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Stallings [29] has recently shown that all finitely generated groups of
cohomological dimension one are free. His methods are a remarkable com-
bination of topological and algebraic ideas. Unfortunately, they do not seem
to generalize to infinitely generated groups. However, by using Stallings’
results for the finitely generated case, I have been able to solve the general
problem.

If R is a ring with unit which is nontrivial (i.e., R £ 0), we write cdz G << n

if H(G, M) = 0 for all > n and all RG-modules M.

THEOREM A. Let R be a nontrivial ring with unit and let G be a torsion-free
group. If cdr G < 1 then G is free.

We do not even need R to be commutative here. However, by Proposition
3.3 below, we can immediately reduce to the case where R is a prime field.
Throughout this paper, R will be any nontrivial ring with unit.

If R = Z, we write cd for cdg . Now, ¢d G < oo implies that G is torsion
free ([29], 6.6).

CoroLLARY. Ifcd G < 1, then G is free.

Stallings [29] also gives an affirmative answer to a question of Serre [24] for
the case of finitely generated groups. Using Theorem A, we can now settle
the general case.

TuroreM B. Let G be a torsion-free group. If G has a free subgroup of finite
index, then G is free.

By Shapiro’s Lemma ([3], Prop. 7.4), we know thatif HC Gand cdy G < n,
then c¢dp H < n. This will often be used without further comment.

I will use the categorical notation G | [, H for the free product of G and H
with amalgamated subgroup A4, but will stick to the old notation G = H and
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586 SWAN

< G, for ordinary free products to avoid confusion if the groups happen to be
abelian.

l. Frer DIFFrRENTIAL CALCULUS

In [/8] Lyndon gives a method of constructing the first three terms of a free
resolution of Z over the group ring ZG of a group G given by generators and
relations. In this section I will give a brief and less computational account of
these results. The construction of the free derivatives can be generalized to a
result on nonabelian cohomology. If a group G acts by automorphism on a
(not necessarily abelian) group 4, we recall ([22], Ch. VII) that ZY(G, A) is
defined to be the set of functions f: G — 4 satistying the cocycle condition
f(o7) = f(o) o(f(7)). The set LHYG, 1) is the quotient of ZYG, 4) by the
equivalence relation f ~ g if and only if there is an element @ € A such that
g(o) -~ a'f (o) o(a) for all o € G.

If .S is any set, let F(.S, A) be the set of all functions from Sto A. If SCG
is a sct of generators for G, it is easy to see that the restriction map
ZVG, A)—F(S, A) is injective. In fact the cocycle relation iroplies that
f(1) = 1 and f(o™') -~ (67 'f(o))~". Thus f° S determines f on the generators
and their inverses and hence, by induction on the length of the words, on all
products of these. In the case where G is free, we have a stronger result.

Livima 1.1, If G is a free group with base S, then ZY(G, A) —F(S, 1) i
bijective.

Proof. We define an inverse map. Let f:.S— 4. Set f(1) — 1 and
f(o 1) = (oY (o)) for o€ 8. For each sequence oy,..., 0, where each
o, SU{lU ST, define  f(oy ..., 0,) 7 flor ey 0, 1) 01 0, ((f(9))-
Then f satisfies

F(01 yeeis Opp s Ty geeey T) = f(07 5eeey 03) 0 n(F(T1 serer 7)) (H

We claim that f(oy ..., 0,,) depends only on the product o, ... g, . Since G is
free on S, it will suffice to show that f(gy ,..., 5, is unchanged by the insertion
or deletion of terms 1 or o, 0! or o=0. Using (1) to isolate the offending terms,
e.g.

floy 0 0,,0,07Y 0,04 5005 04)
- f(Ul [AEE) ar) MR T Orf(ar G—l) TOog T Gragﬁlf(orﬁ—l rerey Gn)v

this reduces to showing (1) = f(o, 67) = f(o7', 6) = | which is clear from
the definition. Set f(oy ,..., 0,,) = g{0). It follows from (1) that g is a cocycle.
The map F(S, 4) — ZYG, A) by f —» g is clearly an inverse for the restriction
map.
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Remark. If G is defined by a set of generators .S with relations R, = 1,
it is easy to see that ZY(G, M) maps onto the subset of F(S, M) consisting of
those f such that the extended f just defined satisfies f(R,) = | for all a.

CoroLLARY 1.2. If Gisfree and h : A — B is a surjective G-homomor phism,
I, H(G, 4)— HYG, B) s also surjective.

In fact, F(S, 4)—F(S, B) is clearly surjective and therefore so is
NG, A)— ZNG, B).

If 4 and B are abelian, the assertion of Corollary 1.2 1s easily seen to be
equivalent to the assertion c¢d G <C 1. The more general assertion of Corollary
1.2 is considerably stronger than this (but is, of course, equivalent to it by
Theorem A). In fact, this assertion trivially implies that G is free. We mcrely
map a free group F onto G. Let G act trivially on F and G. Then HYG, ) is
the set of homomorphisms of G into F modulo inner automorphisms of F and
similarly for (G, G). Thus we can lift the identity map G — G to a map
G —> F which identifies G with a subgroup of F.

Now let F be free on a set of generators {x,}. Let G act on RG by left
multiplication, R being a commutative ring with unit. By Lemma 1.1, there
is a unique cocycle D, : G — RG such that D,x; = Oforf =~ xand D x, = .
This D, is denoted by é/éx, . It is trivial to check that D(x) == x — | for
xr e G is also a cocycle. Lemma 1.1 shows that

yo1=Y ;\‘ (v, — 1) )

o

since both sides are cocycles and they agree on the base {x,}.
For any group G, we let I; = I(G) denote the kernel of the augmentation
€: RG— R.

ProposttioN 1.3, If Fis free on {x,} then I as a left ideal of RF is a free
module with base x, — 1.

Proof. Let M be RF-free on a base e, . Map M — Iz by e, +—> x, — | and
I,— Mbyx — 13 (dx/0x,) e, . Using (2) these maps are easily scen to be
inverse isomorphisms.

The application of the free differential calculus to the construction of a
resolution is given by the following result.

Tueorem 1.4. Let F be free on {x,}. Let G = F/N where N <1 F. Then
there is an exact sequence of ZG-modules

0> N/[N,N-> X% 2726570 3)
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where X is ZG-free on a base e, , ¢e, = x, — 1, and 0 is given by
_ on
o) = 30 (o) (4)
where 11 denotes n mod[N, N and v is the canonical map ZF — ZG induced by

the quotient map F — G.

The action of G on N/[N, N] is, of course, given by o - #n = a7 where
7eF, 1+ 0.

Proof. Consider the diagram

0——>Iy—>ZN—>Z—>0
ool
0—> Ir ZF ——Z-—0,

where the vertical arrows are inclusions. T'aking homology with respect to V
and using Hy(N, ZN) = 0 = H (N, ZF), we get

0 —— HyN, Z) —> Iy > Z =7 0

. | .

=| ' ) = ©)
0 ~——> Hy(N, Z)——> I/l 7 ZG VA 0.

