Factorization of Nonnegative Matrices-II

Cony M. Lau and Thomas L. Markham
Department of Mathematics and Computer Science
University of South Carolina
Columbia, South Carolina 29208

Submitted by Ky Fan

Abstract

Suppose A is an $n \times n$ nonnegative matrix. Necessary and sufficient conditions are given for A to be factored as $L U$, where L is a lower triangular nonnegative matrix, and U is an upper triangular nonnegative matrix with $u_{i i}=1$.

I. INTRODUCTION

Suppose A is a matrix of order n over the complex field. Necessary and sufficient conditions are given for A to have an $L U$-factorization in [3], where other related results may be found. In this paper, we consider the problem of factoring a nonnegative $A(A \geqslant 0)$ as $L U$, where L is a lower triangular nonnegative matrix, and U is an upper triangular nonnegative matrix with main diagonal consisting entirely of ones.

In [4], factorizations of this type were considered with the restriction that all principal minors of A are nonzero. In Theorem 1 of this paper, these restrictions are removed. Throughout the paper, the Schur complement of a nonsingular principal submatrix of A [2] plays an important role in these factorizations, and some of the later results elucidate this role.

II. NONNEGATIVE FACTORIZATIONS

We introduce first the notation that we shall use. Let α and β be increasing sequences on $\{1, \ldots, n\}$. Then $A(\alpha \mid \beta)$ is the minor of A with rows indexed by α and columns indexed by β, whereas $A[\alpha \mid \beta]$ denotes the
submatrix of A in rows α and columns β. A principal submatrix of A is written $A[\alpha]$. For $1 \leqslant k \leqslant n, A_{k}=A[1, \ldots, k]$. Further, $\hat{\alpha}$ denotes the complement of α.

If A is an $n \times n$ matrix, and A_{k} is nonsingular, the Schur complement of A_{k} in

$$
A=\left(\begin{array}{ll}
A_{k} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

is defined as $\left(A \mid A_{k}\right)=A_{22}-A_{21} A_{k}^{-1} A_{12}\lfloor 2\rfloor$.

Theorem 1. An $n \times n$ nonnegative matrix A has an $L U$-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$ iff A_{n-1} has an $\tilde{L} \tilde{U}$-factorization with $\tilde{L} \geqslant 0$, $\tilde{U} \geqslant 0, \tilde{u}_{i i}=1$, and there exist nonnegative $1 \times(n-1)$ vectors v and w such that $\tilde{L w^{T}}=A[\hat{n} \mid n], v \tilde{U}=A[n \mid \hat{n}]$ and $a_{n n}-v w^{T} \geqslant 0$.

Proof. Assume A has an $L U$-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$. Partition A, L and U conformally so that

$$
A=\left(\begin{array}{ll}
A_{n-1} & z^{r} \\
y & a_{n n}
\end{array}\right)=\left(\begin{array}{ll}
L_{n-1} & 0 \\
r & l
\end{array}\right)\left(\begin{array}{ll}
U_{n-1} & s^{T} \\
0 & 1
\end{array}\right)=L U
$$

Let $\tilde{L}=L_{n-1}, \tilde{U}=U_{n-1}, v=r$ and $w=s$. Then $\tilde{L}, \tilde{U}, v, w$ are all nonnegative, $\tilde{L} \tilde{U}=L_{n-1} U_{n-1}=A_{n-1}, \quad \tilde{L} w^{T}=L_{n-1} s^{T}=\tilde{z}^{T}=A[\hat{n} \mid n], \quad v \tilde{U}=r U_{n-1}=y=$ $A[n \mid \hat{n}]$, and $a_{n n}-v u^{T}=l \geqslant 0$.

