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Abstract 

We prove that weak shape equivalences are monomorphisms in the shape category of uniformly 
pointed movable continua 5%~. We use an example of Draper and Keesling to show that weak 

shape equivalences need not be monomorphisms in the shape category. We deduce that Shhl is not 
balanced. We give a characterization of weak dominations in the shape category of pointed continua, 
in the sense of Dydak (1979). We introduce the class of pointed movable triples (X, F, Y), for 

a shape morphism F :X -+ Y, and we establish an infinite-dimensional Whitehead theorem in 
shape theory from which we obtain, as a corollary, that for every pointed movable pair of continua 
(Y, X) the embedding j : X + Y is a shape equivalence iff it is a weak shape equivalence. 0 1999 
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Dyer and Roitberg and Dydak, in [8] and [6], respectively, proved that the homo- 

topy category of pointed path-connected CW-spaces, HCW,, is balanced, i.e., a map 

f : X 4 Y is an equivalence in HCW, iff it is both an epimorphism and a monomor- 

phism in HCW,. 

Since shape theory does not modify homotopy theory on CW-complexes and ANRs 

then, the mentioned result can be trivially stated in the context of the shape category 

of pointed path-connected CW-spaces, that is a full subcategory of the pointed shape 

category, Sh. 
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Movable spaces constitute a very important class in the theory of shape. Movability 

can be seen as a natural generalization of the property of being shape dominated by a 

CW-complex. 

In this paper we deal with pointed continua (compact Hausdorff connected topological 

spaces) and pointed metric continua. One of the aims of this article is to show that we 

can not obtain an analogue of above theorem when we consider the shape category of 

uniformly pointed movable continua 5%~. 

The theorems of the papers [8] and [6] are variants of the classical Whitehead theorem. 

That is why our approach is based on the Whitehead theorem in shape theory. 

A shape morphism F: (X, *) + (Y, *) is said to be a weak shape equivalence if 

it induces isomorphisms between all the homotopy pro-groups. On the other hand, 

F : (X, *) --+ (Y, *) is a very weak shape equivalence if it induces isomorphisms on 

the shape groups [9]. 

Keesling corrected, in [13], a gap in Moszynska’s proof of a variant of the White- 

head theorem in shape theory (see [21,22]). He showed that a monomorphism in the 

category of uniformly movable pro-groups needs not be a monomorphism in the cat- 

egory of pro-groups. However, Keesling proved that if (X, *) and (Y, *) are pointed 

(uniformly) movable metric continua a shape morphism F : (X, *) 4 (Y, *) is a weak 

shape equivalence iff it is a very weak shape equivalence. 

It is well known, see [4], for example, that weak shape equivalences need not be shape 

equivalences even for pointed movable spaces. Here, the dimension of the spaces plays 

an important role. Nevertheless, there are infinite-dimensional Whitehead type theorems 

in the theory of shape that allow to conclude that a weak shape equivalence 

F:(X,*) + (Y,*) 

between pointed movable metric continua is a shape equivalence provided F is a shape 

domination (Dydak [5]) or Y E FANRs (Edwards and Geoghegan [lo]). 

The authors [16] (Cuchillo, Sanjurjo and the authors [20]), defined an ultrametric 

(topology) on the set of shape morphisms ,%(X, Y) between compacta (arbitrary topo- 

logical spaces) X, Y. In [ 181 we proved that this metric is useful to obtain in a short 

and elementary way the infinite-dimensional Whitehead theorems already known. 

In this paper we apply this machinery, essentially Theorem 1, to prove, as we already 

announced, that ShM is not balanced. We shall also obtain a characterization (Corollary 1) 

of weak dominations, in the shape category of pointed uniformly movable continua, in 

the sense of Dydak [5]. Finally we will prove another infinite-dimensional Whitehead 

theorem in shape theory. We introduce the class of pointed movable triples (X, F, Y), 

for a shape morphism F : X + Y, and we establish Theorem 5 from which we obtain, 

as a corollary, that for every pointed movable pair of continua (Y, X) the embedding 

j : X 4 Y is a shape equivalence iff it is a weak shape equivalence. This article also 

shows that the applications of our techniques (see [ 16,18,19]) can be also obtained if 

metrizability is not required. 

We will write She to represent the shape category of pointed compact topological 

spaces. 
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In order to make the paper as selfcontained as possible we will recall the basic ideas 

and results of [ 16,20,18] that we need. In a few cases when we state a known result we 

provide a new proof of it (if shorter). 

Let (X, 20) and (Y, ya) be pointed compacta (compact metric spaces). We will as- 

sume Y to be embedded in the Hilbert cube Q. Let i, : Y + B(Y, E) be the inclusion. 