By Proposition 1.3, I is free over ZF on {x, — 1}. Therefore X =TI /I I
is ZG free on the images e, of the x, — 1. Now (5) gives the exact sequence

0— Iy/Iy*— X — ZG — 7 — 0.

Now ([3], p- 190 (7)), N/[N, N1 ~ Iy/Iy? by n<>n — 1 mod Iy% This gives
the required sequence and (4) follows immediately from (2).

CoroLLARY 1.5, If R s any commutative ring, we have an exact sequence
0—R®, N/[N,N]>R®, X% RG-5>R—0 (6)
and R ®, X is RG free with base {e,}.

This follows from the fact that Z, ZG, and X are Z-free so (3) splits over Z.
As a consequence of Theorem 1.4 we get the resolution given by Lyndon
([18], §5). Let {R; € F} be a set of defining relations for G. Then N is the
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normal closure in F of the subgroup generated by the R, . Therefore NJ[N, N]
is generated as a ZG-module by the R; . Therefore we have an exact sequence

Y5 X526 70, (7)
where Y is a free ZG-module on a base e; and ée; = 3 n(0Rg/éx,) e, . The
kernel of ¢ : Y — X is generated by the “relations between the relations,”
Le., the relations which must be imposed on the e; to give a presentation of
N[N, N] in terms of the generators R, . By tensoring (7) with R, we get a
sitnilar resolution for R over RG.

We conclude this section by recalling a converse to Proposition 1.3 given

in [6].

ProposiTiON 1.6. (Bass~Nakayama): Let R be a nontrivial commutative
ring. Let G be a group and S a subset of G such that 1 is RG-free on the base
{6 — 1} for 6 €S. Then G is a free group with base S.

Since [6] 1s now out of print, I will give a proof here. We begin with some
general remarks.

Let I be a subgroup of G and let G/H be the set of left cosets of H in G.
Let R[G/H] be the free R-module on G/H and let ¢ : RG — R[G/H] by
(o) = o mod H for o € G. We obtain R[G/H] from RG by identifying ok
with o for all 6 e G, ke H. Since Iy is R-free on the elements # — 1 for
he H, h =~ 1, we see that kere = RG - Iy, i.e.,

0-> RG - I;— RG — R[G/H] > 0. 8)

Note also that € : RG — R induces ¢ : R[G/I{] -> R by sending all elements
of G/H to 1.

We now turn to the proof of Proposition 1.6. Let H be the subgroup of G
generated by S. The hypothesis implies ZG - Iy = I; . Thus e : R[G/H]-> R
is an isomorphism. Therefore H = G, i.e., S generates G. Now let F be free
one,, c&S. The map F— G by ¢, — ¢ identifies G with a quotient F/N.
In (5), the map 0 : X — I; C RG sends the generators e, of X onto the free
generators o — 1 of Ig. Thus ¢: X' ~ I so R ®, N/[N, N] = 0 by (5).
But Vis free so N[V, N]is free abelian. Since R is nontrivial, N/[N, N] = 0
and so NV = {l}.

Remark 1.77. This argument also shows that if S'is a subset of G and [ is
generated as a left ideal by the elements ¢ — |, 0 € .5, then G is generated by S.

2. MAYER-VIETORIS SEQUENCE

In ([18], §6), Lyndon gives without proof some results which imply the
existence of a Mayer—Vietoris sequence for a free product with amalgamation.
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Since this sequence plays a vital role in the proof of Theorem A, I will supply
proofs for these results here. A Mayer-Vietoris sequence was obtained
topologically by Stallings [27] but only for the case where the groups act
trivially on the coefficient module.

Let 4 be a subgroup of a group G. Let

> Xy Xy > RA S R—0 )

be a projective resolution of R over RA. Tensoring (9) with RG over R
gives a projective resolution

= X;—> X{ > RG — R[G/4] -0 (10)

for R[G/A] over RG. 1 will denote the resolutions (9) and (10) by X and X’
respectively. If M is an RG-module, Hompgg(X', M) = Hompg (X, M) so
HiHomgg(X', M)) = H{(A, M).

Since € : RG — R factors as RG — R[G/A] - R, we can obtain R from RG
by factoring out an ideal containing the image of X; . Choosing generators,
we can find a free RG-module Y and 2 map ¥, — RG so that

VI X] = RG— R0 (11)
is exact. We can now find a free 1, so that Y, ¢) X; maps onto the kernel

in (I1). Continuing in this way, we arrive at a resolution for R over RG of the
shape

— ¥, —> }]
o\ \ (12)
4——>‘\’ X R——0.

I will denote this resolution by Y. If M is any RG-module, restriction to .\’
gives a natural map Homgs(V, M) — Homgzs(X', M) = Hompg (X, M). This
leads to a map of cohomological & functors H*(G, M)— H*(A, M). In
dimension O this is easily verified to be the inclusion M4 — MC. By the
universal property ([9], 2.2, 2.3), we see that this map must be the usual
restriction map, ([22], Ch. VII, §5).

Remark. 'We can obtain a standard resolution of the form (12) by taking
the standard resolution Y ([3], Ch. X, §4) for G, letting X" be the subcomplex
spanned by all [ay ,..., 0,] with all o, € 4, and letting Y’ be spanned by all
[0y ,--.s 6, ] With at least one o, ¢ A.
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Suppose now that A is also a subgroup of a group H. Repeating the above
construction gives a resolution Z for R over RH of the form

. Z//

NN,

> X{—>RH——>R-———0.

——_ 1Yé,

Here X" = RH (p4 X.

Now let K = G []4H be the free product of G and H with A amal-
gamated. Tensoring (12) and (13) with RK over RG and RH respectively
gives us resolutions

\@\@\ (14)

e Xg e o Xl ~—> RK —— R[K/G] —— 0
and

——y Z_; ey Z;

\f\\ ﬁ\ (15)

e Xy~ Xy ~—— RK — > R[K/H]—> 0

which [ will denote by ¥ and Z respectively. Note that in each case
77777 = RK (Qp4 X is the same. As above, if M is an RK-module, we have
HomRK(Y, M) = Homgg(Y, M), Homgg(Z, M) = Homgy(Z, M), and
Homge(X, M) = Hompg (X, M).
Now map X into ¥ @ Z by sending  to (x, —x) and define IV to be the
cokernel

0> T@2->W—o0. (16)

Then W is obtained by identifying the two copies of Xin Y Z and so is
of the shape

NN
v

_ ZZ —_—

Vl

1

@

X R

v

-0 (17)

\1 (:\)

iy
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I claim that IV is a free resolution of R over RK. The sequence (16) leads to a
Mayer-Vietoris sequence

o H(Y) (5 H(Z)— H(W)— H(X) —> Hy(Y) & H(Z)— H(W)— 0.
This shows that H, (W) == 0 for » > 2 and
0 — Hy(W)— R[K/A] - R[K|G] © R[KjH]— H(W)—0. (18)
To show that (V) == 0 and H(I¥) = R, we need the following lemma

Lemma 2.1, The sequence

0— R[K/A] - R[K|G] @) RIK/H]— R —0
is exact.