Conversely, assume A_{n-1} has an $\tilde{L} \tilde{U}$-factorization and there exist v and w satisfying conditions on the right-hand side of the statement. Partition A as above. Let

$$
I=\left(\begin{array}{ll}
\tilde{L} & 0 \\
v & a_{n n}-v w^{T}
\end{array}\right) \quad \text { and } \quad U=\left(\begin{array}{ll}
\tilde{U} & w^{T} \\
0 & 1
\end{array}\right)
$$

Then $L \geqslant 0, U \geqslant 0$, and

$$
L U=\left(\begin{array}{ll}
\tilde{L} & 0 \\
v & a_{n n}-v w^{T}
\end{array}\right)\left(\begin{array}{ll}
\tilde{U} & w^{T} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
\tilde{L} \tilde{U} & \tilde{L} w^{T} \\
v \tilde{U} & a_{n n}
\end{array}\right)=A
$$

Corollary 1. Let A be an $n \times n$ nonnegative matrix with $\operatorname{det}\left(A_{n-1}\right) \neq$ 0. Then A has an $L U$-factorization with $L \geqslant 0, U \geqslant 0, u_{i i}=1$ iff A_{n-1} has an $\tilde{L U} \tilde{U}$-factorization with $\tilde{L} \geqslant 0, \tilde{U} \geqslant 0, \quad \tilde{u}_{i 1}=1$; and for $y=A[n \mid \hat{n}]$ and $z^{T}=$ $A[\hat{n} \mid n]$, we have $y \tilde{U}^{-1} \geqslant 0, \tilde{L}^{-1} z^{T} \geqslant 0$, and $\left(A \mid A_{n-1}\right)=a_{n n}-y A_{n-1}^{-1} z^{T} \geqslant 0$.

Proof. Note that since \tilde{U} is always invertible, \tilde{L} is invertible if and only if A_{n-1} is invertible. Thus for $v \tilde{U}=y$ and $\tilde{L} w^{T}=z^{T}$, we have $v=y \tilde{U}^{-1}$, $w^{T}=\tilde{L}^{-1} z^{T}$ and $a_{n n}-v w^{T}=a_{n n}-y \tilde{U}^{-1} \tilde{L}^{-1} z^{T}=a_{n n}-y A_{n-1}^{-1} z^{T}=\left(A_{n} \mid A_{n-1}\right)$. It is now easy to see that the corollary is a direct consequence of Theorem 1.

Corollary 2. Let A be an $n \times n$ nonnegative matrix with nonzero leading principal minors. If A has an $L U$-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$, then $\left(A_{k+1} \mid A_{k}\right)>0$ for $k=1,2, \ldots, n-1$. Consequently $\operatorname{det}\left(A_{k}\right)>0$ for $k=1,2, \ldots, n$.

Proof. Since A has an $L U$-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$, it follows from Corollary 1 that A_{n-1} has an $\tilde{L} \tilde{U}$-factorization with $\tilde{L} \geqslant 0, \tilde{U} \geqslant 0$ and $\tilde{u}_{i i}=1$ and $\left(A \mid A_{n-1}\right) \geqslant 0$. Now apply the same argument to A_{n-1}. The process can be continued, yielding $\left(A_{k+1} \mid A_{k}\right) \geqslant 0$ for $k=1,2, \ldots, n-1$. Suppose $\left(A_{k} \mid A_{k-1}\right)=0$ for some k. Then it follows from the proofs of Theorem 1 and Corollary 1 that $l_{k k}=0$, contradicting the fact that A is nonsingular. Finally, note that $a_{11}>0$ and $\operatorname{det}\left(A_{k+1}\right)=\operatorname{det}\left(A_{k}\right)\left(A_{k+1} \mid A_{k}\right)$. The fact that $\operatorname{det}\left(A_{k}\right)>0$ for $k=1,2, \ldots, n$ follows iteratively.

Corollary 3. Let A be an $n \times n$ nonnegative matrix with the property that for $k=1,2, \ldots, n-1$, there exist nonnegative vectors v_{k} and w_{k} such that $A_{k} w_{k}^{T}=A[1,2, \ldots, k \mid k+1], v_{k} A_{k}=A[k+1 \mid 1,2, \ldots, k]$ and $a_{k+1, k+1}-v_{k} A_{k} w_{k}^{T}$ $\geqslant 0$. Then A has an $L U$-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$.

