Information and Computation 154, 1-33 (1999) ®
Article 1D inco0.1999.2811, available online at http://www.idealibrary.com on lll[);l

Efficient Splitting and Merging Algorithms for
Order Decomposable Problems’

Roberto Grossi?

Dipartimento di Sistemi e Informatica, Universita di Firenze,
via Lombroso 6/17, 50134 Florence, Italy

and

Giuseppe F. Italiano?

Dipartimento di Matematica Applicata ed Informatica, Universita *'Ca’ Foscari” di Venezia,
via Torino 155, 30173 Venice Mestre, ltaly

Let S be a set whose items are sorted with respect to d > 1 total orders
<1, ¢ <4, and which is subject to dynamic operations, such as inser-
tions of a single item, deletions of a single item, split and concatenate
operations performed according to any chosen order <, (1<i<d). This
generalizes to dimension d > 1 the notion of concatenable data structures,
such as the 2-3-trees, which support splits and concatenates under a
single total order. The main contribution of this paper is a general and
novel technique for solving order decomposable problems on S which
yields new and efficient concatenable data structures for dimension d > 1.
By using our technique we maintain S with the time bounds: O(log n) for
the insertion or the deletion of a single item, where n is the number
of items currently in S; n'~"? for splits and concatenates along any
order, and for rectangular range queries. The space required is O(n). We
provide several applications of our technique. Namely, we present new
multidimensional data structures implementing two-dimensional priority
queues, two-dimensional search trees, and concatenable interval trees;

' A preliminary version of this paper appears in [14].

2 Part of this work was done while visiting ICSI, Berkeley. Current address: Dipartimento di Infor-
matica, Universita di Pisa, Corso Italia 40, 56125 Pisa, Italy. E-mail: grossi@ di.unipi.it.

3 Work supported in part by the Commission of the European Communities under ESPRIT LTR
Project 20244 (ALCOM-IT), by a Research Grant from University of Venice “Ca’ Foscari,” by the
Italian MURST Project “Efficienza di Algoritmi e Progetto di Strutture Informative,” and by the
German-Italian Program “Vigoni 1997.” Part of this work was done while at University of Salerno and
while visiting ICSI, Berkeley. Current address: Dipartimento di Informatica, Sistemi e Produzione, via
di Tor Vergata 110, 00133 Roma, Italy. E-mail: italiano@ info.uniromaZ2.it.

1 0890-5401/99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.

2 GROSSI AND ITALIANO

these data structures allow us to improve many previously known results
on decomposable problems under split and concatenate operations, such
as membership query, minimum-weight item, range query, convex hulls,
and Voronoi diagrams. © 1999 Acadsmic Press

1. INTRODUCTION

Let # be a searching problem defined on an input set S with » items, and
let #(x, S) denote its solution for a query item x. Problem # is decomposable if
we can find an answer to query #(x, S) by first partitioning set S=5"uS” and
computing the answers to queries 2(x,S’) and 2(x, S") recursively, and then
combining them through a suitable operator <. Formally, 2 is said to be
f(n)-decomposable if and only if Z(x, S)= O(#(x, S'), P(x, S")) for any partition
§S=5"0US" and any query item x, where & is an operator whose computation
requires O(f(n)) time. Throughout this paper, we assume that < is associative
and commutative. Furthermore, we assume that f(n) is smooth, namely
f1O(n))=0(f(n)), and that f(n) is strongly nondecreasing; ie., (i) f{n) is non-
decreasing, and (ii) if f(n) = 2(n) then f(n)/n is nondecreasing as well. Most of the
“natural” functions that we know of are smooth and strongly nondecreasing. Some
examples of O(1)-decomposable searching problems include: membership queries to
test the existence of an item, where © is the logical-or function; closest point
queries to find the nearest item to an input item, where < is the minimal distance;
range querics to report the items lying in the range specified according to a linear
order, where < is the list append operation. Convex hull searching is not decom-
posable as the fact that a point xe S belongs to the convex hull of S’ or §” does
not necessarily imply that x belongs to the convex hull of §=38"UuS". Since the
definition of decomposable search problems can be extended also to the decom-
posable set problems in which the query item is not specified (e.g., finding the mini-
mum-weight item, where < is the minimum), we shall denote a generic solution to
a decomposable problem & by #(S).

Let us introduce d > | total orders <y, ..., <, dcfined on S, and let <, be a given
total order, 1 €i<d. A problem 2 is f(n)-order decomposable with respect to total
order <, if 2(8)= O(2(S'), #(S")) for any ordered partition S=5'0S" (ie,
x' <, x" forall x'e S’ and x" € "), where operator < takes O(f(n)) time. Problem
is f(n)-order decomposable if it is f(n)-order decomposable with respect to any
total order <,, 1 €i<d. For example, performing multidimensional range queries
is O(1)-order decomposable, convex hull searching is O(log n)-order decomposable,
and computing Voronoi diagrams is O(n)-order decomposable. Many other
examples of order decomposable problems can be found in basic data structures,
computational geometry, database applications, and statistics [8, 26, 30]. In the
static case, there is an immediate divide-and-conquer algorithm for these problems
on a sorted set S: split it into two equal parts S’ and S”, solve the problem recur-
sively on S’ and §”, and combine their solutions in O(f(n)) time.

In this paper, we present a gencral technique for handling a dynamic set S with
d total orders, for constant d> 1, under insertions of a single item, deletions of a
single item, and rearrangements of any of the total orders <,,.., <, on S by

EFFICIENT SPLITTING AND MERGING ALGORITHMS 3

means of split and concatenate operations. Our queries involve finding the solution
2(R) for only the items in the subset R =S identified by some ranges in the orders
<, -y <g4. More formally, we introduce the following multiordered set splitting and
merging problem:

split(S, z, <,) Split S into S’ and S” according to item z and the specified total
order <, (1<i<d). Thatis, x’ <,zand z <, x" for all X' S’ and x" € S”. S is no
longer available after this operation.

concatenate(S', S”, </, </') Combine S’ and S” together according to their
respective ith total orders <] and </ (1 <i<d) into a new set S=S"uUS". The
items in the resulting set S undergo the new order <, obtained by concatenating
<4 and <. That is, x <,y in S if and only if one of three conditions holds:
(a) x <;yand x, yeS’; (b) x </ yand x, ye S”"; (c) xeS' and ye S”. $" and S”"
are no longer available after this operation.

insert(z, S) Insert item z into set S according to all orders <, ..., <.
delete(z, S) Delete item z from set S.
member(z, §) Check if item z belongs to set S.

range({a,, b, >, .., {ag, b,>,S) Let R={z€S:a,<,2z<,b, for 1 <i<d} be
the region of items in S delimited by pairs {(a,, b;), ..., {au b,>. Find the solution
2(R) to problem £ restricted to the items in region R only.

We will not discuss member, as we can execute it with some of the instructions
implementing delete at no cost increase. For d=1, the recursive nature of order
decomposable problems gives us an immediate tree structure; leaves correspond to
the items of S, sorted according to <, and each internal node stores the solution
to problem £ restricted to the leaves descendent of that node. By using a
2-3-tree [2], each of the above operations can be simply implemented in O(f(n)
log n) time, with O(f(n)) time per tree node. Maintaining d> 1 total orders on the
same set S, while splitting or merging each order independently of the others,
makes things much more complicated than this simple case. In the case of two or
more different orders, indeed, there are some technical difficulties, which are mainly
due to the interplay among different orders.

Related work. There is a great deal of work on decomposable searching
problems. They were first introduced by Bentley [6] for dynamizing static data
structures. The initial goal was to support insertions with low amortized times,
without affecting much of the query efficiency. Other dynamization techniques were
then introduced in {8, 27, 33]. Handling deletions in the dynamization of special
subclasses of decomposable search problems was discussed in [20, 22, 23, 34]. The
main idea behind these techniques was to partition a big data structure into a
collection of small data structures, called blocks. An insertion or a deletion requires
to rebuilding a few blocks and a query scans all the blocks in order to combine
their solutions by means of operator . Many blocks yield fast updates and slow
queries, whereas few blocks yield slow updates and fast queries. Two methods are
employed to tune properly the number of blocks and obtain a good trade-off

4 GROSSI AND ITALIANO

between queries and updates: in the equal block method [20-237, the blocks have
almost the same size and the best trade-off is between queries and deletions; in the
logarithmic method {6, 8, 33, 34], the blocks are of exponentially increasing size
and the best trade-off is between queries and insertions. Some lower bounds on the
efficiency of the best possible tradeoff were given in [8, 25]. Optimal solutions were
obtained by combining the equal block and the logarithmic method by means of
the amortized solution in [27] and by the global rebuilding technique yielding
worst-case bounds in [32, 35]. The notion of order decomposable was then intro-
duced in [29] by generalizing the results of [31] and was independently presented
in [16]. In particular, the work in [29] highlights the connection between order-
decomposable problems and divide-and-conquer paradigms in the corresponding
dynamic data structures. Processing a batch of insertions, deletions, and queries to
be performed on an initially empty set was treated in the offline model [12, 417 and
in the semi-online model [10, 41], where the deletion times are (partially) known,
A different kind of characterization of “deletion”-decomposable problems was
discussed in [37]. For a more dctailed discussion of results on decomposable
problems, we refer the interested reader to the book [30] and to the survey in [9].

Solving an order-decomposable problem only for the items contained in an input
rectangular region can be done by means of range queries on quad-trees [13] and
k-d trees [5]. These data structures were originally designed to support some
opcerations for windowing problems in computer graphics, but it was difficult to
keep them balanced (e.g., see [36, 38]). Many other elegant data structures for
range queries were devised subsequently and we refer the reader to [9] for a com-
prehensive survey on this topic and a list of references. In particular, the solutions
in [39, 42] combined decomposable problems and range queries together in order
to add some range restrictions to the data structures supporting insertions and dele-
tions. Split and concatenate operations were subsequently introduced in [17, 19]
for a set of multidimensional points in addition to the standard operations: range
queries, insertions and delctions. Specifically, divided k-d trees were presented
in [17] for a set of n items, allowing for a range, a split, or a concatenate operation
in O(n' =" log"? n) time and for an insertion or a deletion in O(log n) time with
O(n) space. In [19], a general technique, based on the ordered equal block method,
was described for solving order-decomposable problems and producing efficient
concatenable data structures in O(n) space. The following time bounds were
obtained for a split or concatenate: O(ﬁlogn) in concatenable interval trees,
O(n' =" log n) in d-dimensional 2-3-trees and O(,/n log n log n) in a data structure
for convex hulls. The bound for insertions and deletions of items is O(log n) amor-
tized, except for the O(log?n) amortized bound in the data structure for convex
hulls, The range query bounds equal the split/concatenate cost plus an output
sensitive cost O(occ), where occ is the size of the output reported by the query.
Although the range queries in [39, 42] are faster than the ones in [19], the solu-
tions in [19] require less space and can be used to obtain an efficient dynamic
version of static data structures.