Proof. Choosc a presentation for .4 with gencrators @, and relations
R, = 1. Enlarge this to a presentation for G with generators @, and g; with
relations R,- == 1 and Sy = |. Similarly, we get a presentation for [ with
generators a, and £, with relations R == | and T, - 1.

Apply the free differential calculus to these presentations as in Section .
This gives part of a resolution for G of exactly the form (12) and one for #
of the form (13). Now K is presented with generators a, , g5, £, and relations
R =1, 8 =1, T, == 1. The free differential calculus gives part of a
resolution W of exactly the form (17) and the maps are induced by those in
(12) and (13). Since the sequence resulting from the application of the free
differential calculus is automatically exact, this particular W has H,(W) = 0
and H(W) = R. Substitution in (18) now yields the required result.

CoroLLARY 2.2.  The complex W is a free resolution for R over RK.

This resolution is exactly the one obtained by Lyndon ([/§], §6) in matrix

form.
Now let M be an RK-module. Apply Homgx(— , M) to (16). This gives an
exact sequence

0 —> Hompgg(W, M) > Hompg(Y, M) & Homggy(Z, M)
— Hompg (X, M)—0 (19)

using the identifications observed above. Taking the exact cohomology
sequence now yields the main result of this section. A similar result for
homology is obtained by applying — (g M to (16).

THEOREM 2.3. Let K = G[[4 H be a free product with amalgamated
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subgroup A. Let M be any RK-module. Then there are exact Mayer—Vietoris
sequences

oo o> HY(K, M) -E2 , fin(G, M) @ H(H, M) -5, F(4, M)
_G,HWH»I(K, M)—> -
and
o> Ho(A, M)-C2%=0, [ (G, M) @ H,(H, M) 20, 1 (K, M)
o, (A, M) > -

These are, of course, natural in all reasonable senses.

3. A REMARK oON STALLINGS’ RESULT

The purpose of this section is to point out that Stallings’ proof [29] of his
Theorem 0.3 actually yields a somewhat stronger result.

We begin by pointing out some consequences of the condition cdg G < n.
The proofs of 3.1, 3.2, 3.3 are arranged so that they apply even to non-
commutative rings.

LemMma 3.1. If R— R’ is a ring homomorphism and cdg G << n, then
CdR’ G < n.

This is immediate since any R'G-module can be regarded as an RG-module.

LemMa 3.2. If R =40 is a ring with unit, then at least one of the rings
O @z Rand Z, Dz R = R| pR( for prime p) is nontrivial.

Proof. If QO ®z R = 0, the additive group of R is a torsion group.
Therefore n -1 = 0 for some integer n =~ 0. If R/pR = 0 for all p, the
additive group of R is divisible. If x € R, we can write x == ny for some y.
Thusx =ny =(n-1)y =0 = 0.

ProposITION 3.3. If cdg G << n for some nontrivial ring R with unit, then
cdg G << n for some prime field K.

Proof. By Lemma 3.2, there is a prime field K with R" = K &z R # 0.
By Lemma 3.1, cdgr G < n. Since R’ has a unit 1 5% 0, we can identify K
with K - 1 C R’ and write R = K @ V as a K-module. If M is a KG-module,
R @xM is an R'G-module so HY(G,R ®xM)=0 for { > n. But
R QM =M®V Xk M as a KG-module so H{(G, M) = 0 for{ > a.

We now give a slight generalization of Stallings’ theorem.

TueoREM 3.4. Let R be a nontrivial ring with unit. Let G be a finitely
generated torsion-free group. If cdp G < 1, then G is free.
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Proof. By Proposition 3.3, there is a field K with ¢dg G <. 1. As in
([29], 6.4), we see that the kernel of ¢ : KG — K 1s finitely generated and
projective. Then, just as in ([29], 6.7) we show that HY(G, KG) 7 0. If we
had the same result with K replaced by Z, , the argument of ([29], 6.8) could
be applied to show that G is free. There are two other points to be noted.
First, it is unneccessary to show that & is almost finitely presented because of
Bergman’s result [2]. Second, we need G to be torsion free. This does not
follow from cdx G < | and so must be assumed. Therefore, all that remains
is to verify the following lemma.

Lemma 3.5. If G is any finitely generated group, then dimyg H\(G, KG) is
the same for all fields K.

Proof. 'This follows from the topological interpretation of this dimension
as ¢ — 1 where e is the number of ends of G [26]. Here is an algebraic version
of this proof. Choose a finite set of generators o ,..., o, for G. If 4 is a subset
of G, a path in 4 from x to ¥ will mean a sequence xy ,..., x, € A with x; == «,
x,. == v such that x,,, = xiaj:‘, €; = -+1 for each 7 = I,...,» — [. Write
x ~ 4y if such a path exists. This is an equivalence relation. Its equivalence
classes are called the components of 4. If .S is a finite subset of G, and
xe G — S, we can join x to 1 by a path x; ..., x,. in G. If it meets .S, let 7 be
minimal with a,,; €S. Then &y ,..., x, is a path in G - S. It follows that
G — S has a finite number of components determined by 1 and some of the
elements so¥, s S. Let G = {g;,g,,...}. Let S, - . If S, is defined let
Sy = S, U{g,.} and let S, ; be the union of S, ,; with all finite com-
ponents of G — S, . The S, are finite, S, C S,,;,and G —~ U S, . Let C,
be the set of components of G — .S, . Each component of G -~ S, ,, lics in a
unique component of G — S,, . This defines a map C,,,; — C, which is onto
since all components of G — .S, are infinite. We can now define the space of
ends of G to be 111_11 C, , a compact totally disconnected space. However,
we will instead proceed algebraically.

As in ([29], §3), let F be the set of functions from G to R with G acting by
af - (x) = f(xo). Let @ CF consist of all functions with f(x) = 0 for almost
all x (i.e., all but a finite number). Since F = Homg(ZG, R), we have
HYG,F) = H({l}, R) == 0 by Shapiro’s lemma ([3], Ch. X, Prop. 7.4)
cf ([29], §3). Therefore, the cohomology sequence of 0 — @ — F — F/® — 0
gives

0 — & — R — E(G, R) - H{G, RG)—0 (20)

where E(G, R) = (F|/®)°. Note ¢ = R if G is finite and otherwise ¢ = 0.
By (20), it will suffice to show dimg £(G, K)is independent of K. This foilows
immediately from the next lemma (cf [26]).
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Lemma 3.6. E(G,R) —~ R 7 E(G, Z) and E(G, Z) is free abelian of

rank < X, .