For any pair f, g : (X, ICY) + (Q, 1~0) of maps take F(f,g) = inf{& > 0: f v‘ g in 

B(Y;&) = YE} (E means the pointed homotopy relation). 

It is clear that (pointed) approximative maps (see [2]) {fk} : (X, 20) 4 (Y, yO) corre- 

spond with F-Cauchy sequences and that (pointed) homotopic approximative maps are 

equivalent F-Cauchy sequences. 

Given a, P E Sh((X, ZO), (Y. ~0)) (th e set of shape morphisms between the pointed 

spaces (X, ZO), (Y, yo)) and F-Cauchy sequences {fk}, {gk} in the classes of QI, B, 

respectively, the formula 

produces a well defined complete, non-Archimedean metric in Sh((X, ZO), (Y, ya)) such 

that the composition of pointed shape morphisms induces uniformly continuous maps 

between the spaces involved (the reader can see [24] for information about ultrametrics). 

This fact provides many new pointed shape invariants (see [ 161 for details in the unpointed 

case). Next proposition states the geometrical meaning of the above metric. 

Proposition 1 [ 161. Given cy, p E Sh((X, ZO), (Y, yo)), d(a, /I) < E ifand only ifs(&) o 

CI = S(i,) o ,!I?, as pointed morphisms (S denotes the shape functor). 

In order to simplify notation we will suppress base points consistently. 

In [20] the above construction is extended for arbitrary topological spaces. If X. Y are 

(pointed) topological spaces, let 

p:X + X = (X,~,px,r.A) and q:Y -+ Y = (Yp,qfifi/,M) 

be HPol,-expansions of X and Y, respectively. 

Denote Sh(X, Y) = (Sh(X, Y,), qLIL,, M). 

For every p E A4 and F E 5%(X, Y) take VF = {G E Sh(X, Y) such that qcL o F = 

qcL o G as pointed homotopy classes to Yfi}. 

Proposition 2 [20]. The family {V,“: F E 5%(X, Y), 11 E M} is a base for a topology 

Tp in Sh(X,Y). M oreover; the topology so obtained depends only on X and Y, in the 

sense that if q’ : Y + Y’ = (Yv, qvvf, N) is another HPol,-expansion of Y, then the 

identity map (Sh(X, Y), Tq) ---) (5%(X, Y),T,,) is a homeomorphism. 

In order to study the topological structure of the spaces of shape morphisms next result 

is useful. 

Proposition 3 [20]. Let q* : 5%(X, Y) + Sh(X,Y) be the morphism induced by q. 

Then, q* is an inverse limit of Sh(X, Y) in Top. 
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One of the key results is the following theorem. 

Theorem 1 [ 181. Let F : X --+ Y be a shape morphism that is a weak shape equivalence; 

then, for any compact connected pointed polyhedron P, F induces an isomorphism 

Sh(P, X) -+ Sh(P, Y) in pro- Top. 

Returning to the compact metric framework, it is well known that out of pointed 

(compact) connected polyhedra there is a countable set {P,: 7~ E N} containing one 

of each pointed homotopy type. Consider the inverse system {P,, p,: 72 E N} where 

p, : P,+l --+ P, is the constant (pointed) map. Let (IV, *) be the pointed internally 

movable connected space obtained by applying the star-construction, see [23] or [14, 

p. 1851, to the above inverse sequence. 

The space IV is useful because the uniform topological type of Sh(W, X) characterizes 

the shape of X, provided X is pointed movable. More precisely, in [18] it is shown that 

a shape morphism between pointed movable metric continua F : X + Y is a shape 

equivalence iff F induces a bi-uniform homeomorphism F* : Sh(W, X) + Sh(W, Y). 

Recall the following definition due to Dydak [5]. 

Definition 1. Let X, Y be pointed topological spaces, F : X + Y be a shape morphism 

andp:X +X = (Xx,p~,xt,A) and q:Y + Y = (YA, qxx/, A) be HPol,-expansions 

of X and Y, respectively and a level preserving morphism { FJ,}x~A representing F. 

F is said to be a weak shape domination provided for any X E A there exist A’ > A 

and a pointed H-map g : YAP --+ XX such that the following diagram commutes 

Proposition 4. Let X, Y be pointed continua. Let F: X 4 Y be a shape morphism 

that is a weak shape domination. If X is uniformly pointed movable it follows that 

F* (Sh(Z, X)) is a dense subspace of Sh(Z, Y) for any pointed continuum Z. 

Proof. We keep the notation of above definition. 