Our results. In this paper, we present a novel and general technique for solving
order decomposable problems on S under insertions, deletions, splits, concatenates,

EFFICIENT SPLITTING AND MERGING ALGORITHMS 5

and range queries, yielding new and efficient concatenable data structures for
dimension d> 1. All these data structures are based on a new multidimensional
data structure, which we call the cross-tree. Differently from the approach of [19], our
technique is based more on simple geometric properties, rather than on underlying
sophisticated data structures, and exploits the fact that some data structures can be
built on sorted items more efficiently. By using our technique we maintain a set S
of n items in O(n) space with the following worst-case time bounds: O(log n) for the
insertion or the delction of a single item, and O(n' ~'*) for splits and concatenates
along any order. We use this new technique in a simple way for a wide range of
applications to shave some log factors from the best known bounds [17, 19]. We
obtain new multidimensional data structures implementing two-dimensional
priority queues, two-dimensional search trees, and concatenable interval trees. We
achieve the following time bounds for a split or concatenate: O(ﬂ) in con-
catenable interval trees and O(/nlogn) for a variant of theirs, treating also the
length of the intervals, O(n'~"“) in d-dimensional 2-3-trees (or divided k-d trees),
and O(/nlogn) in a data structure for the convex hull. As a result, we improve
the query bounds because they are equal to the split/concatenate cost plus an
O(occ) cost due to the output. Furthermore, we make the bounds for insertions and
deletions of a single item worst-case, rather than amortized. The new data struc-
tures work for many other order-decomposable problems under split and con-
catenate operations. For example, point insertions and deletions in a planar
Voronoi diagram of n points take O(n) time in O(n log log n) space [30] (a result
in [1] is a semidynamic algorithm with O(n) deletion time and space). We obtain
an O(n) cost also for range, split and concatenate operations in O(n log log n) space
(the techniques in [19, 39, 42] require more time or space). This partially solves a
problem posed in [1] (i.e., given the Voronoi diagram for a set S of n points, com-
pute the Voronoi diagram for any given subset R< S in O(n) time) for the special
case in which R is a window defined by range querics on a dynamic set S. Splits
and concatenates are useful and alternative operations to slide window R over the
items in S, instead of performing many single insertions and dcletions of items.
Furthermore, our technique for order-decomposable problems is suitable for
efficient external memory algorithms [15].

The remainder of this paper is organized as follows. In Section 2 we describe our
technique for the case d=2 and a single set S. In Section 3 we list some applica-
tions of this technique to concatenable data structures. General order decom-
posable problems of dimension 4> 2 are considered in Section 4. Finally, in
Section 5 we list some open problems and concluding remarks.

2. THE SPLITTING AND MERGING TECHNIQUE

In this section, we describe our general technique to maintain d =2 total orders,
which we denote by <y and <y, under split and concatenate operations. Let n be
the number of items currently in S. Each item ze S is associated with a point
(X(2), Y(2)) in the Cartesian plane, such that X{(z) is the rank of z in S with respect
to order <, and Y(z) is the rank of z in S with respect to <y, with ties broken

6 GROSSI AND ITALIANO

arbitrarily. As a result, no two items share the same coordinates. For a given item
z, its coordinates X(z) and Y(z) are affected by our dynamic operations and so the
mapping from z onto point (X(z), Y(z)) changes dynamically throughout the
sequence of operations. Starting from n items in S, we obtain n points in the
Cartesian plane, which can be stored in the form of a n x n sparse and dynamic matrix
. We will use interchangeably both models, namely the Cartesian plane and the
matrix notation. The only issue to keep in mind is that the vertical ordering in the
Cartesian plane is defined bottom to top, whereas in the matrix notation it is
defined top to bottom. We follow well established mathematical traditions and,
thus, use the two conventions according to the model used: to switch from one
model to the other, it simply suffices to conceptually rotate the points around a
horizontal axis. This should not induce any confusion in the reader.

The operations in S can be simulated by a certain number of operations in ./.
Operation split(S, z, <) corresponds to splitting matrix .# horizontally at a
certain position X{(z), which is the rank of z in S with respect to <y, while doing the
same according to its order <, is equivalent to handling .# vertically at position
Y(z). Concatenating is analogous. Operations insert(z, S) and delete(z, S) require
a new operation which sets entry .#[X(z), Y(z)] to item z or to an empty
value, respectively. Finally, solving problem # in the region specified by
range({ay, by, {ay, by, S) can be done by solving £ for the points contained in
the rectangular part of .# dclimited by the ranks of ay, by, ay, by in their corre-
sponding order. Based upon the above reduction, we state our multiordered set
splitting and merging problem by using our sparse matrix .#, which we would like
to maintain under splits, concatenates, and query operations related to problem 2.
More formally for any integers h,, 1y, vy, v5, such that 1 <h, <h,<n and
I Sv,<vy,<n, we use MH[hy,hy; vy, 0] to denote the submatrix of .# that
contains entries 4[4, j] with i, <i<h, and v, < j<v,. We call this submatrix a
region. We can disassemble and reassemble a single matrix ./ in many different
ways by using any sequence of the following operations;

h_split(.#, i) Split .# horizontally at row { and obtain two new matrices ./,
and ./, such that ./, =.#[1,i;1,n] and #y=./[i+1,n;1,n]. In other words,
#, is given by the first i rows of .# and ./, is given by the last (n—i) rows of ./#.
Matrix .# is no longer available after the operation.

h_concatenate(./#,, ./,) Let .#, have size m, xn and .#, have size m, xn. We
meld .#, and ./#, horizontally and produce a matrix .# of size (m, +n,) x n, such
that #[1,my; L,n] =4 and H[m,+ 1, m+m,; 1,n] =.4,. In other words, the
first m, rows of .# are given by .#, and the last m, rows of .# are given by .4,.
This opcration assumes that ./, and ./, have the same number of columns. .#, and
/5 are no longer available after the operation.

set(d, j, z, .#) Update .# by sctting .#[i, j] =z. This corresponds either to an
insertion (if z is nonempty) or to a deletion (if z is empty), and causes the implicit
renumbering of the horizontal and vertical rankings.

range(h,, hy, vy, 05, .#) Find the solution #(R) to problem £ restricted to the
nonempty entries contained in region R=./#/[h,, hy;v,,v,].

EFFICIENT SPLITTING AND MERGING ALGORITHMS 7

Operations v_concatenate(.#,, .#,) and v_split(.#, j) are analogously defined to
operate vertically. Our technique works for a general matrix .#. However, in the
remainder of this paper we discuss the case where each row or column of .# con-
tains a constant number of points. This is without loss of generality, as a row or
a column with s points can be represented by a sequence of O(s) columns or rows
with a constant number of points; this transformation does not affect the achieved
bounds and can be easily maintained throughout our sequence of operations.

2.1. Data Structures

We now describe the data structures for our splitting and merging problem. We
need an important notion which will be used throughout the paper. Let
X={x1,x3,.,x,} be a sorted sequence of g elements, according to some total
order <: x; <x;< -+ <x,. Let I, .., I, be a partition of X into adjacent inter-
vals, so that for 1 <i<s—1 all the elements in I, precede all the elements in /,,.
For 1 i <s, let |1;] denote the size of interval /,, defined as the number of elements
in I,

DEFINITION 2.1 (Size invariant). Let k> 1 be an integer. The adjacent intervals
I,, .., I, satisfy the size invariant of order k if two conditions are met:

(a) ||k for1<i<s;
(b) L1+ >k for 1<i<s—1.

The size invariant of order k in Definition 2.1 implies that the number s of inter-
vals is O(g/k). Moreover, we can easily maintain the size invariant of the adjacent
intervals when an element is deleted from X or a new element is inserted into X,
If an element x; is deleted from an interval 1, then the size of I; decreases by one:
we first check whether after the deletion of x; condition (b) of Definition 2.1 would
be violated for the two pairs of adjacent intervals {/,_,, ;) and {/,, I,). If this
is the case, it is enough to combine I, with either of its neighbors, according to con-
dition (b). If a new item x; is inserted into interval J;, the size of I, increascs by one:
we first check whether after the insertion of x, condition (a) of Definition 2.1 would
be violated for I; if this is the case, then J; contains k + 1 elements and can be split
in two subintervals I; and I}, with I} <1I}so that |I}|, |1]]| < (k+1)/2<k. Next, it
is sufficient to check whether 7; can be combined with /,_, and I} can be combined
with I,,,, in order to satisfy rule (b). Representing each single interval with a
balanced search tree vields that a size invariant of order k can be maintained
dynamically in time O(log k) per operation.

We now turn back to our dynamic matrix .# and refer to its n nonempty entries
as the points of #. We let k be a slack paramecter, where k is an integer with
1<k<n We handle the sparse nxn matrix # as if it were a dense
O{n/k + k) x @(n/k + k) matrix. We then tune k according to the chosen problem &
and the cost f(n) of operator &. We proceed as follows. We group adjacent rows
and columns of matrix .# into respectively horizontal and vertical stripes, such that
the stripes satisfy the size invariant of order k (Definition 2.1), where the size of a

8 GROSSI AND ITALIANO

horizontal (resp. vertical) stripe is given by its number of rows (resp. columns). The
size invariant guarantees that each stripe contains at most O(k) points and that the
total number of horizontal and vertical stripes is O(n/k). The partition into
horizontal and vertical stripes induces a partition of ./ into O(n*/k*) squares, such
that each square intersects no more than k rows and & columns. We call these the
basic squares in .//. We maintain the solutions to .2 for cach single basic square.
We also store these solutions in the leaves of a two-dimensional data structure,
which we call cross-tree, that describes recursively the partition of ./ into its basic
squares. We then percolate the solutions from the cross-tree leaves toward its inter-
nal nodes in a heap-like fashion by means of operator <, as problem .7 is decom-
posable.

DeFINITION 2.2, A cross-tree CT(T,, x T;.) describes a balanced decomposition
of a two-dimensional set and is the cross product of two trees 7, and 7}

e T,, and T, have the same height and O(1) children per node. Their leaves
are on the same level.

o For cach pair of nodes we 7;, and ve T, on the same level, there is a node
o, in CT(T,, xT,) with O(1) children (see Fig. I).

o For each pair of edges (u,)€ T,, and (v, ¢)e T,., such that u and v are on
the same level, there is an edge (a,,, 2;.) in CT(7,, x T}).

An example illustrating a cross-trec and its properties is shown in Figs. 2-4. In
Figs. 2 and 3, the bottom—up drawing of the cross-tree is shown in three dimensions
to highlight the rationale behind its definition, and then its actual representation
is shown in Fig. 4. Let us assume for now that cach solution takes constant space
(we will deal with the case of solutions requiring more space later on). The recur-
sive nature of decomposable problem 2 suggests that its solution 2(S)=
O(2(S"), Z(8")) can be stored in the root (e.g., node (gl0) in the cross-tree of
Fig.4) and that 2(S’), 2(S”) can be stored recursively in its children (i.c., nodes
f8 and 9, Fig.4). Each internal node, therefore, stores the solution to .2 for the

FIG. 1. Ilustrating the cross-tree: nodes ue T, veT, and a, € CT(T,, x T,), and their outgoing
edges are shown in boldface.

