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1. INTRODUCTION 

Many phenomena from physics, control theory, and economics have 
been successfully described by differential equations with discontinuous 
functions. This in turn leads to a great need to develope a theory for such 
differential equations. However, as far as existence and qualitative behavior 
are concerned, such a theory is far from being complete. Even existence 
results are available only for very special discontinuous function f (as the 
discontinuous part in equation), e.g., see [S] for piecewise continuous f; 
[9] for f having one discontinuous point, [S, 121 for f of bounded varia- 
tion. 

In this paper, we are going to establish some existence results for 
differential equations with discontinuous right-hand sides with great 
generality. Some of the results in this paper can be stated and proved for 
high order ordinary and partial differential equations. For example, we 
may consider the following problem 

-h(x) + cu(x) = f(u(x)) for XEQ 

u(x) = 0 for XE~SZ, 

where Q is a bounded domain in R”, which has a boundary X? of class C3 
(if n > 2) f: R + R needs not be continuous. But in this paper we only 
consider the following problems in X= R”. 
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where x0 E X, f: X + X may not be continuous, associated to which is the 
following differential inclusion, the so-called regularization of (1) 

where F(x) = fiE, 0 -. - con J(x + I?,), B, = (x E X: 1x1 d E}, con A denotes the 
closed convex hull of A. Let J= [0, a] with a > 0, and call x: J--t X a solu- 
tion of problem (1) or (2) if x(t) is absolutely continuous (AC for short), 
x(O) = x0 and x’(t) = f (x(t)) or x’(t) E F(x(t)) a.e. on J. We denote the set 
of all the solutions of problem (1) or (2) by S(f, x0) or by S(F, x0), respec- 
tively. Hence, we always have S(f, x0) c S(E; x,), and in general S(f, x,,) # 
S(F, x0). As a convention we always assume that f is bounded; and satisfies 
the following condition if we expect global solutions, 

If( GMM(l + 14) 

for some M> 0. The following is known. 

on X (3) 

LEMMA 1.1 [ 11. For any f satisfying (3) and any x,, E X, S(F, x0) # 0. 

Most of the articles in the literature concerning differential equations 
with discontinuities (like (1)) simply study their regularizations (like (2)) 
and the solutions of which are called the solutions of the original problem 
(see [9, 121). But this consideration may be misleading. In fact, an 
x E S(F, x0) may violate x’(t) = f(x(t)) at every t. To see this, define 
f(x)=1 on xd0 and = -1 on x>O, and take x0=0, and x(t)rO. This 
suggests that we should not take an x E S(F, x0) as a solution of (1) for 
granted. But instead, we should take advantage of Lemma 1.1 and ask 
when S(f, x,,) = S(F, x0) or S( f, x0) n S(F, x,,) # @ is true since in either 
case the existence of a true solution of problem (1) which comes from prac- 
tice has been obtained. Furthermore, since the structure of the solutions of 
(2) is fairly clear, the structure of all the solutions of (1) will be known 
once S(F, x0) = S(A x,) for every x0. 

In Section 2 we are going to establish certain relations between S(f, x0) 
and S(F, x,), hence some existence results for problem (1) can be derived 
as consequences. When X= R, some further results on such relations as 
well as the solvability of problem (1) are proved in Section 3. Non- 
automous problems are briefly discussed in the last section. The main 
theorems of the paper include 

THEOREM A. !ff is continuous on X except on a countable subset 0, then 
S(h ~~)=S(F,x,,)for any X~EX~XECT andOEF(x) implies f(x)=O. 
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THEOREM B. Let o be a Bore1 set in R with m(o) =0 (m denotes the 
Lebesgue measure in R) and f: R + R be continuous except on o. If x E o and 
0~F(x)-,f(x)=O, then 

St& x0) = w x0). 

2. RELATIONS BETWEEN S(f, x,,) AND S(F,x,) 

LEMMA 2.1 [7]. !f IC R is not countable, then I can be expressed as 

I= I, v Iz, 

where I, is countable, and, for any x E I,, 

xEC1{yEIz: y>x} nCl{yEI*: y<x}, 

where cl(A) denotes the closure of A. 