Let p E Sh(Z, Y) and X E A. Describe p : Z -+ Y as an approaching morphism 

,O : Z 4 Y = (YA, qxxj, A) (see, for example, [14, p. 281). 

Take A’ E A such that there is a shape morphism T : XX, -+ X such that the following 

diagram commutes 

xx, \“‘:/ 

*XX 

PA . 

X 
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Now we consider X” 3 X’ and a pointed H-map g : Y,j, -+ XX, as in the last definition, 

i.e., such that the following diagram commutes 

Definecu=rogo,Bxjl:Z+X. 

We have that F* (cy) E Vf . Indeed, 

qx 0 (F*(o)) = qx 0 F ocr=Fxopxoa=FxopxorogoPx,, 

= Fx o pxx~ o g o px,r = qxxt o Fxj o g o px/, 

= QXXf 0 qxJx[f 0 /3x,, = qxx,r 0 /?,f, = px = qx 0 p. 0 

Remark. Note that weak shape dominations preserve movability and uniform movability 

(Theorem 2.11 of [5]). Then, in the last proposition, the uniform pointed movability of X 

implies the uniform pointed movability of Y. 

Proposition 5. Let X, Y be pointed continua. Let F: X + Y be a shape morphism 

such that F* (Sh( IV, X)) is a dense subspace of Sh(W/T/; Y). Then F is a weak shape 

domination provided Y is uniformly pointed movable. 

Proof. Assume F to be represented by a level preserving morphism {Fx}x~A. 

Take X E A. There exist A’ E A and a shape morphism T : Yxf + Y such that the 

following diagram commutes 

Since W shape dominates every pointed finite polyhedron there are shape morphisms 

ix! :Yxl 4 W and r,+t : W + YJ,~ such that S(ldy,,) = rxf 0 ix,. 

Define /jl = r o TAT : W + Y. From the density of F* (Sh( W, X)) there is Q E 

Sh(Mi, X) such that F*(a) E Vf. 

Take g = pi o Q o ix/ : Yx/ + XX. It follows that the diagram 

Y/j! 
YXX 

\ /‘” 
XX 

commutes. 
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Indeed, 

Corollary 1. Let X, Y be uniformly pointed movable continua and let F : X 4 Y be a 

shape morphism. The following conditions are equivalent: 

(a) F is a weak shape domination. 

(b) F*(Sh(& X)) is a dense subspace of Sh(Z, Y), for every pointed continuum 2. 

(a> F*(Sh(W X)) is a dense subspace of Sh(W, Y). 

From Theorem 1, we can obtain an alternative short proof of the following theorem: 

Theorem 2 (Dydak). Let X, Y be pointed continua. Let F: X 4 Y be a shape mor- 

phism that is a weak shape equivalence. If Y is pointed movable it follows that F is a 

weak shape domination. 

Proof. We take polyhedral expansions p : X + X = (XX, p,~j, A) and q : Y -+ Y = 

(Yx, qxx/, A) of X and Y, respectively and a level preserving morphism {FA}x~A rep- 

resenting F. 

Let X E A. Take X’ > X an associated pointed movability index. 

Applying Theorem 1 (P = Yx,) and Morita’s characterization of isomorphisms in 

pro-categories, [15], there exist Xi E A, X1 > X’, and gT\ : Sh(Yxf, Yx,) + Sh(Yx/, Xx) 

such that the following diagram commutes 

Sh(YxJ, X,) 4 

Take a shape morphism T : Yx, + Yx, such that the following diagram commutes 

Let g = ST\(r) : Yxl 4 Xx. 
We have that 

Fx 0 g = Fx 0 g;(r) = (F,* 0 g;)(r) = qfix, (T) = qxx, 0 T = qxx’. 

Then, F is a weak shape domination. 0 
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Next corollary is an easy consequence of the last theorem (see [14, p. 1861, for a 

proof). 

Corollary 2. Let X, Y be pointed continua. Let F: X + Y be a weak shape equiv- 

alence. If Y is pointed movable, then F is an epimorphism in the pointed shape cate- 

gory Sh 

Remark. When Y is uniformly pointed movable we have the following alternative short 

proof: 

Let (Y, ,S : Y -+ 2 be shape morphisms such that a o F = ,O o F. 

Since F*(Sh.(Y, X)) is a dense subspace of Sh(Y, Y), we have that Q* = @* : 

Sh(Y, Y) --) Sh,(Y, 2). Then, a: = ,B. 

Example. Under the conditions of the last theorem F* (Sh( W, X)) can be a proper dense 

subspace of Sh(W, Y). 