EFFICIENT SPLITTING AND MERGING ALGORITHMS 9

g
J (a) (b)
d ¢
©
a b G
e o'
a eobh ° 2 ;
o @ L] 4
®))
5] ® []
® ®
) @ (c)
®
e 5

6

FIG. 2. The bottom - up drawing of cross-tree CT(7;;, x T}) for the two trees 7;;, and 7, shown in (a)
and (b), respectively. CT(T,, x T}) is shown in three dimensions to give its intuitive representation, by
assuming that 7j, is on the xz-plane and 7} is on the yz=-plane (the cross-tree leaves are on the xy-plane).
The level-0 nodes are shown in (c), and the level-1 nodes are shown in (d).

items in S corresponding to its descendent leaves. We exploit this simple observa-
tion in our basic data structure, which indeed comprises matrix ./ and cross-tree
CT(T,, x T,;). We wish to point out that the leaves of 7,, and 7, are in one-to-one
correspondence to the horizontal and vertical stripes in matrix ./, respectively.
Consequently, the leaves of CT(7,, x 7}) are in one-to-one correspondence to the
basic squares in .. As T,, and T, have O(n/k) leaves, one for each stripe of ./, and
a total of O(n/k) nodes, the resulting cross-tree CT(7;, x Ty,) has O(n’/k”) leaves,
one for each basic square of .#, and a total of O(n°/k?) nodes. Specifically, our data
structure has the following features (see Fig. 5):

1. For each nonempty basic square of ./#, we keep its points sorted according
to a total order <, (which is not necessarily equal to <, or < ,) by means of a
threaded binary search tree, whose nodes are linked together in symmetrical order.
Searching, inserting, and deleting a point takes O(log k) time. We can scan the
points in a basic square in their < ,-order and take constant time per scanned

10 GROSSI AND ITALIANO

9

(a)

(b)

FIG. 3. The bottom-up drawing of cross-tree CT(7,, x T}) (continued), where level-2 nodes are
shown in (a), and level-3 nodes and the whole cross-tree are shown in (b).

point. It is worth noting that we introduce order <, because some data structures
can be (re)built more efficiently on a sorted set of points.

2. Each cross-tree node corresponds to a region of matrix .#. The cross-tree
leaves correspond to the basic squares. An internal node a corresponds to a region
R=.#[h,, hy;v,,vs] and has O(1) children a,,..,«, corresponding to an
orthogonal partition of .#[h,, hy; vy, vy] into smaller regions (if a child is empty,
then its corresponding region is empty). For example, let us assume that o has j=4
children: o, corresponds to .#[hy, hy; vy, v4], o, corresponds to #[7y, hys vy, vs].
ay corresponds to [hy, hyi vy, v,] and a, corresponds to # [, hyiv,, vy] for
some hy < hy<h, and some v, <vy<v,. In other words, the smaller (nonoverlap-
ping) regions corresponding to a,, .., «, can be united to produce the region R
corresponding to 2.

3. For each nonempty basic square of ./, we examine its points and store their
solution to problem 2 into their corresponding cross-tree leaves. We then percolate
this information from the leaves towards the cross-tree root in a heap-like fashion.
Namely, let « be an internal node of the cross-tree, and let s,, ..., s, be the solutions
stored in the j children of a, where j= O(1). As 7 is a decomposable problem, the

EFFICIENT SPLITTING AND MERGING ALGORITHMS 11

gl0

cl c2 c3 b2b3a3a2 bl al c4 b4 a4

FIG. 4. The bottom-up drawing of cross-tree CT(7}, x T;) (continued). The actual representation
of the cross-tree is shown, where its nodes a,, are labeled by wr, where u=a, b, ..., gand v =1, 2, .., 10.
Note that the cross-tree part identified by nodes bl, b2, b3, b4, dS, d6, d7, {8, (9, g10 is isomorphic to
T, and corresponds to leaf-to-root path /T= {b, d, f, g} in 7}, shown in Fig. 2. Analogously, the part
identified by a3, b3, ¢3, d6, e6, {8, gl0 is isomorphic to 7;; and corresponds to path /7= {3, 6, 8, 10|
in Ty

internal node a stores its solution (s, .., s,) for the points in its corresponding
region R (as < is associative, it is well defined also for an arbitrary number of
arguments.) This solution is stored in an efficient way, which we will specify later,
according to the problem .# considered. Note that if j=1 this is trivial, as
O(s))=s,.

A comment regarding point 3 is in order at this point. When the solutions
require more than constant space each, node a stores implicitly its corresponding

(b)

A[| A
A | A

> N

(a)

FIG. 5. (a) A partition of matrix .# into its basic squares, where each nonempty square contains a
threaded binary search tree storing its points in <, order. (b) The cross-tree with its leaves storing the
basic squares in (a). The boldface region in (a) corresponds to a cross-tree node « in (b).

12 GROSSI AND ITALIANO

solution Z(R). Let us assume without loss of generality that a has two children
storing solutions #(R’) and #(R"), respectively. Node a stores the O(f(n)) actions
taken to compute Z(R) = O(2(R'), #(R”)) and its children store only the leftover
picces of Z(R’), #(R") that are not employed to build #(R). We illustrate this by
an example. If 2(R) requires computing the distinct items in R and < is the union
of sets, the lcftover picces are the duplicated items, namely the items in R’ belong-
ing to its intersection with R”. By repeating such a trick for all the nodes in the
cross-tree, it turns out that a full solution is only available at the root. In order to
obtain the solution in the other nodes, we can use a procedure called DOWN
by [29, 30] to obtain 2(R'), Z(R") from #(R) recursively along a downward path,
and a procedure UP to obtain #(R) from #(R’), Z(R") along an upward path.
This motivates the following definition.

DeriNTION 2.3, Given P(R) = O(A(R'), A(R")), let O~YHA(R))={A(R),
Z(R")}. Operator < is invertible if we can keep O(f(n)) bookkeeping information
associated with any solution #(R) so that we can compute O ~'(2(R)) in O(f(n))
time.

Operator © corresponds to executing procedure UP while the inverse operator
<O ~! corresponds to DOWN. For example, if © is the destructive list append with
cost f(n)=O(1), we can simply keep a pointer to the last item in the appended lists
to “de-append” them in O(1) time by means of & !, Operators & and O ! are
uscful to save space in our technique, as they avoid data duplication. Specifically,
in point 3 above, if O is invertible (Definition 2.3) and solution $(sy, ..., 5)) is not
of constant size, we store the O(f(n)) actions needed to compute O (sy, ..., 5;) into
a itself and only the leftover of solutions sy, ..., 5, into the children of a. We can,
indeed, recover sy, .., 5, in O(f(n)) time by applying O =1 to the solution in a,
which is itsell recursively computed from the parent of a. This way, only the
cross-tree root needs to store the solution explicitly.

As far as the supported operations are concerned, we have to handle efficiently
the split and concatenate operations on cross-tree CT(Ty, x T,). We, therefore,
choose to use two weight-balunced B-trees Ty and Ty, they are a weight-balanced
variant of 2-3-trees, introduced by Arge and Vitter [4]. We actually need a simpler
version of them. Let the weight w(w) of a node u be the number of its descendent
leaves. A weight-balanced B-tree T with branching parameter g >4 satisfies the
constraints:

o All the lcaves have the same depth and are on level 0.
e An internal node u on level Z has weight (1/2)a’” < w(u) <2d’.
e The root has at least two children and weight less than 2¢*, where h is its

level.

Tree T has height = 0(log,|T|) and between a/4 and 4a children per node,

except the root. Among others, T satisfies an interesting property (typical of
BB[a]-trees {28]).

EFFICIENT SPLITTING AND MERGING ALGORITHMS 13

FACT 24. Given a leaf-to-root path IT in T, the sum of the weights of the nodes
in IT is geometrically decreasing: ¥, ¢ 7 w(u) = O(|T}).

Tree T allows for insertions and deletions in logarithmic time and can be also
split and concatenated like 2-3-trees [3].

THEOREM 2.5 (Arge and Vitter [3, 4]). A4 weight-balanced B-tree T supports leaf
insertions, leaf deletions, splits, and concatenates in O(log, |T|) time per operation.
Euach operation only involves the nodes in a leaf-to-root path and their children.

In our case, the two weight-balunced B-trees trees T, and T, in the cross-tree
have parameter a = O(1) and O(n/k) leaves, one for each stripe of .#, with a total
of O(n/k) nodes. If T, and T, have different heights, we replace the root of the
lower tree with a chain of unary nodes so that they both have the same height.
Consequently, the cross-tree CT(T} x T}) is balanced, and its height is O(log(n/k)).
We now give some bounds on our basic data structure, comprising .# and the
cross-tree.

LEMMA 2.6. Apart from the time and space bounds needed for computing the solu-
tions to decomposable problem P, our basic duta structure takes the following bounds
Jor its construction and occupied space:

o O(f(n) log(n/k)+ (n*/k?)) when f(n)=Q(n);
o O(f(n)(n*/k?)) otherwise.

Proof. We call a cross-tree node a nonempty if its corresponding region in ./
contains at least one point, and we call it empty otherwise. Apart from the bounds
needed to compute the solutions to 2 in the basic squares, the contribution to the
total cost is O(f(n)) time and space for each nonempty node, and O(1) time and
space for each empty node. The total contribution of the empty nodes is clearly
bounded by O(n*/k?), and thus, we need to focus only on nonempty nodes.

Let N, denote the set of nonempty nodes on level £ of the cross-tree, where the
leaves are on level 0 and the root is on level A = O(log(n/k)). The total contribution
of nonempty nodes can be expressed as

0({&) f(m).

-0 a€N,

where r, denotes the number of points in the region corresponding to a, 1 <r,<n.
We bound this sum according to the two cases given by the function f(n). As f(n)
is nondecreasing, f(r,) < f(n), and so

O(li) f(r,)>=0<i 5, fin))

=0 aeN, /=0 aeNs

A h '
=0<Z J(n) IN,|>=0<f(n) Y IN,|>=0(f(n)(n2/k2)).