Let X=R”, o={ x,: i> I } cX. We have 

THEOREM 2.2. Suppose that f is continuous at every XE X\o. Then, 
S(f, x0) = S(F, xc,) for any x0 E Xo x E CT and 0 E F(x) implies f(x) = 0. 

In particular, if x E o and 0 E F(x) 3 f(x) = 0, then the problem (1) has a 
solution for every x0 E X. 

Proof Sufficiency. For any given x E S(F, x0), set Ii = {t E J: x(t) = xi} 
and I= U;“=, I;. For any fixed i, if m(I,) #O, then Lemma 2.1 implies that 
x’(t) = 0 a.e. on I,. Hence 0 E F(x(t)) a.e. on I,. Thus, x’(t) = j(x(t)) a.e. on 
I,. Consequently, x’(t) = f(x(t)) a.e. on I. Evidently, F(x(t)) = { f(x(t))} for 
all t E J\I. Therefore, x’(r) = f(x(t)) a.e. on J and x E S( f, x0). This proves 
w *x0) = St& x0). 

Necessity. Suppose that 0 EN but f(xi) # 0 for some i> 1. Set 
x(t)-xi on J, then XE S(F, x,) but x$ S(f, x,), hence S(f, xi) # S(F, xi) 
and the proof is complete. 1 

Remark 2.3. We can prove Theorem 2.2 and some other results in this 
section only when 0 is denumerable. When X= R, this restriction on 0 will 
be greatly relaxed in the next section. 

Suppose that K is any given cone in R”. We write y > x (or x 6 y) if 
J’ - x E K, y B x (or x + y) if y - x E I? (the interior of K). x: J -+ X is said 
to be strictly monotone if t <s implies x(t) 6 x(s) (or x(t) ti x(s)). 

COROLLARY 2.4. Suppose that f is continuous at every x E X\a, and for 
each i, there is an ci > 0 such that 

Wcl{.f(x,+B,,))cK. (4) 

Then, S(f x0) = S(F, x0) # 0. 
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We next study the question as when S(A x0) # @ even if S(J x0) # 
S(C -4 

THEOREM 2.5. Assume that f is continuous at every x E X\a. Then an 
x E S(F, x0) is also in S(f, x0) if one of the following conditions is true 

m{t:x’(t)=O}=O 

J= (j [a,, b,l 
n==I 

(5) 

(6) 

and x(t) is strictly monotone on each [a,, b,], 

Proof If we adopt the same notation as in Theorem 2.2, then m(Z) = 0 
under (5) or (6), hence x E S(f, x0). 1 

Note that condition (6) does not imply condition (5), in fact we have the 
following. 

EXAMPLE 2.6. For any given 0 < E < 1, there is a continuously differen- 
tial function x: [0, l] + R, which is strictly increasing, such that x(O) = 0, 
x(l)= 1, and 

m{te [O, 11: .X’(t)=O} =&. 

To see this, we construct a Cantor-like set C, c [O, 11 with m(C,) =E. 
We first remove an open interval, denoted by P,, with width (1 - .s)/3, 
from the middle of [0, 11. Then remove two open intervals, the union of 
which is denoted by P,, each with width (1 - s)/3* and from one of the two 
middle points of the two intervals [IO, l]\P,, respectively. By this process, 
we will remove an open set P= lJ,“=, P,, with m(P) = 1 -E. Let C, = 
[0, l]\P and define a function y: [0, 11 + R such that y(t) ~0 on C,, y is 
positive and continuous on each cl(P,), and furthermore, 

lim max 1 y( t)l = 0. 
n-z P, 

We finally define x(t) = lh y(s) ds. Then x(O) =O, x(t) is strictly increasing 
and (t E [0, l] : x’(t) = 0) = C,. Clearly, by a suitable choice of the values 
of y(t) on P,, we can have x(t) also satisfy x( 1) = 1. 