Proof. We shall use induction on n. For $n=1$, the statement is trivially true. Assume it is true for $n=k$, and consider $n=k+1$. Partition A into $\left(\begin{array}{cc}A_{k} & z^{T} \\ y & a_{n n}\end{array}\right)$, where y, z are $1 \times k$ nonnegative vectors. A_{k} satisfies conditions of the hypothesis and hence has an $\tilde{L} \tilde{U}$-factorization with $\tilde{L} \geqslant 0, \tilde{U} \geqslant 0$ and $\tilde{u}_{i i}=1$. Also by hypothesis, there exist nonnegative vectors v_{k} and w_{k} such that $A_{k} w_{k}^{T}=A[\hat{n} \mid n], v_{k} A_{k}=A[n \mid \hat{n}]$ and $a_{n n}-v_{k} A_{k} w_{k}^{T} \geqslant 0$. Let $v=v_{k} \tilde{L}$ and $w^{T}=\tilde{U} w_{k}^{T}$. Then $v \geqslant 0, \underset{\sim}{w} \geqslant 0, \tilde{L} w^{T}=A_{k} w_{k}^{T}=A[\hat{n} \mid n], v \tilde{U}=v_{k} A_{k}=A[n \mid \hat{n}]$, and $a_{n n}-v w^{T}=a_{n n}-v_{k} \tilde{L} \tilde{U} w_{k}^{T}=a_{n n}-v_{k} A_{k} w_{k}^{T} \geqslant 0$. Thus by Theorem 1, A has an $L U$-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$.

Example 1. The converse of Corollary 1 is not true, as can be seen in

$$
A=\left(\begin{array}{lll}
2 & 2 & 0 \\
2 & 3 & 1 \\
0 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 0 \\
2 & 1 & 0 \\
0 & 2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right\},
$$

where

$$
A[1,2 \mid 3]=\binom{0}{1}=\left(\begin{array}{ll}
2 & 2 \\
2 & 3
\end{array}\right)\binom{-1}{1}=A_{2} w_{2}^{T}
$$

u_{2}^{T} is unique but not nonnegative, and yet A has a nonnegative factorization.

Corollary 4. Let A be an $n \times n$ nonnegative matrix with nonzero proper leading principal minors such that for $k=1,2, \ldots, n-1$, we have $A_{k}^{-1} s_{k}^{T} \geqslant 0, r_{k} A_{k}^{-1} \geqslant 0$, and $\left.\left\langle A_{k+1}\right| A_{k}\right) \geqslant 0$, where $r_{k}=A[k+1 \mid 1,2, \ldots, k]$ and $s_{k}^{T}=A[1,2, \ldots, k \mid k+1]$. Then A has an $L U$-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$.

Proof. Let $u_{k}^{T}=A_{k}^{-1} s_{k}^{T}$ and $v_{k}=r_{k} A_{k}^{-1}$. Then $A_{k} w_{k}^{T}=s_{k}^{T}, v_{k} A_{k}=r_{k}$, and $a_{k+1, k+1}-v_{k} A_{k} w_{k}^{T}=a_{k+1, k+1}-r_{k} A_{k}^{-1} s_{k}^{T}=\left(A_{k+1} \mid A_{k}\right) \geqslant 0$. It follows directly from Corollary 3 that A has an $L U$-factorization of the specified type.

Theorem 2. Let A be an $n \times n$ nonnegative matrix. If A has an LU-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$, then every almost principal submatrix of the type $A[1,2, \ldots, k, i \mid 1,2, \ldots, k, i]$ also has an $\tilde{L} \tilde{U}$-factorization with $\tilde{L} \geqslant 0, \tilde{U} \geqslant 0$ and $\tilde{u}_{i i}=1$.