Proof. Let E (G, R) be the set of functions from C, to R. The surjection
C, 1 — C, defines a map E (G, R) — E, ,(G, R) which is a monomorphism
onto a direct summand. Now E(G, R) = H|® where H is the set of functions f
from G to R with f{xe) — f(x) = O for almost all x for each o€ G. It is
sufficient to require this only for o == g, ,..., o, since these generate G. Define
@, B (G, R) — E(G, R) by sending f to f" where f'(x) = f(c) if x lies in the
component ¢ of G — S, and f'(x) =0 if xS, . This is well-defined and
gives a map ¢ : lim E, (G, R) — E(G, R). If f€ E(G, R), then f(xo0,) = f(x)
for all v and all xe G — .S with S finite. For large n, SC.S, . Thus f is
constant on the components of G — S, . Therefore ¢ is onto. If fe E (G, R)
and ¢,(f) = 0, then f'(x) = 0 for x€ G — S with .S finite. For large m,
SCS, . Thus f/—0 in £, (G, R) so ¢ is injective. Now E (G, R) ==
R 2 E (G, Z) trivially. Taking limits gives E£(G, R) = R ® E(G, Z). Also
E, (G, Z2) = E (G, Z) X, where X, is finitely generated free abelian.
Clearly (G, Z) =[] X,

CoroLLary 3.7. HYG, RG)y = R &y HNG, £G) and HYG, ZG) is free
abelian of rank < R .

Proof. 'This is trivial if G is finite since then HYG, RG) = 0.
Assume G i1s infinite. Then C, 5= 2 for all n Let ce 1(1_{_1’1 C, so
c=(c,), ¢,eC,, ¢, —¢,. Detine E(G, R)— R by ecvaluation at ¢, .
These maps define a map £(G, R) = lim E,(G, R) — R which is clearly a
left inverse for R — E(G, R). Therefore, by (20), we have an isomorphism
E(G, R) ~ R @ HYG, RG) which is natural in R. Therefore it follows from
Lemma 3.6 that HY(G, ZG) is free abelian of rank = X, . The first staternent
follows from the diagram

RG), Z — R Gy E(G, Z)— R ®z H(G, ZG) —> 0

l l l

——~  EG,R) —> HYG,RG) —0.

4, SomeE ELEMENTARY LEMMAS

In this section we collect a few simple results which will be useful in
Sections 5 and 7. As usual R will be any nontrivial commutative ring with
unit.
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Lemma 4.1.  Let H be a subgroup of a group G. Then there are natural iso-
morphisms H'(G, M) ~ Extjo(R, M), H*(H, M)~ Ext} (R[G/H],M) where
G/H is the space of left cosets. Under these isomorphisms, the restriction map
res: H(G, M)— H"(H, M) corresponds to the map

Extig(R, M) — Extpo(R[G/H], M)

induced by the map < : R[G/H] — R sending all elements of G/H to 1.

Proof. 'This follows immediately from the universal property ({9], 2.2, 2.3)
[20]. In fact H*(H, M) and Extp;(R[G/H], M) are cohomological 8-functors
on the category of RG-modules. Clearly

HY(H, M) = MS ~ Homgg(R[G/H], M).

Therefore the 6-functors are isomorphic. The map induced by € is a map of
8 functors which in dimension 0 is given by M C M#. Therefore, it must
coincide with the restriction map ([22], Ch. VII, §5).

As usual, we denote Iy the augmentation ideal ker[e : RH — R].

Lemma 4.2, Let I be aninfinite subgroup of agroup G. Let | == RGI; C RG.
The following conditions are equivalent.

(a) res : HYG, RG) — HY(H, RG) is a monomorphism.
(b) Themap Hompe(Is , RG) — Hompgg( ], RG) induced by the inclusion
JCIg, is a monomor phism.
(c) Homge(Ig/ ], RG) = 0.
Proof. It is clear that b and ¢ are equivalent by the left exactness of Hom

and the sequence 0 — [ — I — I/ ] — 0. Consider now the diagram with
exact rows

0—— | —->RG—— R[G/H]——0

I @n

00— I;—— RG > R ——0.

Since H is infinite, Homgo(R[G/H], RG) = (RG)¥ = 0 and
Homzg(R, RG) = (RG)S = 0.
Applying Ext¥,(— , RG) to (21) thus gives
0 —> RG ——> Homgg(J, RG) — Exthe(R[G/H], RG) — 0
= I

0 —->» RG ——> Homgg(l , RG) —>  Extkg(R, RG) —— 0. (22)
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Thus 7* 1s a monomorphism if and only if * is. Use Lemma 4.1 to identify e*
with res.

Lemva 4.3. If H is a subgroup of G and I is any left ideal of RH, then
RG Xpg I — RGI is an isomorphism.

Proof. Since RG 1s free and therefore flat as a right RH-module, applying
RG pg to 0—>I—RH gives 0 — RG &gy I — RG with image RGI.

Levmma 4.4, Let G be a finitely generated free group and H a finitely
generated subgroup of G. Let | == RGIy . Then the map

Homgg(ls , RG) — Homgg(/, RG),
induced by the inclusion | C I , is not an isomorphism unless H = G.

Proof. By Proposition 1.3, Iy is {ree and finitely generated as an RH-
module. Therefore, by Lemma 4.3, the same is true of [ as an RG-module.
Also [;; is free and finitely generated as an RG-module. If

HOmRG(IG , RG) —> HOmRG(], RG)

is an isomorphism, we apply Homgs(— , RG) to it. As in ([29], 6.1, 6.2) this
produces the original map J— I; which is therefore an isomorphism, i.e.,
J=1g. Now RG[] = R[G/H] so ¢: R[G/H]—~ R = RG/I; is an iso-

morphism. This shows that G/H can only have one element.

Levma 4.5. Let H C K be subgroups of a group G. If
res : H(G, M)— HY(H, M)

s surjective for all RG-modules M, then res: H(K, N)— HY{(H,N) is
surjective for all RK-modules N.

Proof. Let M = Homgg(RG, N) with G acting by of - (x) == f(xo).
Define RK-homomorphisms v : N — M, p: M — N by v(n) - (x) = an and
w{f) = f(1). Then pr = 1y so M ~ NP N’ as an RK-module. Since M
is an RG-module, the composition HY(G, M)— HYK, M)-> HY(H, M) is
surjective and therefore so is H{(K, M)— HY(H, M) but this is the direct sum
of H{(K, N)— HYH, N) and HY(K, N')— H'(H, N') so these maps must

also be surjective.

Lemma 4.6. If H is a subgroup of a group G, the following conditions are
equivalent.

(a) res: HYG, M)— HYH, M) is surjective for all RG-modules M,
(b) J = RGlIyis a direct summand of I .
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Proof. Consider the diagram (21). Applying Ext}.(— , M) to it gives

0-—> MH—> M Homgg( J, M) ~—— H'(H, M)——0
Lo e
0 —> MC —> M —— Homg(l; , M)~——> HG, M) —— 0,

(23)

where we have used Lemma 4.1 to identify ¢* with res. If [ is a direct
summand of /4, then 7* is clearly onto and hence so 1s res. If res is onto,
then so is 7*. Applying this to M = Jshowsthat 1, = i*(f)sof:/¢— Jisa
retraction of /5 on J.

