, h) )
L(S/zahl,q) L(S/thl,r)
if h =hy for
sefg+r—1g+r—-3,...,9—r+1}
N{r+gq—Lr+q—-3,...,r —q+1},

ie,sef{g+r—Lr+q-—3,....1g—r|+1}. O

Theorem 10.2. Suppose thaj > r.°

. L3/2,h1y) B
dim? (L(3/2, hig) L(3/2,h1,) )even_ ! (54)

ifandonlyifse{g+r—1,qg+r—5,...,q —r +1};

. L(3/2,h1) _
dm’(MWth>uwszJw¢‘l (55)

if and only if

se{g+r—-3,q+r—7,...,q—r+3}.

Proof. By using (52) we obtain the following decomposition:

3 3
A°<L(§, hl,q)) Q@320 L <§’ hl,r) 0

= (qu+r—1 @D (qu+r—5 G- (qu—r+l7

3 3
A1<L (5, hl,q)) ®aw3/2,0) L <§7 hl,r) )

= qu+r73 D (qu+r77 D---D qu7r+3, (56)
whereCv; is aC[y]-module such that

(i —1)7?
V;.
8

y.ui =

5 W3 Y[ W3
Wy Wa ) \Wa Wy )’
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Claim. Let

3 3
Y € HOMA(L(c,0)) (AO(L<§, hl,q>> ®A(L(3/2,0)) L(Q’ hl,r>(0),

3
(3m.)o)

then the corresponding intertwining operator is even. Similarly if we start from

3 3
Y € HoMy (L (c,0)) (Al(L<§, h1,q>> ®A(L3/2,0) L(E’ hl,r>(0),

3
o(Zm.)o)

the corresponding intertwining operator is odd.

Proof (of the Claim). Let us elaborate the proof whe@ is “even.” From
the construction in [FZ,L2]Y is obtained by liftingy to a mapping from
L(3/2,h1,4) ® L(3/2,h1,,)(0) to L(3/2, h15)(0), such that

L(3/2,h1,4)odd® L(3/2, h1,)(0) — 0.

To extend this map to a mappidg3/2, h14) ® M(3/2,h1,) — M(3/2,hy )
one uses generators and PBW so the sign is preserved. Because the isomorphism

/
(e Y= 2
W1 Wo W1 W3
preserves the sign, i.e., odd intertwining operators are mapped into odd and even

into even, the result follows from the construction of intertwining operators. When
Y is odd a similar argument works.O

Let us summarize everything.

Corollary 10.1. Let A, be a free abelian group with generatdrén), m € 2N+ 1.
Define a binary operatiorx : Ay x A; — Aj,

B . L(3/2,h1.)) .
b(g) x b(r) = %dlml (L(3/2’ ey L(3f/2’ hl,r))b(])'
je

Then A is a commutative associative ring, and the mapphtg) — V ((m —
1)/4) gives an isomorphism to the representation riRep(osp(1]2)).

Proof. The proof follows from Theorem 10.1(c) and (29)a
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11. Multiplicity 2 fusion rules and super logarithmicintertwiners
11.1. A multiplicity 2 case

We have seen that in the= 3/2 case all fusion coefficients are 0 or 1. Still, we
expect (according to [HM]) that for some vertex operator superalgdhi@®),
fusion coefficients are 2.

Here is one example. =0, as in the case of the Virasoro algebra, the vertex
operator superalgebra

M(0,0)
(G(=1/2)vo, G(—=3/2)vo)
is trivial. Still we can consider a vertex operator superalgebra
M(0,0)
(G(=1/2)v)
Clearly, for everyh € C, we have (all modules are considered to Wéd, 0)-
modules):

: L(0,0) _
dim/ (L(O, 1) L(O. h)) =2 (57)

L(0,0) =

V(0,0 :=

The previous example is little bit awkward. Here is a nice example with irrational
central charge.

Proposition 11.1.