Proof. Let $A=L U$ with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$. Note that $a_{i j}=$ $L[i \mid \hat{\dot{\phi}}] U[\hat{\phi} \mid j]$. Let $v=L[i \mid 1,2, \ldots, k]$ and $w^{T}=U[1,2, \ldots, k \mid j]$. Then we have $a_{i i}-v w^{T} \geqslant 0, L_{k} w^{T}=A[1,2, \ldots, k \mid i]$, and $v U_{k}=A[i \mid 1,2, \ldots, k]$. Finally, letting

$$
\tilde{L}=\left(\begin{array}{ll}
L_{k} & 0 \\
v & a_{i i}-v w^{T}
\end{array}\right) \quad \text { and } \quad \tilde{U}=\left(\begin{array}{ll}
U_{k} & w^{T} \\
0 & 1
\end{array}\right)
$$

we obtain

$$
\tilde{L} \tilde{U}=\left(\begin{array}{ll}
L_{k} U_{k} & L_{k} w^{T} \\
v U_{k} & a_{i j}
\end{array}\right)=\Lambda[1,2, \ldots, k, i \mid 1,2, \ldots, k, j]
$$

Corollary 5. Let A be an $n \times n$ nonnegative matrix with $\operatorname{det}\left(A_{k}\right) \neq 0$ for some k. If A has an $L U$-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i t}=1$, then $\left(A \mid A_{k}\right) \geqslant 0$.

Proof. Theorem 2 implies that $A[1,2, \ldots, k, i \mid 1,2, \ldots, k, j]$ has an $\tilde{L} \tilde{U}$-factorization with $\tilde{L} \geqslant 0, \tilde{U} \geqslant 0$ and $\tilde{u}_{i i}=1$. Thus $\left(A[1,2, \ldots, k, i \mid 1,2, \ldots, k, j] \mid A_{k}\right)$ $\geqslant 0$ by Corollary 1. Partition A into $\left(\begin{array}{ll}A_{k} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$. Then $\left(A \mid A_{k}\right)=A_{22}-$ $A_{21} A_{k}^{-1} A_{12}=\left(h_{i j}\right)_{i, j=k+1}^{n}$. Note that $h_{i j}=\left(A[1,2, \ldots, k, i \mid 1,2, \ldots, k, j] \mid A_{k}\right)$. Hence $\left(A \mid A_{k}\right) \geqslant 0$.

Theorem 3. Let A be an $n \times n$ nonnegative matrix with $a_{\mathrm{I} 1}>0$. Then A has an $L U$-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$ iff $\left(A \mid a_{11}\right)$ has an $\tilde{L} \tilde{U}$-factorization with $\tilde{L} \geqslant 0, \tilde{U} \geqslant 0$ and $\tilde{u}_{i i}=1$.

Proof. Assume A has an $L U$-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$. Partition A, L and U conformally so that

$$
A=\left(\begin{array}{ll}
a_{11} & z \\
y^{T} & A_{22}
\end{array}\right)=\left(\begin{array}{ll}
a_{11} & 0 \\
r^{T} & L_{22}
\end{array}\right)\left(\begin{array}{ll}
1 & s \\
0 & U_{22}
\end{array}\right)=L U
$$

where y, z, r and s are $1 \times(n-1)$ nonnegative vectors. Necessarily $r=y$, $s=a_{11}^{-1} z$, and $A_{22}=r^{T} s+L_{22} U_{22}$. Thus $\left(A \mid a_{11}\right)=A_{22}-y^{T} a_{11}^{-1} z=A_{22}-r^{T} s=$ $L_{22} U_{22}$, which is a factorization of the type specified.