5. A RELATIVE VERSION OF STALLINGS THEOREM

As usual R will be a nontrivial commutative ring with unit. If G 1s a finitely
generated torsion free group and HY(G, RG) =£ 0, it follows from Corollary
3.7 that HY(G, Z,G) = 0. Thercfore, by Stallings’ main theorem ([29], 0.1)
with Bergman’s improvement [2], G is either Z or a nontrivial free product.
Using this, I will prove the following relative version of this theorem.

Turorem 5.1. Let G be a finitely generated tovsion free group and let H
be a subgroup of G. If res : HY(G, RG) — HY(H, RG) is not a monomorphism,
then H is contained in a proper free factor of G.

In other words, there is a free product decomposition G == G = G, with
HCG and G, # G.

Proof. Since is countable and torsion free, it can be embedded in a finitely
generated torsion free group H, [/2]. There is a very simple embedding in a
3 generator group obtained by taking a frec product of /1 with a free group
and then forming a free product, amalgamating a subgroup, with another
free group ([2/], §20). Let K == H; < Z % Z and let . = G [ [z K be the
free product of G and K with the amalgamated subgroup . Then L is torsion
free since G and K are ([/7], p. 32) [2]] and L 1s finitely generated.

Since RL is frec as an RG-module, we can write RL == RG ® X. The map
HYG, RL) — HY(H, RL) is thus the direct sum of HYG, RG)— HY(H,RG)
and HY(G, X)— HY(H, X). Since the first of these 1s not a monomorphism
by hypothesis, neither is [/(G, RL) —~ HY(H, RL). By Theorem 2.3, wehave

an exact sequence
HYL, RLYy - H(G, RL) & H(K, RL)— H(H, RL). (24)
Let ae HYG, RL) be a nonzero element with zero image in HY(H RL).
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The element (a, 0) in the middle term of (24) is nonzero but has zero image
in HY(H, RL), so the exactness of (24) shows that HY(L, RL)= 0. By Stallings’
theorem we see that either L = Z or a nontrivial free product. Since
Z x ZC KCL, the case L = Z is impossible. Therefore L = L, x L, with
L,, L, = 1. By the Kuro§ subgroup theorem [/][17][19], K CL is the frec
product of a free group F and of subgroups of the form K Nol,c7%, v = |
or 2. But K =- H, X Z X Z is a nontrivial direct product and hence is freely
indecomposable ([/], Folg. 4). Therefore either K = F or K = KN olL,o™! for
some o€ G, v = 1or2. But Z x ZC K so K = F 1s impossible. Therefore,
K ColL,o7! for some o, v, say for v = |. Applying the inner automorphism
x — oxo~L to L shows that I = oL 07! = al,o~1. Therefore, if we replace L,
by oL,07' we have L = L, x Lyand K CL, . Now G C L so by ({7], p. 395(b)]
([25], §2.2.2, Satz 8%), G; == G N L, is a free factor of G. Clearly, HC G| .
If G, is not a proper free factor of G, then G, = Gso G, KCL; but Gand K
generate L. Thus we would have L, = L, contradicting the choice of
L = L, + L, as a nontrivial free factorization.
Using Lemma 4.2 we can reformulate this theorem as follows.

CoRrROLLARY 5.2. Let G be a finitely generated torsion free group and let H
be a subgroup of G which is not contained in any proper free factor of G. Let
J == RGIy . Then the map Homps(I; , RG) — Hompgg( ], RG), induced by the
inclusion | Clg , s a monomorphism.

Note that H must be infinite otherwise /1 = {1} which is certainly a proper
free factor if G 5= {1}.

Using Lemma 4.4 we get the following consequence.

CoROLLARY 5.3. Let G be a finitely generated free group. Let H be a finitely
generated proper subgroup of G which is not contained in any proper free factor
of G. Let | = RGIy. Then the map Homgg(ls, RG)— Hompgs(], RG),
induced by the inclusion | C I , is @ monomorphism but not an epimorphism.

6. THe CounTaBrLe Case

We now prove Theorem A under the additional hypothesis that G is
countable. By Theorem 3.4, G is locally free. If G is countable but not free,
it follows from a theorem of . Higman ([/0], Th. 1) that there is an ascending
sequence of subgroups {1} 7% G, C G, C -+ such that each inclusion is proper,
each G, is free and finitely generated, and no G,, lies in any proper free factor
of G,,; . By replacing G by U G, , it will suffice to obtain a contradiction
under the additional assumption that G == U G, . Let [, = RGI; . As in
the proof of Lemma 4.4, it follows from Proposition .3 and Lemma 4.3 that



600 SWAN

], is a free, finitely generated RG-module. Since G == U G, , [ = [, .
We can now define a resolution for R over RG. Let ] LI J. be the direct
sum of the [, . Then ] is free and we can define a resolution by

0> J% % RG—> R0, (25)

where 6| ], 1s the inclusion [, C RG and i is defined by ¢(a,) = (b,) where
b, = a, — i(a,_;) where a, is the ] -component of {(a,), ¢, = 0, and 7 is the
inclusion [, C J,,; . It is trivial to verify the exactness of (25).

Remark. Since we have not yet used the condition that G, is not contained
in a free factor of G,,;, the argument just given shows that if G is any
countable locally free group, then ¢d G < 2.

If M is any RG-module, we can calculate H*G, M) using (25). If
uwe Homgg(J, M) == T] Homge(/,, M), let wu, be its component in
Hompgg(J, , M). The map Homgg(fh, M) sends v into u where u, ==
v, — @(v,,q) and o @ Hompg(J,.q » M) - Homgg(/, , M) 1s induced by the
inclusion [, C J,.;. Since cdg G = 1, H¥G, M)~ 0. Therefore, any
sequence u, € Hompgg( ], , M) can be expressed in the formu,, =~ 2, — ¢(©, 1)
where v, € Hompgg(J, , M).

We now apply this to the case A4 == J. Since [, is finitely gener-
ated the functor Hompge(/,, —)} preserves direet sums. Therefore,
Homgg(],, J) = 1] Hompge( [, , J)- If ¢, e Homgg(/,,, J), let v, ; be the

component of ¢, in Homgg(/,, j). Note that for each n, ¢, ,; = 0 for
almost all 7. If u, = v, — ¢(v,.;), projecting on the ith summand shows
that Uy i == Uye (p(‘vru‘l.i)'

Choose u to be the identity map of J. Then u, is the inclusion J, C J so
u,; = Ofori 5% nandu, , isthe identit_v map |, of J,. Letu, = v, — ¢(v,,1).
Choose 7 so large that v, ; = 0. Let w, = v, ;€ Homgg(/J,, J;). Then
w, = 0, w, — p(w,,;) = O0forns~=iand |, forn = i.