Proof. Take a Kahn’s (see [12] and [4]) sequence of compact connected polyhedra 

{Z,,>M! and maps h, : Zn+, + Z,, n E N such that for i < j the map hi o . . . o 

hj : Z,,, --) Z, is essential and Z, is [ (2~ - 1) + (2~ - 2)n]-connected 0, fixed odd 

prime). 

Using the above sequence Draper and Keesling, see [4], constructed pointed movable 

metric continua X and Y, a continuous map f : X + Y that is a weak shape equivalence 

but it is not a shape equivalence. 

X is the inverse limit of the sequence {(X,, z,)},~w where (X,, z,) = vp(Z~, zi) 

and the bonding maps p,,+, : Xn+i ---j X, are defined by p,,+i (z) = 2 for 2 E Z,, 

i < n, and pnn_+l (z) = h,(s) for 2 E Zn+i. 

Y is the inverse limit of the sequence {(Y,,Y,)},~w where (Y,, yn) = Vy(Zi, zi) 

and the bonding maps qnn+l : Y,+i + Y, are defined by qnnt 1 (x) = 5 for CE E Z, , 

i < n, and qnn+l (x) = yn for 5 E Zn+t. 

The map f : X + Y is induced by the sequence {fiL}nE~, fn : Xn+i -+ Y, defined 

as fn(z) = 2, 3: E X, and fn(z) = yn if z E Zn+l. 

Draper and Keesling showed that the shape morphism S(f) = F induces isomorphisms 

of all the homotopy pro-groups, then F*(Sh(W, X)) is a dense subspace of Sh(W, Y). 

On the other hand, there are shape morphisms T : W -+ Y and j : Y t W such that 

T o j = S(ldy). 

r $ F*(Sh(W, X)). Indeed, if there is (Y E Sh(W, X) such that T = F*(a) = F o o 

one has F o CI o j = r o j = S(Idy ). Then F is a shape domination and using a theorem 

of Dydak [5] (see also [18] for a different proof using the ultrametric) F would be a 

shape equivalence. This is contradictory. 17 

Theorem 3. Let X, Y be pointed continua and let F : X --+ Y be a weak shape equiva- 

lence, then F* : Sh(Z, X) -+ Sh(Z, Y) is injective for every uniformly pointed movable 

continuum Z. 
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Proof. Let (Y, /3 E Sh(Z, X) such that F o Q = F o /3. 

We take polyhedral expansions T : 2 + 2 = (Z,, rPP~, M), p : X --+ X = (X,, 

pxx/,A) andq:Y + Y = (Yx, qxx/, A) of 2, X and Y, respectively. Consider {Fx}x~A 

to be a level preserving morphism representing F. 

We assume cr, p to be represented by ({Qx}x~A, $) and ({P,J}x~A, $). 

Take X E A. 

Let P 3 C+ VW) such that FX o CEX o r+(~)~ = Fx o ,Sx o r*(x)@. 

Take p’ 3 p to be the associated uniform movability index. Then there is a shape 

morphism s : 2,~ -+ 2 such that the following diagram commutes 

zP’ G 

c ZP 

TI1 ’ 

Z 

We have that F o a o s = F o ,D o s. Theorem 1 implies that Q o s = p o s. Then 

pxOaos=p~opos. 

Since px 0 ck = ax 0 r+(~)~ o rP and pi o p = PA o r-$(~)~ o rcL, it follows that 

ox 0 r#(+ 0 rfi 0 s = PA 0 r$(+ 0 rP 0 s. 

Therefore, 

From the last theorem and Corollary 2 we obtain the following theorem 

Theorem 4. Let X, Y be uniformly pointed movable continua and let F: X + Y be 

a weak shape equivalence, then F is both a monomorphism and an epimolphism in the 

category ShM. 

Corollary 3. Let X, Y be pointed movable metric continua and let F : X + Y be a 

very weak shape equivalence, then F is both a monomolphism and an epimolphism in 

the category ShM of pointed movable metric continua. 

The fact that ShM is not balanced follows from Theorem 4 and next proposition which 

shows something stronger. 

Proposition 6. There exist pointed movable metric continua X, Y and a weak shape 

equivalence F : X + Y that is not a monomorphism in the category Sk. Thus, there 

exists a shape morphism F : X + Y that is both a monomorphism and an epimorphism 

in the category ShM that is not a monomorphism in 57~. 
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Proof. Take the inverse sequence (Z,, hn}nE~, the metric continua X, Y and the shape 

morphism F = S(f) : X + Y of Example 1. F is a weak shape equivalence. 

Let 2 be the pointed compactum defined as the inverse limit of { 2,) h,}. 

For any n E RI, let on : 2, t X, the natural inclusion and /3’, : Z,, ---f X,, the trivial 

map. 