=0 =0

14 GROSSI AND ITALIANO

When f(n)=8(n), the fact that f(n) is strongly nondecreasing implies that
fla)+ f(b) < fla+b) (see [8]). This holds for any number of additive terms by
induction, and thus,

EN, S(ra) Sf(agw ra>

for any given level £. Furthermore,

Y re=n,
aeN,
as the regions corresponding to the nonempty nodes on each level # form a parti-
tion of the input set of points. Consequently, we can get a better estimate of the
upper bound:

O(i) f(r,>)=0(i (x ra>>=0<éof(n)>=0(f(n)log('1/k))-

w0 ae Ny w0 ae Ny
This completes the proof. |

We now discuss some basic operations to modify cross-tree CT(Ty x T})
efliciently. They are needed later on because we have to modify Ty or T, while
handling the stripes in our dynamic matrix .#. Here we describe why this happens.
When we need to divide a horizontal stripe o of matrix .# into two stripes &, and
a5, we have to transform the corresponding leaf w e Ty, into two leaves w, and w,.
We then rebalance T, by splitting the “full” nodes in the path from w to the root.
These steps are equivalent to executing a leaf insertion in 7. Analogously, when
we want to merge two adjacent stripes o, and g, of .# into a single stripe o, we
need to replace two adjacent leaves w; and w, in T by a single leaf w. These opera-
tions are equivalent to executing a leaf deletion from Tj,. Finally, when splitting the
whole .# into .#, and .#,, or merging them, we have to split T into two trees T}
and T;, or concatenate them. Performing the above operations on the vertical
stripes of .# involves T, in a similar way. Each of these operations on T and T,
can be implemented in O(log(n/k)) time by Theorem 2.5 and must be reflected on
the cross-tree CT(Ty x Ty). We therefore discuss how to update the cross-tree
accordingly.

We examine the case when Ty is split into 7, and 7. We can obtain cross-trees
CT(7; x T}) and CT(T; x T},) from cross-tree CT(T x T) as follows: We examine
the nodes in Ty involved by its split. They form a path J7 that leads from a leaf to
the root in T, by Theorem 2.5. Given a node u € IT to be split on level /, we identify
the corresponding nodes «,, in the cross-tree for all ve T, that are on level ¢, accord-
ing to the cross-tree definition, and reorganize these nodes suitably. By repeating
this for all nodes in 77, we traverse a part of CT(T}, x T)) that is isomorphic to T},
We then recompute the solutions to # in the modified cross-tree nodes by running
two steps. In the first step, we traverse the involved nodes downward and apply
operator © ~! to them to “pull down” their solutions. We execute this step only if
< is invertible and the solutions do not have constant size. In the second step, we

EFFICIENT SPLITTING AND MERGING ALGORITHMS 15

apply operator < to the traversed nodes to update and “push up” their solutions
in an upward traversal. We wish to point out that when executing the other opera-
tions (concatenate, inserte, and delete), we proceed along the same lines because
these operations need to reorganize the nodes corresponding to a path in Ty by
Theorem 2.5. We therefore have

THEOREM 2.7. We can insert in, delete from, concatenate, and split Ty or Ty in
order to update cross-tree CT(Ty x T}) in time:

o O(f(n)+(n/k)) when f(n)=Q(n),
e O(f(n)(n/k)) otherwise.

Proof. We only analyze the complexity of splitting as the other operations have
an analogous analysis. Splitting 7}, takes O(log(n/k)) time by Theorem 2.5, and the
cost of splitting cross-tree CT(T, x T},) accordingly consists of two tasks: (a) updating
the cross-tree topology and (b) recomputing the solutions to 2 by means of
operators & and O,

Let n, be the number of nodes of T}, on level £, where 0 < ¢ <h = O(log(n/k)). In
task (a), we examine O(n,) nodes per level in the cross-tree and execute O(n,) work
on them. By summing over all the levels /, we obtain a total cost of

h

Y. O(n,)=O(|Ty|)= O(n/k).

=0

To analyze task (b), we proceed as in the proof of Lemma 2.6. Since we traverse

O(n/k) empty nodes by the analysis of task (a), we have to bound the contribution
of nonempty nodes and take their cost f(n) into account. We define I, to be the
set of nonempty nodes involved, on level £, in the splitting operation. Their total
contribution can be expressed as

O(i 5 10),

l=0 acl,

where again r, denotes the number of points in the region corresponding to a, with
1 <r,<n We still have two cases. For any f(n), we can use the simple upper
bound:

o((i » f(n)>=0(i fin) 11,|>=0(f(n) 5 Ilfl)=0(f(n)(n/k)),

-0 ael ¢=0 ¢=0
as |I,| = O(n,) by the split operation. Otherwise, if f(n) =Q(n),

) f(ra)<f(> ra),

ael, €l

and we exploit the fact that Ty is weight-balanced to give a better bound. Let w(u)
be the number of descendent leaves of a node u in T, and examine the nodes
involved by the split along its path /7, where

2. w(u)=O(nfk)

uell

16 GROSSI AND ITALIANO

by Fact 2.4. For any given level /, the regions corresponding to the nodes a € /, are
disjoint and contained in the w(u) stripes associated with the leaves descendent of
u, where u is the node in /T on level /. Furthermore, as at most k points are in each
stripe by the size invariant (Definition 2.1), we have

Y ra=0(w(u)-k)

ael,

points in these regions. Consequently, we bound

o(3 % f(ra)>=0<éof<2 r))=0(Z swtw- k)=o)

=0 ael ael; uell

as

5 f(w(u)-k)sf<2 w(u)-k)=f(k- 5 w(u)><f(k-O(n/k))=f(0(n))

uell uell uell

and f is strongly nondecreasing and smooth. Putting the analysis of tasks (a) and
(b) together and adding the O(log(n/k)) splitting cost of T}, we obtain the claimed
bounds. |

2.2. Supported Operations

We now show how to implement the operations in our splitting and merging
problem. We adopt the data structure introduced in Section 2.1. In order to kecp
our algorithm analysis general, we introduce some smooth functions that help us to
state the bounds achieved by our technique:

P(k)=The cost of preprocessing an O(k)-point stripe to solve problem # for
every basic square in the stripe. We expect to exploit the < p-order inside each
basic square when determining P(k). We assume that P(k)= (k) and that it is a
strongly nondecreasing function, i.e., P(a)/a < P(h)/b for a<bh.

U(k) = The cost of updating the solution to problem # for a basic square in an
O(k)-point stripe after its preprocessing. We assume that U(k) = Q(log k), since we
have to update at least the threaded search tree in the basic square.

S(k)=The space occupicd after preprocessing an O(k)-point stripe. We also
assume that S(k)= (k) is a strongly nondecreasing function.

In most of our applications, we will have P(k)=0(k), S(k)=O(k), and
Uk) = O(f(k)log k). We now show how to preprocess the n points. We sort them
in lexicographic order (< y; < y) by first computing their ranks in <, and <, and
then by sorting the resulting rank pairs. We then take their corresponding basic
squares in row major order, i.e., the oncs in the first horizontal stripe from left to
right, then the ones in the second horizontal stripe from left to right, and so on. We
distribute the points over these basic squares, such that globally [{k +1)/27<k
rows (columns) are in each horizontal (vertical) stripe, except for the last one, to
which somie dummy rows (columns) are added. For each nonempty basic square,

EFFICIENT SPLITTING AND MERGING ALGORITHMS 17

we sort its points in their < p-order and build a threaded search tree on them. We
also find their solution to 2. We finally build the cross-tree CT(T x T),) and store
the proper solutions in its nodes by using operator <.

LEMMA 2.8. The total preprocessing time is:
e O(nlog n+ P(n)+ (n?/k?) + f(n)log(n/k)) when f(n)=Q(n);
o O(nlog n+ P(n)+ f(n)(n*/k?)) otherwise.

The total memory space is:
o O(S(n)+ (n¥/k*) + f(n)log(n/k)) when f(n)=Q(n);
e O(S(n) + f(n)(n*/k?)) otherwise.

Proof. Sorting the points takes O(nlogn) time and distributing them over the
basic squares takes O(n) time. Building the threaded search trees takes linear time
because the points are already sorted in < p-order. Computing the solutions in the
basic squares takes P(k) time per stripe and so O(n/k.P(k))=O0(n. P(k)/k)=
O(P(n)) time for all the O(n/k) stripes, as P(k)/k < P(n)/n. The remaining terms in
the preprocessing time follow from Lemma 2.6, which gives the cost of building the
cross-tree.

As each of the O(n/k) stripes occupies S(k) space, the space required by the basic
squares and their solutions is O(n/k - S(k)) = O(S(n)) space. We need also O(S(n))
space to store the solutions in the cross-tree. The remaining terms take into account
the actual space usage of the cross tree, and follow again from Lemma 2.6. }

We remark that the term nlogn in the preprocessing bound in Lemma 2.8
becomes n when the set S of items is already sorted.

Operations h_split and v_split. We perform v_split(.#, j) as follows. Column j
might fall inside a vertical stripe ¢, which must necessarily be split. We examine the
basic squares of a. For each such basic square, we scan its points according to their
< p-order and produce two < p-ordered lists: one list contains all the points whose
second coordinate is smaller than or equal to j and the other list contains the
remaining points, i.e. the points whose second coordinate is larger than j. We split
each basic square into two squares and build two threaded search trees for them by
using the two < p-ordered lists. This creates O(n/k) smaller squares and splits stripe
o into new stripes ¢, and &5, such that o, contains all the points of ¢ before and
including column j, and o, contains all the points of ¢ after column j. We check to
see if we can combine ¢, and g, with their neighbor stripes to maintain the size
invariant of order k. For any two such stripes to be merged, we examine their basic
squares in pairs (a square per stripe), such that the two squares are on the same
horizontal stripe. We take their two < p-ordered lists of points and merge them in
order to build a threaded search tree on the resulting list. It is worth noting that
splitting and merging stripes preserve the order of their presorted points. Next, we
determine the solutions for the basic squares in the O(1) stripes involved and
update the cross-tree CT(Ty, x T) to reflect the split operation on the vertical
stripes: We have to split tree T} at the lcaf w corresponding to stripe a. We split
w into two new leaves w, and w,, corresponding to the split of o into the new

18 GROSSI AND ITALIANO

stripes g, and a,. If g, or o, are combined with their neighbor stripes, we should
do the same on w; and w, and their neighbor leaves. Globally, we create no more
than O(n/k) leaves corresponding to the new basic squares in O(1) stripes and we
traverse and reorganize their ancestor nodes all the way up to the cross-tree root
as shown in Theorem 2.7. The implementation of h_split is completely analogous.

LEMMA 2.9. Both operations h_split and v_split take time:

e O(P(k)+ f(n)+ (n/k)) when f(n)=Q(n);
o O(P(k)+ f(n)(n/k)) otherwise.

Proof. Splitting and merging the < p-ordered lists and rebuilding the threaded
search trees takes linear time because the points are presorted. This implies that we
can process g, g,, g, and their O(1) neighboring stripes in O(n/k + k) time as any
stripe consists of O(n/k) basic squares and contains O(k) points. Recomputing the
solutions in their basic squares needs O(P(k)) time, namely, P(k) time per stripe.
The resulting O(n/k +k + P(k)) = O(n/k + P(k)) cost must be added to the cost of
updating the cross-tree given in Theorem 2.7. |

Operations h_concatenate and v_concatenate. They are the inverse of h_split
and v_split, respectively. They involve recombining two cross-trees whose corre-
sponding points undergo an identical (horizontal or vertical) stripe partition and
they cause the pairwise merging of O(n/k) cross-tree leaves in the worst case. Again,
this requires recomputing the solutions in the traversed nodes. We have

Lemma 2.10. Both operations h_concatenate and v_concatenate take time:

o O(PKk)+ f(n)+ (n/k)) when f(n)=8(n);
o O(P(k)+ f(n)(n/k)) otherwise.