The fact that G, is not contained in a proper free factor of G, ; now
permits us to apply Corollary 5.3. This shows that

Homgg, (L, ,, » RGnir) — Homgg,, (RGials, , RGaya)

is a monomorphism but not an epimorphism. Since IG and RG, I are
finitely generated, HomRG”_H(IGn , —) and HomRG (RGn +1IG , —) pre-
serve direct sums. Since RG 1s a free RGnH-module we see that
HomRGn+1(IG..+1 , RG)— HomRG”H(RG'n e, RG) is a monomorphism but
not an epimorphism. For any RG,, ,-module M, we have

Homgg, (M, RG) = Hompo(RG ®rs,,, M, RG).

n+1
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By Lemma 4.3, RG ®RG71+1 IGn+1 = ]n+1 and

RG ®ge,,, (RG,116) = RG @ra,,, (RGyy @ra, 1,)
= RG ®re, I, = Jn-

We conclude that Homgg(J,41 , RG) — Homgg(/J, , RG) is a mono-
morphism but not an epimorphism. Therefore, the same is true of
¢ : Homgg( Jouq s Ji) — Homgg(J, , J;) since [; is free, finitely generated
and nonzero.

Now, forn < 7, we havew,, — (=, ) = 0.1f 2w, 7= O forsomen < 7, letn
be the least such value. Then # > 1 since w, = 0. But w,_; — ¢(w,) = 0
since n — 1 < 1, and w,_; = 0. Since ¢ is a monomorphism we get 2, == 0,
a contradiction. Thus =, =0 for n <l i Since w; — g(w;.4) = 1, and
w; = 0, we see that 1; == ¢(f) where fe Homgg([, 1, Ji)}- In other words,
fiJia— Jiand f| J; = 1,. This shows that ], is a direct summand of [,
but this implies that ¢ : Homgg(J;.y , J;) > Hompgs([J;, J,) is onto. This is
the required contradiction.

7. SpLITTING CRITERIA

In this section we give some sufficient conditions for a subgroup of a free
group to be a free factor. It would be interesting to know whether the
countability hypothesis in Theorem 7.3 can be dropped.

LevmMa 7.1. Let G be a free group and H a finitely generated subgroup of G.
Ifres : H(G, M)— HYH, M) is surjective for all RG-modules M, then H is a
free factor of G.

Proof. By expressing the generators of H in terms of a base B for G,
we find a finite subset B, of B such that H is contained in the subgroup G,
generated by B, . Clearly G = G, * G, where G, is generated by B — B, .
This argument is used by Higman in [/0]. It will clearly suffice to show that H
is a free factor of G, . By Lemma 4.5, the hypothesis on G and H is inherited
by H C G, . Therefore, it will suffice to prove the theorem under the addi-
tional hypothesis that G is finitely generated. We now use induction on the
number of generators of G. If H lies in a proper free factor G; of G, then
G = G+ Gy, G, % 1. By abelianizing, we see that G, has fewer generators
than G. As above, the hypothesis is inherited by H C G, . Therefore H will
be a free factor of G; and hence of G. Thus we can also assume that H is not
contained in any proper free factor of G.

Let | = RGIy . By Lemma 4.6, ] is a direct summand of I; . Therefore

481/12/4~10
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Hompgg(I; , RG) > Hompgg( ], RG) is onto. This will contradict Corollary 5.3
if H is a proper subgroup of G. Thus / -: G and so is trivially a free factor.
We now improve this by showing /{ need only be countable.

ProposiTioN 7.2. Let G be a free group and H a countable subgroup of G.
If res : H(G, M)-—> HY(H, M) is surjective for all RG-modules M, then Il
15 a free factor of G.

Proof. As in Lemma 7.1, H is contained in a countable free factor of &
and we can reduce to the case that G 1s countable. Let I be a free group on
2 generators. Since [F, F] is free on R, generators, we can identify H with a
subgroup of F. Let K = G [z F be the free product of G and F with /
amalgamated. Since G, F, and H are free, they have ¢d <{ 1. Let M be any
RK-module. By Theorem 2.3 we have an exact sequence

H"Y(H, M)— HY(K, M)— HYG, M) & HYF, M).

If n 2> 3 both ends are zero so H"(K, M) = 0. For n == 2, we have the

exact sequence
HIG, M) & HW(E, M)y— [YH, M) > [T3(K, M) — HYG, M) (bH(F,M).

T'he right hand term is Q. Since (G, M) -— H'(H, M)is onto by hypothesis,
it follows that H*(K, M) == 0. Therefore cdg K <7 1. Since K is torsion free
[17] [21] and countable, it follows from the countable case of Theorem A,
which we proved in §6, that K is free.

By "Theorem 2.3, if M is any RG-module, we have the exact sequence

LK, My -2 g6, My & H(F, M)-S2=0 g, M. (26)
Let u be any element of HY(F, M). Since res: H(G, M)— H(H, M) is
onto by hypothesis, we can find ve HYG, M) such that res o = res u.
Thus (v, #) has zero image in HY(H, M), so by the exactness of (20),
there is an element we HYK, A]) with image (v,u). Therefore,
res : HY(K, M)— HYF, M) is onto. Since F is finitely generated and K is
free, LLemma 7.1 shows that I is a frec factor of K. By ([/], p. 395(b))
([25], §2.2.2, Satz 8*) it follows that F N G == H is a free factor of G.

I will now show that a different sort of countability condition will suffice.

TueoreM 7.3. Let G be a free group and H a subgroup of G. Sup-
pose G is generated by H U S where S is a countable subset of G. If
res : HYG, M)— HY(H, M) is surjective for all RG-modules M, then H is a
Jree factor of G.
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Proof. By Lemma 4.6, ] = RGIy is a direct summand of I; = | & C.
Since H U S generates G, I; is generated as a left ideal by the elements # — 1,
heH and s — 1, se S. Now all # — 1 € J. Therefore I/ ] is generated by
the images of the s — 1, s€ S, so C ~ I/ ] is countably generated, say by
€1, € ,-... Each ¢; can be expressed in terms of a finite number of elements
of G. This gives us a countable subset X, of G. Let K; = {X;» be the
subgroup of G generated by .X,,. Then ¢, , ¢, ,... € RK . Let C, be the left
ideal of RK, generated by ¢, , ¢, ,.... Then C == RG - C;. We now apply a
saturation procedure as in [/6]. We define a sequence of countable subgroups
K, CK, C... of G and a sequence of countable subgroups H,C H, C...of H.
We have just defined K, . Set H, = {1}. Suppose K, and H; have been defined
for i << n. Now Iy is generated as an R-module by the elements o — 1,
ge K, . Since Ix "CIG =JHC =RG-Ig@® RG-Cy, we can express
each o — 1 as an R-linear combination of elements of the form g(h — 1) with
geG, he H and g'c with g’ € G, ce Cy. To express each ¢ — 1, s € K, in
this way requires a countable number of g, g’ G and he H. Let H,,, be
generated by H, and all elements & € H which we have just obtained. Let
K, ., be generated by the g, g’ € G which we have obtained together with all
elements of H,,; . The sequences so obtained have the property that H, C K,
and Iy CRK, 4Iy -+ RK,,C,.