Conversely assume ($\mathrm{A} \mid a_{11}$) has an $\tilde{L} \tilde{U}$-factorization with $\tilde{L} \geqslant 0, \tilde{U} \geqslant 0$ and $\tilde{u}_{i i}=1$. Partition A as above. Note that $\left(A \mid a_{11}\right)=A_{22}-y^{T} a_{11}^{-1} z=\tilde{L} \tilde{U}$. Let

$$
L=\left(\begin{array}{cc}
a_{11} & 0 \\
y^{T} & \tilde{L}
\end{array}\right) \quad \text { and } \quad U=\left(\begin{array}{ll}
1 & a_{11}^{-1} z \\
0 & \tilde{U}
\end{array}\right)
$$

Then L is nonnegative lower triangular, U is nonnegative upper triangular, $u_{i i}=1$, and

$$
L U=\left(\begin{array}{cc}
a_{11} & 0 \\
y^{T} & \tilde{L}
\end{array}\right)\left(\begin{array}{ll}
1 & a_{11}^{-1} z \\
0 & \tilde{U}
\end{array}\right)=\left(\begin{array}{ll}
a_{11} & z \\
y^{T} & A_{22}
\end{array}\right)=A
$$

Corollary 6. Let A be an $n \times n$ nonnegative matrix with nonzero proper leading principal minors. If $\left(A \mid A_{k}\right) \geqslant 0$ for $k=1,2, \ldots, n-1$, then A
has an LU-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$. Necessarily $\operatorname{det}\left(A_{k}\right)>$ 0 for $k=1,2, \ldots, n-1$.

Proof. Since $\left(A \mid A_{n-1}\right) \geqslant 0$ and consists of a single element, trivially it has a factorization of the specified type. Now using the quotient formula (see [1]) of Schur complements, we have $\left(A \mid A_{n-1}\right)=\left(\left(A \mid A_{n-2}\right) \mid\left(A_{n-1} \mid A_{n-2}\right)\right)$. Note that $\left(A_{n-1} \mid A_{n-2}\right)$ is the element in the first row and first column of $\left(A \mid A_{n-2}\right)$ and hence is nonnegative. In fact $\left(A_{n-1} \mid A_{n-2}\right)>0$, since $\left(A_{n-1} \mid A_{n-2}\right)=0$ would imply that $\operatorname{det}\left(A_{n-1}\right)=\operatorname{det}\left(A_{n-2}\right)\left(A_{n-1} \mid A_{n-2}\right)=0$, a contradiction. Now it follows from Theorem 3 that $\left(A \mid A_{n-2}\right)$ has a factorization of the specified type. Next apply the same argument to $\left(A \mid A_{n-2}\right)=\left(\left(A \mid A_{n-3}\right) \mid\left(A_{n-2} \mid A_{n-3}\right)\right)$ to obtain a nonnegative factorization for $\left(A \mid A_{n-3}\right)$. The process can be continued until eventually we obtain $A=L C$ with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$. Also, since $a_{11}>0$ and $\operatorname{det}\left(A_{k+1}\right)=$ $\operatorname{det}\left(A_{k}\right)\left(A_{k+1} \mid A_{k}\right)$, we obtain iteratively $\operatorname{det}\left(A_{k}\right)>0$ for $k=1,2, \ldots, n-1$.

Theorem 4. Let A be an $n \times n$ nonnegatice matrix with nonzero proper leading principal minors. Then A has an $L U$-factorization with $L \geqslant 0, U \geqslant 0$ and $u_{i i}=1$ iff $\left(A \mid A_{k}\right) \geqslant 0$ for $k=1,2, \ldots, n-1$.

Proof. This is a direct consequence of Corollaries 5 and 6.
The statement in Theorem 4 is a known result (cf. [4]).

REFERENCES

1 Douglas Crabtree and Emilie Haynsworth, An identity for the Schur complement of a matrix, Proc. Am. Math. Soc. 22 (1969), 364-366.
2 Emilie Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl. 1 (1968), 73-81.
3 Cony M. Lau and Thomas L. Markham, $L U$ factorizations, submitted for publication.
4 T. L. Markham, Factorizations of nonnegative matrices, Proc. Am. Math. Soc. 32 (1972), 45-47.