Operation set(i, j, z, #). We use it to perform either an insertion (if w is non-
empty) or a deletion (if w is empty). Let us assume first that we only have inser-
tions. We locate the basic square corresponding to position (i, j) by traversing a
path 7 from the root to the relative leaf in the cross-tree. If necessary, we insert (4, j)
into the threaded search tree of the basic square (we use the < p-order). We then
update the solution in the basic square and link it to its rclative cross-tree leaf if
the basic square becomes nonempty. We propagate the new solution along path
in two steps. In the first step, we traverse t downward and apply operator O ~! to
the traversed nodes. We run this step only if < is invertible (Definition 2.3) and the
solutions do not have constant size. In the second step, we apply operator < to the
nodes in t to recompute their solutions in an upward traversal. As setting
i, j]=2z can cause the insertion of a new row at position i and a new column
at position j, the horizontal stripe and the vertical stripe whose intersection gives
the updated basic square can violate the size invariant of order k. Since we are
treating insertions, this means that each such stripe o has increased its number of
rows (columns) from ["(k + 1)/27 to £ + 1. To maintain the size invariant, we split
o into two stripes ¢, and g, of at most [(k + 1)/27 rows (columns) each, and then
update the cross-tree accordingly. In order to handle also item deletions, we simply
mark the item as logically deleted and update the solution in its basic square (this

EFFICIENT SPLITTING AND MERGING ALGORITHMS 19

is the so-called “weak” deletion and does not violate the size invariant). We then
percolate the updated solution along its corresponding path z in the cross-tree.

LemMA 2.11. Inserting and deleting a point with operation set takes time:

o O(U(k)+ f(n)(1 +n/k?) + P(k)/k) when f(n)=8(n);
o O(Uk)+ f(n)(log(n/k) + n/k?) + P(k)/k) otherwise

Proof. As the cost of (weak) deletions does not exceed the cost of insertions, we
examine the cost of an insertion. Traversing path 7 in the cross-tree takes
O(log(n/k)) time, as the cross-tree height is O(log(n/k)). It takes O(log k) time to
update the threaded search tree and U(k) time to update the solution in the basic
square. The cost of percolating the updated solution along path 7 depends on f(n):
if f(n)=Q(n), the cost is a geometrically decreasing sum equal to O(f(n)), as
a consequence of Fact 2.4 on weight-balanced B-trees; otherwise, the cost is
O(f(n)log(n/k)). The resulting cost is O(log(n/k)+logk + Uk) + f(n)) =
O(U(k) + f(n)) in the former case and O(log(n/k) +log k + U(k) + f(n) log(n/k))
= O(U(k) + f(n) log(n/k)) in the latter case (as U(k)>log k).

We now have to add the splitting cost for a full stripe o (with k+1 rows or
columns in it) into g, and ¢, to maintain the size invariant. It does not exceed the
cost of a split or concatenate operation (Theorem 2.7 and Lemmas 2.9 and 2.10)
and depends on f{n). This gives an immediate amortized bound over the next @(k)
insertions in either ¢, and o,. In order to obtain good worst-case bounds for the
single insertion, we spread this cost for o among the subsequent operations. Essen-
tially, we use Overmars’ global rebuilding technique [30] by adding an extra
worst-case time O(P(k)/k + f(n)(n/k?)) to each insertion, such that @(k) insertions
are sufficient to cover the splitting cost for ¢, which does not exceed O(P(k)+
f(n)(n/k)) due to Lemmas 2.9 and 2.10.]

Operation range(hy, hy, v, 05, #). We perform it by executing an A_split at
row (h, —~ 1) followed by another h_split at row h,. We let r be the number of rows
of .#. These two horizontal splits produce three matrices .#;, .#,, and .#;, such
that .#, consists of the first (h; — 1) rows of .#, .#, contains the rows of .# between
h, and h,; and ., contains the last (r —h, + 1) rows of .#. We produce submatrix
M[hy, hy; vy, v,] by carrying out two additional vertical splits on .#, at columns
(v, — 1) and v,, respectively. We give the solution that is stored in the root of the
resulting cross-tree, which corresponds to region #[hy, hy;v,,v,], and then
assemble back the pieces by a proper sequence of four concatenate operations.
Since this involves a constant number of A_split, v_split, h_concatenate, and v_con-
catenate operations, we have

LEMMA 2.12. A range query takes time:
o O(P(k)+ f(n)+ (n/k)) when f(n)=(n);
e O(P(k)+ f(n)(n/k)) otherwise

The worst-case time bounds for the operations in Lemmas 2.9-2.12 are stated in
terms of the slack parameter k. It is worth noting that k¥ depends on n and so the
choice of k makes things more difficult for us, as n can vary due to the set operations

20 GROSSI AND ITALIANO

and k must be adapted to the changes in n. This is not a problem, however, as
we might guess a value for n and then compute the data structure for the guessed
value of n: whenever the actual value gets twice as large or twice as small as the
guessed value, we update our guess to its actual value and reinitialize the data
structure accordingly. This would make our time bounds amortized. However, we
can use again standard techniques [30] to make these bounds worst-case, as
summarized below.

TueoreM 2.13. The splitting and merging problem on n points can be solved with
the following bounds for a sluck parameter k (1 <k <n) and an operator cost f(n).

(a) Operations range, h_split, v_split, i_concatenate, v_concatenate tuke time:
o O(f(n)+ (n/k)+ P(k)+ P(n)/n) when f(n)=(n);
o O(f(n)(n/k)+ P(k) + P(n)/n) otherwise.
(b) Inserting and deleting a point with operation set takes time:
o O(U(k) + f(n)(1 + n/k?) + P(n)/n) when Sf(n)=90Q(n);
o O(U(k) + f(n)(log(n/k) + n/k?) + P(n)/n) otherwise.
(c) The total memory space is:

o O(S(n)+ (n*/k?) + f(n) log(n/k)) when f(n)=(n);
o O(S(n) + f(n)(n*/k?)) otherwise.

(d) The total preprocessing time is:

o O(nlogn+ P(n)+ (n*/k?) + f(n)log(n/k)) when f(n)=Q(n);
o O(nlogn + P(n)+ f(n)(n*/k?)) otherwise.

Proof. The operations described in Lemmas 2.9-2.12 are “weak”; ie., there
exists a constant 0 < ff < 1, such that, after . n weak operations, the time and space
bounds do not increase asymptotically. Overmars and van Leeuwen’s global
rebuilding technique [30, 35] allows us to obtain worst-case time bounds for an
arbitrary number of weak operations. We keep two copies of the data structures and
switch among them every other f-n, operations, where ng is the number of items
after the last switch. In this way, the worst-case bounds stated in Lemmas 2.9-2.12
increase by an additive term given by the preprocessing cost in Lemma 2.8 divided
by the number n of points. Since the points are presorted, this additive term is
O(P(n)/n + (n/k?) + (f(n)/n) log(n/k)) when f(n)=(n) and O(P(n)/n+ f(n)(n/k?))
otherwise. As a result, we obtain the claimed bounds. |

2.3. Some Examples with Operator Cost f(n)

We now show how to use Theorem 2.13 with some choices of the operator cost
Sf(n). We first have to find the costs P(k), U(k), and S(k) for the points in a stripe.
We apply the following theorem to each basic square in the stripe.

THeorREM 2.14 (Overmars [29, 30]). Given an f(k)-decomposable problem # on
a set R of k items, there exists a dynamic data structure for maintaining its solution
PR) with preprocessing, update, and memory space bounds:

WEFS B E W
, AND B13INESS L
EFFICIENT SPLITTING AND MERCINGATGORITHMS

21
O(k log k) when f(k)= O(k®) for some e <1,

P(k) =< O(f(k)) when f(k)=Q(k'**) for some ¢ > 0;
O(flk)logk+klogk) otherwise;

Ulk) = {O(f(k)) when flk) = Q(k*) for some ¢ > 0;
)= O(f(k)log k) otherwise;
o(k) when flk)= O(k*®) for some e <1,
S(k) = o(f(k)) when flk)=Q(k'**) for some e > 0;
) O((k) log log k) when f(k) is at least linear;

O(flk)logk+klogk) otherwise.

The term k log k in the preprocessing bound P(k) in Theorem 2.14 becomes k
when the set R of items is already sorted. Our first result is for our f(n)-decom-
posable problem 2 on a set S of n items when f(n) = O(log n); in this case we apply
Theorem 2.14 to obtain U(k)= O(f(k)log k), S(k) = O(k), and P(k)= O(k) as we
maintain the points in <p-order in the basic squares of each stripe. The resulting
cost for range, split, and concatenate operations in Theorem 2.13 is minimized
when k satisfies asymptotically: (n/k) f(n) = P(k)+ P(n)/n; ie., k=[/n f(n)

THEOREM 2.15. The splitting and merging problem on n items can be solved with
time bounds when the cost of operator < is f(n) = O(log n):

» range, h_split, v_split, h_concatenate, v_concatenate: O(,/n f(n));
o set: O(f(n) logn);
The space required is O(n) and the preprocessing time is O(n log n).

When f(n)=6(n), we can use Theorem 2.14 to obtain U(k)=O(k),
S(k)= O(k loglog k), and P(k)= O(k log k). The resulting cost for range, split, and
concatenate operations in Theorem 2.13 is minimized for k =[n/log n7.

THEOREM 2.16. The splitting and merging problem on n items can be solved with
time bounds when f(n) = 0O(n):

o set, range, h-split, v_split, h_concatenate, v_concatenate: O(n).

The space required is O(nloglog n) and the preprocessing time is O(nlog n).

3. SOME APPLICATIONS OF SPLITTING AND MERGING ORDER
: DECOMPOSABLE PROBLEMS

3.1. Two-Dimensional Priority Queues

A first and simple example of order-decomposable problem deals with maintain-
ing a priority queue for a set S of weighted items subjected to two orders <y and
< y. Each item e has a positive real weight w(e) associated with it, which is called
its priority. Without loss of generality, we assume that all the weights are distinct:

22 GROSSI AND ITALIANO

if this is not the case, we can make use of the pair (w(e),) to break the ties.
Problem 2 consists of finding the minimum-weight item in the priority queue
restricted to an input region, where the order of the items changes by splitting and
concatenating them according to either <y or <.

THEOREM 3.1. A two-dimensional priority queue for a set of n items can be main-
tained in time bounds:

o an item insertion or deletion: O(log n);
o a split or concatenate of one order: 0(\/;);

o a minimum-weight query in a region: 0(\/;1).
The space required is O(n) and the preprocessing time is O(nlogn).