Now let K ={JK, and L =JH, . Then LCK. Since Ix ={J/x ,
we have Iy C RKI; + RKCy. This sum 1is direct since LC H impli’és
RKI; CJ, RKCyCC, and Is = ]JPDC. Also LCK so RKI,CIy
and C,C IKo ClIy. Therefore Iy = RKI; ©® RKC,. By Lemma 4.6,
HYK, M)— HY(L, M) is onto for all RK-modules M. Since K is countable
we can apply Proposition 7.2. Therefore L is a free factor of K. Let K =L + P.
Choose bases U, V for L, P. Then U U V is a base for K. Now RKI, is free
on the elements u — 1, ue U, RKIpis free on the v — 1, v € } and I is free
onall u — 1, v — 1. Therefore Iy = RKI; & RKIp. But Iy = RKI, (® D
where D = RKC, . Consider the projection p : I — C with kernel RGI .
The restriction of p to Iy is the projection of Iy on the summand D. Therefore
p : RKIp ~ D. Consider the diagram

1®p

RG ®RK RKIP —> RG ®RK D

! |

This commutes since p is an RG-homomorphism. We have just shown that
the top map 1 & p is an isomorphism. By Lemma 4.3 the vertical maps are
isomorphisms (note that C = RGD). Therefore p: RGI,—> C is an
isomorphism and so I == RGI; @ RGIp. Let V' be a base for P and let W
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be a base for H. Then RGIp is free on the v — 1, v € I” and RGIy is free on
the w — 1, w e W. Therefore I is free on the elements x — 1, xe VU W
and "N W = @. By Proposition 1.6, G is free on VU W. Since H is free
on W and Pis free on V| this shows that G = H * P so His a free factor of G.

8. Proor oF THEOREM A

Let G be torsion-free with c¢dr G << 1. By Proposition 3.3, we have
¢d, G < 1 for some prime field %2 The use of & instead of R makes it a bit
easier to count elements although it is not really necessary. By section 6,
all countable subgroups of G are free. I will show that G is free using a very
useful method introduced by Kaplansky [/6].

This method has recently been formalized and applied with great success
to abelian groups by Hill [13], Hill and Megibben [/4], and Griffith [7].

We will also use the actual theorem proved by Kaplansky in [/6]. Let I
be the augmentation ideal of £G. Since cd, G < 1, I is projective as a left
kG-module ([29], 6.4). By Kaplansky’s theorem [/6], I is a direct sum of

countably generated modules.

Ic =11 P, P, # 0. 27
aES
We may clearly assume that G is uncountable.
By transfinite induction on | G |, we can assume that Theorem A holds for
groups of cardinality less than : G .

Levma 8.1, If G is uncountable, | G| = | S|, i.e., G and S have the same
cardinal number.

Proof. Since k is countable, |I;| = |G |. Therefore | S| < |G|
Conversely, since each P, is countably generated, I is generated by Xy | S |
elements. Each of these elements is a finite linear combination of elements
o — 1, 0 € G. Therefore I; is generated by X, | S| elements ¢ — 1. By
Remark 1.7, the corresponding elements o generate G. Therefore
|G| << R, | S| Since G is uncountable so is | §'| and thus 8, [ S| = [ S|.

Now let 2 be the least ordinal number with | 2| == | G |. We may assume
that .S consists of all ordinals less than £. We also index the elements of G
by these ordinals G == {g,}, 0.

Lemma 8.2. There are subsets S,C S, o << Q and subgroups G,C G,
a << £2 satisfying the following conditions

(2) Ifa <P, then S,C S;, G,C G,
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(b) If Ais a imit ordinal, S} = )2 Sy, and G, =, ., G,
(C) xE Sa-f—l and 8x € Ga-(--l
(d) S,y — S, is countable and G, is generated by the union of G, and

a countable set.
(e) kG'IGa:HSaPB.

Proof. Let S, = @ and G, = {1}. Note (c) is vacuous in this case.
Suppose Sz and G, have been defined for all 8 << «. If « is a limit ordinal,
define S, and G, by (b). Since IGa = Up<a IGB , it is clear that (e) holds.
The other conditions are clear.

Suppose now that o« = 8 - 1. Let T3 = Sy U {B} and H, = (Gy, gp).
We will define sequences T, C 7, C ...and H;CH,C ...and set S, = 7,
G, ={J H,. Clearly (a), (b), and (c) will be trivially satisfied. We must
choose the sequences to satisfy (d) and (e). Suppose T, and H,, are defined
such that T, — S, is countable and H,, is generated by G; and a countable
set X, . Then Iy is generated by Icﬁ and the elements x — 1 for xe X, .
Write each x — 1 as Y p,(x) with p,(x) € P, . For each x € X, , only a finite
number of p,(x) will be nonzero. Let T, ; be the union of T, and the set of
all y such that p,(x) = 0 for some x € X, . Therefore T,,; — 7', is countable
and

kGl C 1] P,. (28)
Tn+l
Now []r s, P, is countably generated. Each generator is a finite #G-linear
combination of elements # — 1, & € G. In this way we get a countable set of
elements € G. Let H, ,, be generated by H, and these elements. Then
1P, CkGI,

nit1
7,

(29)

since we already have I_Isﬁ PC kG]GB .
Set S, = U 7T,, G, =) H,. Then (d) is clear and (e) follows from (28)
and (29).

We can now prove Theorem A. It follows from (d) that G, is generated
by at most Ry | « | elements. Therefore |G, | < | G| so G, is free by our
transfinite induction hypothesis. By (¢) and (27), kG - I is a direct summand
of I;. By Lemma 4.6, res : H{(G, M)~ HY(G,, M)a i1s onto for all AG-
modules M. By Lemma 4.5, res : H{G,,; , N)— HYG, , N) is onto for all
kG, .,-modules V. Because of (d) we can apply Theorem 7.3 and conclude
that G, is a free factor of G, . Let G,.; = G, * K, . Then K, is free since
G,y is.
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LemMa 8.3, The map 0: % K, — G, defined by the inclusions K, C G,
is an isomorphism.

This clearly implies Theorem A.

Proof. Let a be least such that G, ¢ im 0. Let x€G,, x¢imf. If a is a
limit ordinal, x € G, for some y < « and so x € im 6. Therefore « == 8 1
$0 G, == Gy« K; but G;, K; Cim 0. Thus 6 is onto.

If ker & =£ 1, choose xeker 0, v=£1 with xe X, _, G, with the least
possible a. If « 1s a limit ordinal, then x € %, _; G, for some § < a. Therefore
a = f§ -+ 1. By the choice of «, & is injective on L = X, _; G, . Therefore
0:%, K, =LxK;— G+ K;CG is injective.

9. Proor ofF THEOREM B

We begin with a general result on subgroups of finite index. This is the
discrete analogue of a theorem of Tate [24] ([23], I-20). The proof is the same
as his.

THeorEM 9.1. Let H be a subgroup of finite index in a group G. Then either
cdg G = cdg H or ¢cdg G = c0.

