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Bacterial DNA supercoiling is controlled by balancing the supercoiling activity of DNA gyrase and the relaxing activity 
of DNA topoisomerase I. We have characterized the gyrB gene from a topA deletion mutant of Escherichia coli (DM800) 
that has a compensatory mutation in gyrB, lowering the activity of gyrase 10-fold, and thereby redressing the intracellular 
level of supercoiling. The mutant gene differs from the wild type in carrying three rather than two direct tandem repeats 
of a 6 bp sequence encoding Ala-Arg. We suggest this novel mutation affects domain spacing ~/nd was generated by an 

unequal crossing over event, possibly involving gyrase. 
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1. I N T R O D U C T I O N  

D N A  supercoi l ing  is i m p o r t a n t  in m a n y  D N A  
t r ansac t i ons  inc luding  D N A  rep l ica t ion ,  t ranscr ip -  
t i on  and  r e c o m b i n a t i o n  [1]. In  E. coli, the  level o f  
superco i l ing  is con t ro l l ed  by  regula t ing  the oppos -  
ing enzyme activi t ies o f  D N A  gyrase  and  D N A  
t o p o i s o m e r a s e  I, which  in t roduce  and  remove  
D N A  supercoi ls ,  respect ively.  Evidence  for  this 
idea  has  come f rom studies o f  E. coli m u t a n t s  lack-  
ing topA,  the gene for  t o p o i s o m e r a s e  I [2,3]. These  
AtopA s t ra ins  are  v iable  because  they  have ac-  
qu i r ed  changes  in o ther  genes,  t e rmed  compen-  
s a to ry  muta t ions ,  tha t  r ead jus t  the  level o f  
supercoi l ing .  F o r  s t rains  DM750  and  DM800,  the  
c o m p e n s a t o r y  m u t a t i o n  has  been m a p p e d  to gyrA 
a n d  gyrB genes,  respect ively,  which  encode  the A 
a n d  B subuni ts  o f  the  A2Bz gyrase complex  [2,3]. 
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The  m u t a n t  A o r  B pro te ins  recons t i tu te  a defec-  
t ive gyrase  act ivi ty:  for  example  DM800  gyrase B 
p ro t e in  is 10 t imes  less act ive t han  the wild type  
subun i t  [4]. G iven  the in teres t  in c o m p e n s a t o r y  
m u t a t i o n s  as an  adap t ive  response  and  thei r  value  
in p r o b i n g  gyrase  s t ruc tu re - func t ion ,  we r epor t  
here  the  first  analysis  o f  such a mu ta t i on ,  in the  
D M 8 0 0  gyrB gene.  

2. E X P E R I M E N T A L  

2.1. Southern blot analysis and DNA cloning 
Chromosomal DNA from Escherichia coli K-12 strains 

DMS00 [A(topA cysB)204 acrA13 gyrB225] and RW1053 [recA 
A(bio attB gal)] was prepared by a standard method [5]. The 
wild-type gyrB gene in plasmid pFMI was obtained by subclon- 
ing a 5.5 kb EcoRI-PstI fragment from pMK47 [6] into plasmid 
pUC9. To isolate the DMgOOgyrBdone, genomic DNA from 
DMS00 was cut with EcoRl and PstI, fractionated on a 1% 
agarose gel, and DNA in the 5-6 kb size range was purified and 
used to construct a pUC9 plasmid library in E. coli host HB10t 
recA13. The library was replicated onto Hybond-N (Amer- 
sham) and the membrane probed at high stringency with the 
gyrB insert from pFM 1, radiolabeled with 32p by random prim- 
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Fig.l. The gyrB locus in Escherichia coli K-12. B, E, H, N, P, 
S, and Sa denote sites for BamHI, EcoRI, HindllI, NruI, PstI, 
Sinai and Sail. An EcoRl site is at the 5' -end of the gyrB gene. 

ing using the Multiprime kit (Amersham) and [u-a2P]dCTP. 
Southern blotting and hybridization to genomic DNA was car- 
ried out similarly. 

2.2. DNA sequence analysis 
Chemical sequencing of DNA restriction fragments was done 

as described previously [7]. Fragments were labeled at 5'- or 
3'-ends using polynucleotide kinase and [7-32p]ATP or reverse 
transcriptase and [a-32p]dCTP, recut with a second restriction 
enzyme, and the singly end-labeled fragments separated and 
purified by electrophoresis in low gelling agarose. For dideoxy 
sequencing, selected restriction fragments were cloned into 
Ml3mpl0 and M13mpl 1 and used to transform E. coil XL-1 
Blue recA. Preparation of single-stranded DNA templates and 
DNA sequencing have been described [8]. 