Proof. We define the < p-order inside each basic square to be the lexicographic
order (<y; <y) and build the corresponding threaded search trees. We augment
each search tree by storing, in each of its internal nodes, the minimum-weight item
in its descendent nodes. This requires a total of O(nlogn) preprocessing time and
S(n) = O(n) space. It takes Ulk) = O(log k) time to insert or delete an item in a
basic square and to update the minimum-weight item by using the search tree.
When splitting or merging stripes, we have to split or concatenate the basic squares.
Since the search tree in a basic square can be split and concatenated in time linear
with its size, we have a total of P(k)= O(k) stripe processing time. We then store,
in each cross-tree node «, the minimum-weight item lying in the region of « and we
choose operator (e, e,) to return the minimum-weight item between ¢, and e,
with an empty solution being represented by + oo, Note that we do not need to use
<O~ 1, as the solutions here have constant size. We obtain the claimed time bounds
by setting f(n)=0(1) in Theorem 2.15. |

3.2. Two-Dimensional 2-3-Trees and Runge Searching

A two-dimensional 2-3-tree stores a collection of points in the Cartesian plane,
under the following operations: insert or delete a point, and split or concatenate all
the points along one of their coordinates. Furthermore, we wish to search for the
points that range inside a rectangular axis parallel region.

A vast literature deals with the two-dimensional range searching problem but
only a few solutions handle splitting and concatenating along both the coordinates
(see [9]). The best previously known time bounds for n points are obtained with
the divided k-d tree of van Kreveld and Overmars [17]: O(log n) for an insertion
or a deletion; O(\/nlogn) for a split or concatenate; O(,/nlogn +occ) for a
range search, where occ is the number of points retrieved by the search. With our
technique, we shave the /log n factor from these bounds.

THEOREM 3.2. A two-dimensional 2-3-tree storing n points can be maintained with
bounds:

e a point insertion or deletion: O(logn);

o a split or concatenate along one coordinate: 0(\/; %

EFFICIENT SPLITTING AND MERGING ALGORITHMS 23

o a range search:; O(\/r-t +occ), where occ is the number of points reported by
the search.

The space required is O(n) and the preprocessing time is O(nlog n).

Proof. We take <p as the lexicographic order (< y; <) and take O(nlog n)
preprocessing time. We have U(k) = O(log k) for updating the search tree in a basic
square. We require P(k)= O(k) stripe processing time when splitting or merging
stripes. The solution stored in a node is now the list of points lying in its corres-
ponding region of the Cartesian plane. In order to get a total S(n)= O(n) space,
instead of O(nlogn), due to the list duplication in the cross-tree nodes, we use a
“destructive” list append as operator & in f(n)=0O(1) time. Its inverse operator
<& ! can be implemented in O(1) time if we record the point in which we append
the two lists by means of . This way, we store explicitly all the points in the cross-
tree root only, and we store them implicitly in the remaining cross-tree nodes. The
inverse operator & ~! will enable us to build the explicit list of points if needed
(Definition 2.3). We obtain the claimed time bounds by plugging f(n)= O(1) in the
bounds of Theorem 2.15.]

3.3. Concatenable Interval Trees

An interval tree stores a set / of some intervals having real endpoints. This is use-
ful for answering stabbing queries, which are defined as follows [11]: given a real
number r, we want to find all the intervals in I that contain r. A fast, nearly
logarithmic amortized solution to splitting and concatenating interval trees is given
by van Kreveld and Overmars [18], in which they assume that intervals are
indivisible; i.e., the real number on which we want to split cannot stab any intervals
and, when concatenating two interval trees, the interval endpoints in one tree have
to be all smaller than the ones in the other tree. We consider a more general
problem by relaxing this assumption at an increased cost for splitting, concatenating,
and stabbing queries. Namely, let I be the interval set. We wish to split as follows:

left_split(Z, r) We obtain two interval trees by splitting on the left endpoints,
where we allow 7 to stab any interval in I. The two resulting trees store the intervals
in {[a,b]el:a<r} and {[a, b]el:r<a}, respectively.

right_split(, r) We obtain two interval trees by splitting on the right endpoints,
where we allow r to stab any interval in /. The two resulting trees store the intervals
in {[a,b]el:b<r} and {[a, b]el:r<b}, respectively.

Concatenate operations are the inverse of split operations and can be applied to
I with respect to either its left or right endpoints. We only require that, when con-
catenating two interval sets I, and I, the left (resp., right) endpoints in I, are all
smaller than or equal to the ones in /,. Note that we put no constraints on the
other endpoints,

THEOREM 3.3. An interval tree that stores n intervals can be maintained with
bounds:

e an interval insertion or deletion: O(log n);

o a split or concatenate according to the intervals’ endpoints: O(\/;)

24 GROSSI AND ITALIANO

o «a stabbing query (ie., find all the intervals containing a given point):
O(ﬁ +occ), where oce is the number of intervals reported by the query.

The space required is O(n) and the preprocessing time is O(nlogn).

Proof. We use a well-known transformation of interval stabbing into a par-
ticular case of the two-dimensional range query called corner query; each interval
[a,b]) e l'is mapped into a point (a, b) in the Cartesian plane. A stabbing query for
a real number r amounts to retrieving the points (.x, y) such that x <r < y. Conse-
quently, we can search for the points contained in the region obtained by intersect-
ing two halfplanes x <r and y = r (see Figs. 6a, 6b). A left split (or concatenate) in
the intervals corresponds to a horizontal split (or concatenate) on the points in the
plane; analogously, a right split (or concatenate) corresponds to a vertical split
(or concatenate). We can, therefore, use Theorem 3.2 to achieve the claimed
bounds. |

In another paper of theirs [19], van Kreveld and Overmars present a solution
that retrieves the stabbed intervals with their lengths bounded by two input values.
They obtain O(log n) amortized insertion and deletion time and ()(\/'_) log n+occ)
stabbing query time with O(n) space, where n is the number of intervals and oce
is the output size. We achieve better worst-case bounds:

Turorem 3.4, An interval tree that stores n intervals can be maintained with
worst-case time bounds:

e an interval insertion or deletion: O(log n);

e a split or concatenate according to the intervals’ endpoints: O(\/n logn);

e «a stabbing query, retrieving only the intervals whose lengths are between two
input values ¢ -+ ¢~ O(/nlogn +occ), where occ is the number of intervals reported
by the query.

The space required is O(n) and the preprocessing time is O(n log n).
Proof. We let (r,/,,7,) be the stabbing query, where r is the stabbing number
and the lengths of the stabbed intervals must all be in /7, ..-/,. We use the same

e b f e : b f
0l e . o/ 0 e o e
9 d / 9 d : /
s . / ' Y] 4
7 : / 7 : /
: /
b 6 4 / 6 s/
2 s PRrEiaae v T T o/
¢ L d f ¢ °u s 4 ¢ uas
—_— —_— 3 ® ¢ / 3 o c /
2 / 2 /
. / /
‘e X / : /
— / /
I 2 3 4 5 6 78 910 1 234 5% 678 9 10 1 231 4 5 6 17 8 9 10
(a) (b) (c)

FIG. 6. A well-known transformation of the intervals in (a) into the two-dimensional points in (b).
A stabbing query for r=35 is illustrated in (a) and (b). A stabbing query for r=35 and for the interval
lengths bounded by 7, =2 and 7, =5 is shown in (c).

EFFICIENT SPLITTING AND MERGING ALGORITHMS 25

range searching reduction as in the proof of Theorem 3.3. Consequently, we wish to
report the points (x, y), such that x<r<yand 7/, <y —x</,. The corresponding
region in the Cartesian plane is shown in Fig. 6¢ and is obtained by intersecting
four halfplanes: x<r, y=r, y—x=/, and y—x</,. We adapt the solution to
two-dimensional 2-3-trees (Theorem 3.2) in order to answer our query. We replace
the < ,-order in which the points are stored in the threaded search tree of each
basic square by a different order, where (x,, y,) <, (x5, y,) if and only if either
(yi—x;<py,—x5)or (y,—x;=y,—x;and x| <x,). This new order <, arranges
the points in a basic square according to the diagonals, as illustrated in Fig. 7a. We
now discuss how to find the intervals satisfying the stabbing query (in the example
of Fig. 6, they correspond to the points in the region shown in Fig. 6¢c. We identify
five groups of basic squares (see Fig. 7b):

V. The basic squares in which the vertical line x = r falls.

H: The basic squares in which the horizontal line y = r falls.

D,: The basic squares in which the diagonal line y — x =/, falls.

D,: The basic squares in which the diagonal line y — x =/, falls.

R: All the remaining basic squares in the region bounded by the above
four lines (shown in boldface in Fig. 7b).

We want to retrieve some points in V, H, D|, D, and all the points in R. Since
V- and H are two stripes and contain O(k) points by the size invariant on the
stripes, we can read these points and report the ones that are inside the region in
O(k + n/k) time. We can also traverse the cross-tree part that corresponds to R and
report all of its points in O(n/k + occ) time by means of operators & and < ',
where < is the list-append with f(n)= O(1) as in the proof of Theorem 3.2. Unfor-
tunately, we cannot examine all the points in D, and D, because they are too many.
We only know that D, and D, consist of O(n/k) basic squares and, in the worst
case, we could scan O(k) points per basic square: indeed the size invariant only
holds for the stripes while it does not necessarily hold for D, and D,. Although D,

V..D, D
V=1 oo‘..'.. Tt H
y-x=1, y-x=I x=r
(a) (b)

FIG. 7. (a) The <, order inside a basic square for the problem of stabbing intervals of bounded
lengths. (b) An arbitrary query identifies the region obtained by intersecting four delimiting halfplanes.

26 GROSSI AND ITALIANO

and D, can contain O(n) points, we process them in O((n/k) log k + occ) total time
by examining their basic squares as follows: Given a basic square, we scan its < p-
ordered point list, say, L, stored in its search tree. If the basic square is in D, we
report all points (x, y), such that y — x>/, by first searching in L and then scan-
ning it from the largest to the smallest point in < ,-order. If the basic square is in
D,. we report all points (x, y), such that y —x</,, by searching and scanning L
from the smallest to the largest point in < ,.-order: note that the points in the four
“corner” squares are examined in /7 and V (see Fig. 7b). We can perform the above
searches and scans in O(log k) time plus a linear cost with respect to the number
of retrieved occurrences. This accumulates to O((n/k)log k + occ) time because we
repeat it O(n/k) times. To complete the proof, it is enough to take f(n)= O(1) and
k=[nlogn. |

3.4. Convex Hulls in the Plane

The convex hull for a set of n points in the Cartesian plane is the smallest convex
polygon containing all the points. It can be computed in O(n) time after sorting the
points [24]. Computing the convex hull is a (log n)-order decomposable problem
since it is possible to split the plane into two halfplanes, compute recursively the
convex hull for each halfplane, and then combine the two convex hulls together in
time O(log n). Overmars and van Leeuwen [31] show that two disjoint convex
hulls can be combined together in logarithmic time by finding their two common
tangents called supporting lines (see Fig. 8). This fact is exploited in van Kreveld
and Overmars [19] to give the following time bounds on the convex hull: O(log’n)
amortized for an insertion or a deletion; O(/nlognlogn) for a split or a
concatenate. Our results can be summarized.