L($-3V5. 5~ 1)
1

- avs 106 - 18- 25 -) 2

Proof. Itis not hard to see (by using a result from [AA] or [D]) that

(5-283(%-4)

has the unique submodule that is irreducible (the casel]AA]). If we analyze
the determinant formula [KWa], singular vectors, and then use Theorem 9.1, we
obtain (58). O

11.2. A logarithmic intertwiner
In [M] we studied several examples of logarithmic intertwining operators.

Roughly, logarithmic intertwiners exist if matrix coefficients yield some loga-
rithmic solutions. Our analysis can be extended for vertex operator superalgebras:
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. wa(%. %) )
dlml( ° . =2 (59)
L(F P L(EH. D)

whereW,(27/2, —3/2) is certain logarithmic module (cf. [M]). The proof of this
result and the discussion will appear in a separate publication.

12. Futurework and open problems

e We know that it is possible to obtaimtertwining operator algebras
(see [H2]) from the rational vertex operator algebras (satisfying some
natural convergence and extension condition and an additional condition
involving generalized modules). Since the notation of intertwining operator
algebra can be (obviously) generalized such that fusion algebra is an
infinite-dimensional associative, commutative algebra, one hopes that it is
possible to construct tensor categories for degenerate minimal models. In
the language of conformal field theory this involves explicit calculations of
correlation functions for both products and iterates of intertwining operators
(cf. Remark 4.2).

Open problem: For rational vertex operator algebras, constroahanical
isomorphism

A(M1) ®4v) M2(0) = A(M2) @4(v) M1(0).
(N =1 case) For which triple& (c, h1), L(c, h2), andL(c, h3) do we have

. L(c, h3) .
dim/ <L(c, hy) L(c,h2)> =27

e Determine the fusion ring for degenerate minimal models for= 2
superconformal algebra by using our method (it should be related to
Reposp(2]2)).

e Construct an analogue of the vertex tensor categories constructed in [HM]
(by using the main result in [A]), for the models studied in this paper.

Acknowledgments
The author thanks Prof. Haisheng Li and Prof. Yi-Zhi Huang for useful

comments. Thanks go to the referee for his/her valuable remarks.

References

[A] D. Adamovit, Rationality of Neveu—Schwarz vertex operator superalgebra, Internat. Math. Res.
Notices (1997) 865-874.



334 A. Milas / Journal of Algebra 254 (2002) 300-335

[AA] A. Astashkevich, On the structure of Verma modules over Virasoro and Neveu-Schwarz
algebras, Comm. Math. Phys. 186 (1997) 531-562.

[B] K. Barron, The supergeometric interpretation of vertex operator superalgebras, PhD Thesis,
Rutgers University, 1996.

[BSA1] L. Benoit, Y. Saint-Aubin, Explicit expressions for some null vectors of the Virasoro algebra
representations, in: XVIIth International Colloquium on Group Theoretical Methods in Physics,
Sainte-Adle, PQ, 1988.

[BSA2] L. Benoit, Y. Saint-Aubin, Fusion and the Neveu—Schwarz singular vectors, Internat. J. Mod.
Phys. A 9 (1994) 547-566.

[DG] C. Dong, R. Griess, Rank one lattice type vertex operator algebras and their automorphism
groups, J. Algebra 208 (1998) 262-275.

[DL] C. Dong, J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, in: Progr.
in Math., Vol. 112, 1993.

[DLM] C. Dong, H. Li, G. Mason, Compact automorphism groups of vertex operator algebras,
Internat. Math. Res. Notices 18 (1996).

[DM1] C. Dong, G. Mason, Quantum Galois theory for compact Lie groups, J. Algebra 214 (1999)
92-102.

[DM2] C. Dong, G. Mason, On quantum Galois theory, Duke Math. J. 86 (1997) 305-321.

[D] V. Dobrev, Multiplet classification of the indecomposable highest weight modules over the
Neveu—-Schwarz and Ramond superalgebras, Lett. Math. Phys. 11 (1986) 225-234, Lett. Math.
Phys. 13 (1987) 260.

[FF1] B.L. Feigin, D.B. Fuks, Cohomology of some nilpotent subalgebras of the Virasoro and Kac—
Moody Lie algebras, J. Geom. Phys. 5 (1988) 209-235.