3. RESULTS 

3.1. Isolation o f  the DMSO0 gyrB gene from an 
enriched plasmid library 

The gyrB locus in DM800 and in wild-type E. 
coil K-12 gave essentially identical genomic restric- 
tion maps by Southern blot analysis (fig.l) [4]. A 

size selected plasmid library of  DM800 DNA 
enriched for the gyrB gene was screened by colony 
hybridization to a gyrB probe. Four independent 
positive clones were obtained carrying plasmids 
with 5.5 kb EcoRI-PstI gyrB inserts, and the 
nucleotide sequence of  one was determined (fig.2). 

3.2. Structure o f  the DM800 gyrB gene: the 
molecular basis o f  the compensatory 
mutation affecting gyrase B subunit activity 

The nucleotide sequence of  the DM800 gyrB 
gene was compared to its counterpart in wild type 
E. coil K-12 (fig.3) [9]. The sequences are identical 
except for the presence of  a 6 bp insertion 
GCCCGT in the 2.6 kb DMS00 gyrB gene im- 
mediately following a direct repeat of  the same se- 
quence (fig.3a, arrows). This insertion in DM800 
gyrB and its absence in the wild type gene is clearly 
visible on inspection of  M13 sequencing products 
for a 1.2 kb ClaI fragment (fig.3b,c; brackets). 
These results were confirmed by Maxam-Gilbert 
sequencing of  the complementary strand in a 
750 bp ClaI-SalI fragment labeled at the 3'-ClaI 
end (fig.3a, data not shown). Interestingly, a se- 
cond directly repeated sequence CCCGTG (lines in 
fig.3a) overlaps the GCCCGT motif  and is also 
present as a triple repeat in DM800. Irrespective of  
which hexameric motif  is considered to have been 
introduced into the gyrB gene, the mutation results 
in the insertion of  the sequence Ala-Arg into the 
gyrase B protein, following a direct repeat of  the 
same residues (fig.3a). 
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Fig.2. DNA sequencing strategy for the DM800 gyrB gene. B, C, E and S denote sites for Bgill, ClaI, EcoRI and Sal. Open and filled 
arrows indicate sequences determined by the dideoxy and chemical sequencing methods, respectively. 
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Fig.3. Structure of the DM800 gyrB gene. (a) Comparison of the gyrB genes of wild type K-12 and DM800 E. coli strains. Triangles 
indicate sites of cleavage by ClaI; asterisk denotes the 3' -labeled end used for Maxam-Gilbert sequencing (see text). (b and c) Dideoxy 

sequencing gels showing top strand DNA sequence (see a). 

4. DISCUSSION 

DNA gyrase catalyzes ATP-dependent DNA 
supercoiling by a double-strand break mechanism 
[10,11]. The two A subunits mediate transient 
DNA breakage-reunion whereas the B subunits 
bind ATP and engage in energy transduction [1]. 
The Ala-Arg insertion in the DM800 gyrase B pro- 
tein occurs after residue 382 (figs 3,4) and marked- 
ly diminishes the activity of the protein. How 
might this loss of activity occur? A fragment of the 
gyrase B protein called u (residues 394-804) has 

been isolated which can activate the gyrase A 
subunit functions, but seems to have lost the ATP- 
binding domain of the B protein (fig.4) [12]. The 
Ala-Arg repeats lie just outside the gyrB fragment 
region in a possible spacer region connecting the A 
subunit-binding- and ATP-binding domains of the 
B subunit. An extra Ala-Arg repeat would alter the 
spacing of the domains and thereby interfere with 
efficient subunit coupling. A similar domain spac- 
ing mechanism has recently been proposed as the 
basis for changes in DNA recognition by EcoRI24 
and EcoRI24/3 type I restriction enzymes which 
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Fig.4. Position of the compensatory Ala-Arg insertion (C) in the gyrase B protein. N denotes two nalidixic acid mutations in gyrB 
that map at codons 428 and 447. 

recognize GAA(N6)RTCG and GAA(N7)RTCG: 
the hsdS genes (determining specificity for the two 
restriction systems) differ only in the presence of a 
12 bp sequence direqtly repeated twice in the RI24 
gene and three times in the RI24/3 gene [13]. It is 
suggested that the Hsd S polypeptide has two 
DNA-binding domains, each recognizing one half 
of the recognition sequence and separated by a 
spacer whose length is dependent on the direct 
repeats. For DM800 gyrase B protein, the cloned 
gyrB gene should allow the overexpression of mu- 
tant protein and examination of its enzymatic pro- 
perties. 

We suggest that the DM800 compensatory muta- 
tion arose by unequal crossing over. Given the 
similarity between the direct repeat and the gyrase 
cleavage consensus sequence [14], this event may 
have been mediated by gyrase. Further work is in 
progress to analyze the likely mechanism responsi- 
ble for these mutational events. 
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