THeorREM 3.5, The convex hull for n points in the Cartesian plane can be main-
tained with worst-case time bounds:

e a point insertion or deletion: O(log® n);

o a split or concatenate along one coordinate: O(/nlogn);

(a) (b)

FIG. 8. (a) The supporting lines (dotted) for combining two convex hulls CH, and CH, together
and (b) the resulting convex hull CH. If CH is associated with a node, then the bold parts in CH, and
CH, are the leftovers associated with its two children, respectively. A bridging operation obtains CH
from CH, and CH, while a de-bridging operation obtains CH, and CH, from CH.

EFFICIENT SPLITTING AND MERGING ALGORITHMS 27

e a query checking if a point is inside or outside the convex hull. O(log n);

o a query reporting the convex hull for the points in an input region:
O(/nlogn +h), where h is the output size.

The space required is O(n) and the preprocessing time is O(nlogn).

Proof. We use the dynamic technique in [31] for maintaining the convex hull
of n points under point insertions and deletions in O(log?n) time per operation. A
convex hull is represented as a balanced search tree storing the convex-hull points
in clockwise order. Combining two convex hulls in two disjoint halfplanes by means
of their supporting lines (Fig. 8) takes O(log n) time. This operation is called bridg-
ing and its inverse operation, called debridging, also takes O(logn) time [9].
In [31], a balanced binary tree is kept, such that its leaves store the points sorted
by their lexicographic order and each internal node a stores the convex hull CH,
of the points stored in the leaves descendent of a (CH, is stored as a balanced tree
in the secondary structure of). Actually, « only stores the points in CH, that are
not in CH, for any ancestor node o of a and the total space remains O(n) because
each point is stored O(1) times in the tree. The root stores the whole convex hull
CH,., for the point set and querying if a point is inside or outside a convex hull
requires logarithmic time by traversing CH,, (e.g., see Ref. [9]).

We turn to our splitting and merging data structure. For each basic square, we
set < p to be the lexicographic order (< y, <y) for its points. We compute their
convex hull and maintain the balanced binary tree for them in clockwise order by
following the dynamic technique of [31]. This allows for insertions and deletions of
a point in a basic square in U(k) = O(log? k) time and requires a total of O(n log n)
preprocessing time and S(n) = O(n) space. When splitting or merging a basic square
we can maintain its internal order < » and rebuild the balanced binary trees for its
convex hull in linear time. This is possible because the cost c(k') of rebuilding this
tree for its k' sorted points is given by c(k') =2¢(k'/2) + O(log k'), which is O(k').
Consequently, processing a stripe takes P(k) = O(k) time.

Analogously to the balanced binary trees in [31], each cross-tree node a stores,
as its secondary structure, the convex hull CH, of the points in the region corre-
sponding to « (i.e., only the points in CH, that are not in CH, for any ancestor node
o of a). The cross-tree root stores the whole convex hull CH, and the cross-tree
leaves store the convex hulls of the points in their corresponding basic squares. We
let & be the bridging operation and O ~! the debridging operation described
above, both having cost f(n) = O(log n). Since an internal node in the cross-tree has
O(1) children, & must recombine O(1) convex hulls. This is not a problem,
however, as it can be solved by a simple variation of the original bridging opera-
tion. Applying the inverse debridging operations is analogous. We obtain our
claimed time bounds by setting f(n) = O(log n) in Theorem 2.15. |

3.5. Plunar Voronoi Diagrams

The planar Voronoi diagram for a set of n points is the partition of the plane into
n Voronoi polygons, where each point d induces the Voronoi polygon given by the
(possibly unbounded) convex region formed by the points in the plane that are

28 GROSSI AND ITALIANO

FIG. 9. An example of planar Voronoi diagram.

closer to d (see Fig. 9). The Voronoi diagram can be computed in O(n log n) time
and O(n) space (e.g., see [26]). Computing the Voronoi diagram is an O(n)-order
decomposable problem, as the plane can be split into two halfplanes in order to
compute the Voronoi diagram in each halfplane recursively, and the two resulting
Voronoi diagrams can then be merged in time O(n) [40]. Point insertions and dele-
tions in a planar Voronoi diagram of n points take O(n) time in O(n log log n)
space [30] (a result in [1] is a semidynamic algorithm with O(n) deletion time and
space). We obtain an O(n) cost also for range, split, and concatenate operations in
O(n log log n) space (the techniques in [19, 39, 42] require more time or space).
This gives an answer to a question posed in [1] (i.e, given the Voronoi diagram
for a sct § of n points, compute the Voronoi diagram for any given subset RS S
in O(n) time) for the special case in which R is defined by range querics on a
dynamic sct S.

TiroreM 3.6, The Voronoi diagram for n points in the Cartesian plane can be
maintained with worst-case time bounds:

s point insertion or deletion: O(n);
o a split or concatenate along one coordinate: O(n);

o u query reporting the Voronoi diagram for the points in an input region; O(n).
The space required is O(nloglog n) and the preprocessing time is O(n log n).
Proof. 1t follows directly from Theorem 2.16. |

Once the Voronoi diagram for a region R is available, we can solve nearest
neighbor and closest point problems and find the minimum Euclidean spanning
tree, the triangulation, and the largest empty circle for the points in R efficiently.
We refer to {30] for more discussion.

4. MAINTAINING d>2 TOTAL ORDERS

In this scction, we describe our technique for the general case of d>2 total
orders <, ..., <, defined on a set S containing n items. We reduce our problem to
a matrix problem in which ./ is a d-dimensional matrix and item xe S is a
d-dimensional point (¥, .., x,;), such that x, is the rank of x in S according to order

EFFICIENT SPLITTING AND MERGING ALGORITHMS 29

<, (i=1, .., d). We begin by defining the cross-trees for dimension d>2. A cross-
tree CT(T; x T, x --+ x T;) of d weight-balanced B-trees T;, T3, ..., T is defined:

e T, T;, .., T, have the same height and O(1) children per node. Their leaves
are on the same level.

¢ For each choice of nodes u,, u,, .., u; on the same level, such that u, € T; for
1<i<d, there is a node ay,,,, ,, in CT(T; x T, x -+ x T).

e For each choice of edges (uy, &), (4,,), ..., (4, G,), such that u,, u,, ..., u,
are on the same level and (u;, 4,) e T, for 1 <i<d, there is an edge (2, ,,.., , Xg,0,.0,)
inCT(Ty xT, x -+ xT).

We define the stripes in .# by following the approach described in Scction 2.1.
In dimension two, a stripe is composed of O(k) rows or columns, which can be seen
as matrices of dimension one. We therefore define the stripes as the groups of the
O(k) adjacent matrices of dimension (d—1), each such matrix containing O(1)
items. There are O(n/k) stripes defined for each coordinate of .# (i.e., we have a
total of d sets of O(n/k) stripes each) and they satisfy the size invariant of order k&
(Definition 2.1) on their number of matrices of dimension (d —1). In this way, a
stripe contains still O(k) points. By intersecting these 4 sets of stripes, we obtain a
partition of .# into O((n/k)?) basic squares, such that each basic square overlaps
no more than k matrices of dimension (d—1) in each direction. We keep the items
in a basic square sorted by a < p-order to be specificd and we build a cross-tree
CT(T, xT, x --- xT,;) on the top of these basic squares, where T; is a weight-
balanced B-tree whose leaves are in one-to-one correspondence to the stripes for the
ith coordinate (1 <i<d). We then store the solutions in the cross-tree nodes like
in Section 2.1. As |T;| = O(n/k), we can use an argument analogous to the one
presented in Theorem 2.7 to obtain the following lemma.

LEMMA 4.1. We can insert in, delete from, concatenate, and split any tree T, in
order to update cross-tree CT(T; x T, x -+ x T} in the time bounds:

o O(f(n)+ (n/k)*=1) when f(n)=8(n);
o O(f(n)n/k)?=") otherwise.
Theorem 2.13 for two orders can be smoothly generalized to d orders.

THEOREM 4.2. The splitting and merging problem on n items undergoing d > 1
total orders can be solved with time bounds for a slack parameter k (1 <k <n) and
an operator cost f(n):

(a) Operations range, h_split, v_split, h_concatenate, v_concatenate tuke time:
o O(f(n)+ (nfk)=1+ P(k) + P(n)/n) when f(n)=Q(n);
o O(f(n)(n/k)=' + P(k) + P(n)/n) otherwise.
(b) Inserting and deleting a point with operation set takes time:
. + f(n)(1 4 n?=Yk9) + P(n)/n) when f(n)=8(n);
k) +f(n (log(n/k) + n?~1/k? + P(n)/n) otherwise.

30 GROSSI AND ITALIANO

(c) The total memory space is:

o O(S(n) + (n/k?) + f(n) log(n/k)) when f(n)=Q(n);
o O(S(n) + f(n)(n%/k?)) otherwise.
(d) The total preprocessing time is:
o O(nlogn+ P(n)+ (n%k?)+ f(n)log(n/k)) when f(n)=Q(n);
o O(nlogn+ P(n)+ f(n)(n%/k?)) otherwise.

Proof. Splitting and merging the cross-tree along one coordinate take O(f(n) +
(n/k)?=') time when f(n)=0(n) and takes O(f(n)(n/k)*~"') time otherwise by
Lemma 4.1. Scanning a stripe takes O(k) time for retrieving its O(k) items plus
O((n/k)?—') time for traversing the cross-tree. Processing a stripe therefore costs
O(f(n) + (n/k)¥=' + P(k)) time when f(n)=£(n) and takes O(f(n)(n/k)*=!
+ P(k)) time otherwise. We use these facts to analyze the operations stated in
the theorem and note that they are implemented by the algorithms described in
Section 2.2. For example, the term (n?~!/k9) f(n) in the complexity for set is due
to a stripe overflow or underflow which requires splitting and merging the cross-
tree every @(k) insert operation. Consequently, we can analyze the d-dimensional
case by following the same method employed for the two-dimensional case. |

Theorem 4.2 finds applications to the d-dimensional versions of some order-
decomposable problems. For example, we examine the multidimensional 2-3-trees
that generalize those presented in Section 3.2. In [17], van Kreveld and Overmars
provide the following time bounds: O(logn) for an insertion or a deletion;
O(n'="1og'@ n) for a split or concatenate; O(n'~"?log"¥n+ occ) for a range
scarch, where occ is the number of points retricved by the search. By setting
k =[n'="47 in Theorem 4.2, we obtain slightly better bounds.

THEOREM 4.3, A d-dimensional 2-3-tree storing n d-dimensional points can be
maintained with the bounds:

e a point insertion or deletion: O(log n);

o a split or a concatenate along one coordinate: O(n' ~'9)

s
e a range search: O(n' =" 4 occ), where occ is the number of points reported
by the search.

The spuce required is O(n) and the preprocessing time is O(nlogn).