The sequences {cY,},~w and {&}nE~ induce continuous maps Q, /3 : 2 + X, respec- 

tively. We will denote again by Q and ,/3 the corresponding shape morphisms. 

Since fn 0 N n+l = fn 0 /%A+1 9 we have that F o Q := F o /3. 

However n and /3 do not coincide because the composition hi o . . . o hj : Zj+, + Zi 

is essential for i < j. q 

Definition 2. Let X, Y be pointed topological spaces and F : X --f Y a shape morphism. 

The triple (X, F, Y) is said to be pointed movable if there are HPol,-expansions p : X -+ 

X = (Xx,pxxt,A) and q:Y 4 Y = (Yx, qxxl, A) of X and Y, respectively and a 

level preserving morphism {FA}x~A representing F such that for every X E A there 

exists A’ > X such that every A” > X admits pointed H-maps rr : XX! + XJ,IJ and 

r2 : VA! ---f YJ,U such that the following diagram commutes 

In a similar way (X, F, Y) is said to be uniformly pointed movable provided for every 

X E A there exist A’ >, X and shape morphisms CYI : XX! ---t X and (~2 : YA, + Y such 

that the following diagram commutes 

CYI 

I___/_/_ 
w 

\ 
F 

X PAX, - 4xX’ - Y. 
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It is obvious that the (uniform) movability of X and Y is necessary for the triple 

(X,F,Y) t b ( f o e uni ormly) movable. It is also clear that uniform movability of triples 

implies movability of triples. 

Theorem 5. Let X, Y be compact connected pointed spaces and let F : X 4 Y be 

a shape morphism that is a weak shape equivalence. If the triple (X, F, Y) is pointed 
movable it follows that F is a shape equivalence. 

Proof. Let p:X + X = (XX,~XX,,A), q:Y -+ Y = (Yx,qx~,A) be HPol,- 

expansions of X and Y, respectively. Let {Fx}x~A be a level preserving morphism 

representing F as in above definition. 

Take X E A. Let A’ 2 X be a movability index for the triple (X, F, Y). 

Let R E Obj(HPo1,). 

Using Theorem 1 (see [ 1 S]), there is a morphism 

({&hEA, 4) : Sh(R, y) 4 WR x) 

representing the inverse of { F:+)x,=A in pro- Top. 
Then, there is I_L E A, p > X’, such that the diagrams 

* * 

Sh(R> G(x)) < Sh(R,Xx) y(RjK) 

Sh(R, J’jJ 

commute. 

Take rl : XX! -+ X, and r2 : YAI + Yp as in Definition 2 for A” = ,!A. 

(a) Let h : R + Yx, be any pointed H-map. 

Consider r2 oh: R --t Yxl -+ YP. Let k = (9: 0 q* ~&(71 0 h) : R ---) XX. We 
have that 

FA 0 k = (F, 0 g; 0 q;& (7-2 0 h) = 43-2 0 h) 

= qxP o r2 o h = qxxt 0 h. 

(b) Let ZL~, u2 : R --$ Xx, be pointed H-maps, such that FXI o UI = FXJ o u2. 
Then, r-2 o Fx, o u1 = r2 o Fxl o ~2. 
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Since r2 o FA, = FP o r-1, we have q+(x)p o FP o r-1 0 UI = q$(x)W 0 Fw 0 rt 0 u2. 

Thus 

&(x1 0 pb(xjp 0 TI 0 UI = Q(x) OP$(X)~~ 0 TI 0 ~2. 

By composing with g;I we obtain 

( 57: O F;(x) O p;(x)@ ) (~1 0 ‘1~1) = (9; 0 F;(,,) 0 &x)~) (~1 0 ~2). 

Now we have, 

&(r1 0 Ul) = &@I O u2). 

Therefore, 

pApor out =pxport 0212, andp~~~ou~ =pxx’ou2. 

NOW the proof of the theorem follows from similar arguments of the Theorems 2, 3 of 

[14, pp. 148-1491. 

Corollary 4. Let (Y, X) be a pointed movable pair of continua. The embedding j : X + 

Y is a shape equivalence if and only if it is a weak shape equivalence. 

Corollary 5. Let (Y, X) be a pointed movable pair of metric continua. The embedding 

j : X + Y is a shape equivalence if and only if it is a very weak shape equivalence. 

Using Fox’s theorem (see [7], for example), we have 

Corollary 6. Let X, Y be pointed metric continua and let F: X -+ Y be a shape 

morphism that is a very weak shape equivalence. Then F is a shape equivalence provided 

the pair (2, X) of Theorem 4.3.3 of [7] is pointed movable. 
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