[FF2] B.L. Feigin, D.B. Fuks, Representation of the Virasoro algebra, in: Representations of Infinite-
Dimensional Lie Groups and Lie Algebras, Gordon and Breach, 1989.

[FF3] B.L. Feigin, D.B. Fuchs, Verma modules over the Virasoro algebra, in: Lecture Notes in Math.,
Vol. 1060, 1984, pp. 230-245.

[FM] B. Feigin, M. Malikov, Modular functor and representation theorystf at a rational level,
in: Operads: Proceedings of Renaissance Conferences, in: Contemporary Math., Vol. 202, 1995,
pp. 357-405.

[F]1 D.B. Fuks, Kogomologii Beskonechnomernykh Algebr Li (in Russian) Nauka, Moscow, 1984.

[FHL] I.B. Frenkel, Y.-Z. Huang, J. Lepowsky, On Axiomatic Approaches to Vertex Operator
Algebras and Modules, in: Mem. Amer. Math. Soc., Vol. 104, 1993.

[FKRW] E. Frenkel, V. Kac, A. Radul, W. WandV1 ., and W (gl) with central chargev, Comm.

Math. Phys. 170 (1995) 337-357.

[FLM] 1.B. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, in: Pure
and Appl. Math., Vol. 134, Academic Press, New York, 1988.

[FZ] 1.B. Frenkel, Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro
algebras, Duke Math. J. 66 (1992) 123-168.

[H1] Y.-Z. Huang, Virasoro vertex operator algebras, (hon-meromorphic) operator product expansion
and the tensor product theory, J. Algebra 182 (1996) 201-234.

[H2] Y.-Z. Huang, Genus-zero modular functors and intertwining operator algebras, Internat. J.
Math. 9 (1998) 845-863.

[HL1] Y.-Z. Huang, J. Lepowsky, A theory of tensor products for module categories for a vertex
operator algebra |, I, Selecta Math. (N.S.) 1 (1995) 699-756, Selecta Math. (N.S.) 1 (1995)
757-786.

[HL2] Y.-Z. Huang, J. Lepowsky, Tensor products of modules for a vertex operator algebra and vertex
tensor categories, in: R. Brylinski, J.-L. Brylinski, V. Guillemin, V. Kac (Eds.), Lie Theory and
Geometry, in Honor of Bertram Kostant, Birkh&user, Boston, 1994, pp. 349-383.

[HM] Y.-Z. Huang, A. Milas, Intertwining operator superalgebras and vertex tensor categories for
superconformal algebras, I, math.QA/9909039, Comm. Contemp. Math. 4 (2002) 327-351.



A. Milas / Journal of Algebra 254 (2002) 300-335 335

[KA] A. Kent, Projections of Virasoro singular vectors, Phys. Lett. B 278 (1992) 443-448.

[KV] V. Kac, Vertex Algebras for Beginners, in: University Lectures Series, Vol. 10, 1998.

[KR] V. Kac, A. Raina, Bombay Lectures on Highest Weight Representations of Infinite-Dimensional
Lie Algebras, in: Adv. Ser. Math. Phys., Vol. 2, World Scientific, Singapore, 1987.

[KWa] V. Kac, M. Wakimoto, Unitarizable highest weight representations of the Virasoro, Neveu—
Schwarz and Ramond algebras, in: Conformal Groups and Related Symmetries: Physical Results
and Mathematical Background, in: Lecture Notes in Phys., Vol. 261, 1986, pp. 345-371.

[KW] V. Kac, W. Wang, Vertex operator superalgebras and their representations, in: Mathematical
Aspects of Conformal and Topological Field Theories and Quantum Groups, in: Contemp. Math.,
Vol. 175, 1994, pp. 161-191.

[L1] H. Li, Representation theory and a tensor product theory for vertex operator algebras, PhD thesis,
Rutgers University, 1994.

[L2] H. Li, Determining fusion rules byA(V)-modules and bimodules, J. Algebra 212 (1999) 515—
556.

[M] A. Milas, Weak Modules and Logarithmic Intertwining Operators, Contemp. Math., to appear.

[W] W. Wang, Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices 7 (1993)
197-211.

[Z] Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9
(1996) 237-302.