5. CONCLUSIONS

In this paper, we presented a general technique for solving some order-decom-
posable problems which generalize to dimension d > 1 the notion of concatenable
data structures such as 2-3-trees. With our technique we are able to improve several
previously known results on order-decomposable problems under splits and con-
catenates. A large body of order-decomposable problems have been investigated in
several areas, such as basic problems (e.g., member searching, predecessor, ranking),
computational geometry (e.g, neighbor queries, union and intersection queries,

EFFICIENT SPLITTING AND MERGING ALGORITHMS 31

visibility queries), database applications (e.g., partial match queries, range queries),
and statistics (e.g., maxima queries). The reader is referred to Appendix I in [8],
Chap. II in [30], and Chap. VII of [26] for a discussion of decomposable
problems, where our technique is also applicable. One interesting question is
whether our technique could be extended so as to handle copy-and-paste opera-
tions, where a rectangular region of items can be copied from one part to another
of the input space.

ACKNOWLEDGMENTS

We are indebted to Amnon Nissenzweig and to Giuseppe Persiano for many delightful conversations
at the beginning of this research. We are grateful to Lars Arge, Paolo Ferragina, and Renzo Sprugnoli
for helpful technical discussions and to Marc van Kreveld and Mark Overmars for sending us a copy
of [19]. We wish to thank Peter van Emde Boas and the anonymous referees for spotting some inac-
curacies in an earlier draft and for their suggestions which greatly improved the presentation of this

paper.

Received April 22, 1997; final manuscript received June 8, 1999

REFERENCES

1. Aggarwal, A., Guibas, L., Saxe, J,, and Shor, P. W. (1989), A linear-time algorithm for computing
the Voronoi diagram of a convex polygon, Discrete Comput. Geom. 4, 591-604.

2. Aho, A. V., Hopcroft, J. E,, and Ullman, J. D. (1974), “The Design and Analysis of Computer

Algorithms,” Addison—Wesley, Reading, MA,
3. Arge, L. (1997), personal communication.

4, Arge, L., and Vitter, J. S. (1996), Optimal dynamic interval management in external memory, in
“37th 1EEE Symp. on Foundations of Computer Science.”

5. Bentley, J. L. (1975), Multidimensional binary search trees used for associated searching, Commun.
ACM 19, 509-517.

6. Bentley, J. L. (1979), Decomposable searching problems, Inform. Process. Lett. 8, 244-251.

7. Bentley, J. L. (1980), Multidimensional divide-and-conquer, Commun. ACM 23, 214-229.

8. Bentley, J. L., and Saxe, J. L. (1980), Decomposable searching problems I. Static-to-dynamic trans-
formation, J. Algorithms 1, 301-358.

9, Chiang, Y.-J., and Tamassia, R. (1992), Dynamic algorithms in computational geometry, Proc. IEEE
(special issue on computational geometry, G. Toussaint, Ed.) 80, 1412-1434.

10. Dobkin, D., and Suri, S. (1991), Maintenance of geometric extrema, J. Assoc. Comput. Much. 38,
275-298.

11. Edelsbrunner, H. (1983), A new approach to rectangle intersection, Part I, Int. J. Comput. Math. 13,
209-219.

12. Edelsbrunner, H., and Overmars, M. H. (1985), Batched dynamic solutions to decomposable
searching problems, J. Algorithms 6, 515-542.

13. Finkel, R. A, and Bentley, J. L. (1974), Quad-trees: A data structure for retrieval of composite keys,
Acta Inform. 4, 1-9.

14. Grossi, R., and Italiano, G. F. (1997), Efficient splitting and merging algorithms for order decom-
posable problems, in “Proc. 24th International Colloquium on Automata, Languages, and Program-
ming (ICALP 97), Bologna, Italy, July 7-11,” pp. 605-615, Lecture Notes in Computer Science,
Springer-Verlag, Berlin.

15. Grossi, R., and Italiano, G. F. (1999), Efficient cross-trees for external memory, in “External
Memory Algorithms and Visualization” (J. Abello and J. S. Vitter, Eds.), DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, AMS.

32

16.

17.

18.

19.

27,

28.

29,

30.

31

34.

35,

36.

37.

38.

GROSSI AND ITALIANO

Gowda, I. G., and Kirkpatrick, G. F. (1980), Exploiting linear merging and extra storage in the
maintenance of fully dynamic geometric data structures, in “Proc. 19th Allerton Conference on
Communication, Control and Computing,” pp. 1-10.

van Kreveld, M. J,, and Overmars, M. H. (1991), Divided k-d trees, Algorithmica 6, 840-858.

van Kreveld, M. J,, and Overmars, M. H. (1993), Union-copy structures and dynamic scgment trees,
J. Assoc. Comput. Mach. 40, 635-652.

van Kreveld, M. J, and Overmars, M. H. (1994), Concatenable structures for decomposable
problems, Inform. Comput. 110, 130-148.

. van Leeuwen, J., and Maurer, H. A, (1980), “Dynamic Systems of Static Data Structures,” Technical

Report 42, Technical University Graz.

. van Leeuwen, J., and Overmars, M. H. (1981), The art of dynamizing, in “Proc. 10th Mathematical

Foundations of Computer Science,” Lecture Notes in Comput. Sci., Vol. 118, pp. 121-131, Springer-
Verlag, New York/Berlin,

. van Lecuwen, J., and Wood, D. (1980), Dynamization of decomposable searching problems, Inform.

Process. Lent. 10, 51-56.

. Maurer, H. A,, and Outmann, T. A. (1979), Dynamic sol.ulions of decomposable searching problems,

in “Discrete Structures and Algorithms” (U. Pape, Ed.), pp. 17-24, Hanser Verlag, Vienna.

. McCallum, D., and Avis, D. (1979), A linear algorithm for finding the convex hull of a simple

polygon, Inform. Process. Lett, 9, 201-206.

. Mehlhorn, K. (1981), Lowerbounds on the efficiency of transforming static data structures into

dynamic structures, Math. Systems Theory 15, 1-16.

. Mchlhorn, K. (1984), “Multi-Dimensional Scarching and Computational Geometry,” EATCS

Monogriphs on Theoretical Computer Science, Vol. 3, Springer-Verlag, Berlin/New York.
Mchlhorn, K., and Overmars, M. H. (1981), Optimal dynamization of decomposable scarching
problems, Inform. Process. Lett. 12, 93-98.

Nievergelt, J., and Reingold, E. M. (1973), Binary scarch trees of bounded balance, SIAM J.
Comput. 2, 33-43,

Overmars, M. H. (1973), Dynamization of order decomposable set problems, J. Algorithms 2,
245-260.

Overmars, M. H. (1983), “The Design of Dynamic Data Structures,” Lect. Notes in Comput. Sci.,
Vol. 156, Springer-Verlag, Berlin/New York.

Overmars, M. H,, and van Leeuwen, J. (1981), Maintenance of configurations in the plane,
J. Comput. System Sci. 23, 166-204.

. Overmars, M. H., and van Lecuwen, J. (1981), Dynamization of decomposable searching prob-

lems yielding good worst-case bounds, in “Proc. 5th Gl Conference on Theoretical Computer
Science,” Lect. Notes in Comput, Sci, Vol 104, pp. 224-233, Springer-Verlag, New York/
Berlin,

. Overmars, M. H.,, and van Lecuwen, J. (1981), Some principles for dynamizing decomposable

scarching problems, Inform. Process. Lett. 12, 49--53.

Overmars, M. H., and van Leeuwen, J. (1981), Two general methods for dynamizing decomposable
searching problems, Computing 26, 155-166.

Overmirs, M., and van Leeuwen, J. (1981), Worst-case optimal insertion and deletion methods for
decomposable searching problems, Inform. Process. Lett. 12, 168-173.

Overmars, M., and van Lecuwen, J. (1982), Dynamic multi-dimensional data structures based on
quad- and k-d trees, Acta Inform. 17, 267-285,

Rao, N.S.V,, Vaishnavi, V. K., and lyengar, S. S. (1988), On the dynamization of data structures,
BIT 28, 37-53.

Sumet, H., Bibliography on quad-trees and related hicrarchical data structures, in “Data Structures
for Raster Graphics® (L. Kessenaar, F. Peters, and M. van Lierop, Eds.), pp. 181201, Springer-
Verlug, Berlin,

39.

40.

41.

42.

EFFICIENT SPLITTING AND MERGING ALGORITHMS 33

Scholten, H. W., and Overmars, M. H. (1989), General methods for adding range restrictions to
decomposable searching problems, J. Symbolic Comput. 7, 1-10.

Shamos, M. L, and Hoey, D. (1975), Closest-point problems, in “16th IEEE Symp. Foundations of
Computer Science,” pp. 151-162.

Smid, M. (1990), Algorithms for semi-online updates on decomposable problems, in “Proc. 2nd
Canadian Conference in Computational Geometry,” pp. 347-350.

Willard, D. E, and Lueker, G. S. (1985), Adding range restriction capability to dynamic data
structures, J. Assoc. Comput, Much. 32, 597-617.

	Radhika PPS team reques_401.10069.50053300.J012048_00001
	Radhika PPS team reques_401.10069.50053300.J012048_00002
	Radhika PPS team reques_401.10069.50053300.J012048_00003
	Radhika PPS team reques_401.10069.50053300.J012048_00004
	Radhika PPS team reques_401.10069.50053300.J012048_00005
	Radhika PPS team reques_401.10069.50053300.J012048_00006
	Radhika PPS team reques_401.10069.50053300.J012048_00007
	Radhika PPS team reques_401.10069.50053300.J012048_00008
	Radhika PPS team reques_401.10069.50053300.J012048_00009
	Radhika PPS team reques_401.10069.50053300.J012048_00010
	Radhika PPS team reques_401.10069.50053300.J012048_00011
	Radhika PPS team reques_401.10069.50053300.J012048_00012
	Radhika PPS team reques_401.10069.50053300.J012048_00013
	Radhika PPS team reques_401.10069.50053300.J012048_00014
	Radhika PPS team reques_401.10069.50053300.J012048_00015
	Radhika PPS team reques_401.10069.50053300.J012048_00016
	Radhika PPS team reques_401.10069.50053300.J012048_00017
	Radhika PPS team reques_401.10069.50053300.J012048_00018
	Radhika PPS team reques_401.10069.50053300.J012048_00019
	Radhika PPS team reques_401.10069.50053300.J012048_00020
	Radhika PPS team reques_401.10069.50053300.J012048_00021
	Radhika PPS team reques_401.10069.50053300.J012048_00022
	Radhika PPS team reques_401.10069.50053300.J012048_00023
	Radhika PPS team reques_401.10069.50053300.J012048_00024
	Radhika PPS team reques_401.10069.50053300.J012048_00025
	Radhika PPS team reques_401.10069.50053300.J012048_00026
	Radhika PPS team reques_401.10069.50053300.J012048_00027
	Radhika PPS team reques_401.10069.50053300.J012048_00028
	Radhika PPS team reques_401.10069.50053300.J012048_00029
	Radhika PPS team reques_401.10069.50053300.J012048_00030
	Radhika PPS team reques_401.10069.50053300.J012048_00031
	Radhika PPS team reques_401.10069.50053300.J012048_00032
	Radhika PPS team reques_401.10069.50053300.J012048_00033