Proof. Clearly ¢dgz H < c¢di G. Suppose c¢dgp G = n < c0. The exact
cohomology sequence shows that the functor H*(G, —) is right exact. Let M
be an RG-module with H*G, M)+ 0. By Shapiro’s Lemma ([3], Ch. X,
Prop. 7.4), H*(H, M) = H¥G, Homgg(RG, M)). If we had an RG-
epimorphism Homgy(RG, M)— M, the right exactness of H™(G, —)
would give us an epimorphism H*(H, M) — H"(G, M). Therefore we would
have H*"(H, M) 0 so cdg H 2> n = cdy G. Now there is an epimorphism
RG Qpy M — M by g ) m+—> gm. Therefore our result follows from the

following well-known lemma.

Lemma 9.2, If H has finite index in G, then for any RH-module M there is
an RG-isomorphism RG Qgg M ~ Hompy(RG, M).

Proof. Let G ={)o,H be a coset decomposition. Define a map
0 : Homggy(RG, M)— RG Qgy M by sending f to ¥ o, ® f(o7"). This is
bijective. In fact, any fe Homgg(RG, M) is determined by the values
f(67") = m; since G =) Ho;', and any set of m; can occur. But
RG Qpy M =[] 0; ® M. Now 8 is independent of the choice of coset
representatives because ok 2 f((0:2)7) = oh @ b7 (0,) = 0; ® f(o77). If
o€ G, then G = (J o7'0,H s0 0(af) == 3 0; @ of (67 = 3 0, ® f(o7'0) =
a3 076, (% flo7 o)1) = ob(f). Thus 0 is an RG-homomorphism.
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It is natural to conjecture that cd H = cd G in Theorem 9.1 provided G
1s torsion free. This would imply that the group G in Theorem B has
ed G << 1 and so Theorem B would follow from Theorem A. My original
proof of Theorem B proceeded by proving this conjecture for the case
cd Il = 1. It followed closely the proof of Serre [24] except at one point
where Stallings’ results [29] were used. However, Serre has recently shown
me a very simple and elegant proof of the general conjecture. We say that a
group G has no R-torsion if for every finite subgroup K of G, the order n of K
is a unit in R (more precisely, # -1 is a unit in R). With this definition,
we now state Serre’s result.

Tarorem 9.2. (Serre). Let R be a commutative ring and let G be a group
having no R-torsion. If H is a subgroup of finite index in G, then cdp G = ¢dg H.

Clearly Theorem B is a consequence of this and Theorem A.

Since Serre’s proof is unpublished, I will give a brief account of it here.
At the same time, I would like to express my profound thanks to Serre for
showing me this proof.

By Theorem 9.1, it is sufficient to show that cdg G << 0 if edgx [ < 0.
Let P be a finite dimensional projective resolution for R over RH.
Since P and R are projective over R, P splits over R. Thercfore
Q = X" P = PXg- g P is an acyclic resolution of R over R. Let
n = [G : H] and define an action of G on Q as follows. Choose coset
representatives x; so that G = (Jx, /1. If ge G, let g7lx; = &, /7' with
h, € H and define g(p, & @ p,) = b, p, X & h, p, . This extends
uniquely to an R-automorphism of Q and it isieasy to see that we have defined
an action of G' on Q. This construction is an analogue of Frobenius’ con-
struction of induced representations.

It will now suffice to show that Q is RG-projective since Q will then be a
finite-dimensional projective resolution of R over RG. To do this we can
forget the boundary operator on P and regard it as projective RH-module,
Let P () P’ = F be a free RH-module. Then Q" F == @ P ) X where X
is the sum of all PC0) ) - @ Ptm with ¢, = 0,1, P® = P, P() = P’ and
not all 7, = 0. This decomposition is stable under G so X" P is a direct
summand of " F as an RG-module. Therefore it will suffice to show that
(" F is RG-projective. Let (b,),o; be an RG-base for F. Then (hb,)er nerr
is an R-base for F so (9" F has an R-base consisting of all elements
w e /zlb‘11 &) - X hnban . This base is clearly permuted by G. If K,, is the
set of g &€ G with gw = w, the G-orbit of = spans a submodule isomorphic to
R[G/K,] and (" F' is the direct sum of these modules, choosing one w in
each orbit. Therefore we need only show each R[G/K,] is RG-projective.

We first show that K, is finite. Let NV be the kernel of the permutation
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representation of G on the finite set G/H. Then [G: N] < oo. If ge N,
we have g~lx; = x;i;! where b; = x7'gx; so

glw) = gb,, @ Q@ hpb,) = .vl—lgpcl/tll)a1 X ® x,;lgxn/lnbaﬂ #+ w

unless g == 1. Therefore K,, " N = | so K,, is isomorphic to a subgroup of
the finite group G/N.

Finally, if K 1s any finite subgroup of G and m = | K |, we know that m is
a unit in R. Define a map R[G/K]— RG by sending the coset gK to the
element m™1Y,.xpgk. This 1s an RG-homomorphism which splits the
canonical epimorphism RG — R[G[K]. Therefore R[G|K] is a direct
summand of RG and so 1s projective.

10. A ToroLocical. REMARK

The starting point for this investigation was the result of Curtis and Fort [5]
which states that if X is a 1-dimensional separable metric space, then X is
aspherical and m(X) is locally free so H;(X) = 0 for 7 > 1. This suggested
that we might have ed m(X) << 1 for such a space X. The simplest example
is the union S of the circles (x — 1/n)?> -+ 3% == 1/#? in the plane. The group
m(8) was computed by Grifhiths [8] and shown to be isomorphic to a group
studied by Higman [//]. Higman constructs a subgroup P of =,(S) which is
countable but not free. My proof that cd P == 2 was expanded into Section 6
of the present paper. By ([4], Th. 2.2), if X is a locally connected one-
dimensional continuum, then either X is locally 1-connected in which case
m(X) is free and finitely generated, or else m(X) contains a subgroup iso-
morphic to 7,(S) so ¢d m(X) > 2.1 do not know the exact value of cd =,(.S).

Note added in proof. Serre has pointed out to me that I have inad-
vertantly omitted the signs in the proof of Theorem 9.2. The definition of
g(p1 & - & p,) should include a sign (—1)* where s = 3 deg( p,) deg( p;),
the sum being taken over all (¢, j) with 7 <7 j and v; > v;. The base of Q"F
is only permuted up to sign by G and we must define K, as the subgroup
of all g € G with gw = . The G-orbit of w spans a submodule isomorphic
to RG Orx, Lo where [,, == Ruw as an RK  ~-module. Therefore we need only
show that F,, is RK -projective. The epimorphism RK,, — Rw is split by
h:Rw-—~ RK, with h(w) = | K, '3 (k) k, the sum being over all
ke K, with (k) = +-1 such that kw = (k) 0.

The construction of the “induced representation” can be generalized to
any functor of two variables which is coherently commutative and associative
(S. MacLang, Categorical Algebra. Bull. Am. Math. Soc. 71 (1965), 40-106).
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Using this approach, we can avoid having to compute the exact value of the
sign involved.

10.
11,

12.
13.
4.
15.
16.
17.

18.

19.
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