For our next theorem we need the following definition. 

DEFINITION [ 33. f is said to be K-continuous on X iff, for any x E X 
and E > 0, there exists 6 > 0 such that 

If(Y) -f(x)1 <E 

whenever 1 y - XI < 6 and x < 4’. 
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THEOREM 2.7. Assume that f is K-continuous on X, an x E S(F, x0) is 
such that, for almost every t E J, there is a 6 = 6(t) > 0 such that 

x(t) @x(s) 

on (t - 6, t) or (t, t + 6). Then we also have x E S(i x0). 

(7) 

ProojI Since x’(t) is measurable on J, it is easily proved (see [3]) that, 
for almost all t E J, there are sequences tk and sk such that sk < t < t,, sk, 
t, + r, x’( tk) E F(x( tk)), x’(sk) E F(x(s,)), x’(t) E F(x(t)), and x’(tk) -+ x’(t), 
x’(s~) + x’(t) as k -+ co. Suppose t is such a point and also satisfies (7). 
Without loss of generality we may assume that x(tk) B x(t) for all k 3 1, 
hence, there is a sequence Sk > 0 such that Sk + 0 and x(tk) + 
Bak - x(t) c K. Using the K-continuity off at x(t), for any E > 0, there is a 
6 > 0 such that 

If(Y) -fb)I < 6 

for all y E X which satisfies y >/x( 1) and I y - x < 6. Choose a k, such that 

whenever k 2 k,. We then have 

Fb(tic)) c (x E X: Ix -fMt))l <E) 

for k > k,. Since x’(tk) +x’(t) and E > 0 is arbitrary, we conclude that 
x’(r) = ,f(x(t)). Thus, x’(t) =f(x(t)) a.e on J, the proof is complete. 1 

3. PROBLEMS (1) AND (2) IN R 

We concentrate in this section the problems (1) and (2) in the case 
X= R. An immediate consequence of Theorem 2.2 is that S(f, x0) # 0 if f 
is continuous on T\a and 

inf f(x) > 0. (8) 
.XE R 

However, this is not true if we replace (8) by f(x) > 0 for every x. This can 
be seen by taking f(x) = 1 on x f 0, and =x on x > 0, and x0 = 0. Also, by 
taking f(x) = 1 on x < 0, and = - 1 on x 20, and x0 = 0, we see that 
S(f, x,,) = 0 even for some one-sided continuous functions. Nevertheless, 
we have the following Theorem 3.1 which can be implied from Theorem 4.1 
[Z]. Since the author came to know Ref. [Z] after he got his own proof 
that may still be interesting, this proof is presented here. 
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THEOREM 3.1. Assume that f is right (left) continuous on R and 

f(x)20 (GO) (9) 

at every discontinuous point x of .jI Then S(f, x,,) # @. 

LEMMA 3.2 [7]. For any function f: R + R, we have 

f(x+o)=f(x-o)df(x)df(x+o)=~(x-o) (10) 

at every x except at points of an enumerable set, where f(x + 0) = 

lim inf, _ r+ f(y), etc. 

Proof of Theorem 3.1. Suppose f is right continuous on R. By 
Lemma 3.2, f(x) is continuous on R except on a countable set, hence 
Theorem 2.2 is applicable. For each E > 0 we consider the following 
subsidiary problem 

x'=f(x)+& 

x(0) = xg 1 
(11, 

We claim that (l), has a solution x,(t) such that, for any t, if f is discon- 
tinuous at x,(t), there is a S = 6(t) > 0 such that 

-G(t) <x,(s) (11) 

whenever 0 <s - t < 6. In order to prove this we first prove the local 
solvability of (l), with this requirement for any x0 E R. Consider the 
following three possibilities. 

(i) If f is continuous at x0 and f(x,,+ E =O, then x,(t) EX,, is a 
solution of (1 ),; 

(ii) If f is continuous at x0 and f(xo) + E > 0 ( CO), then there is an 
q>O such that f(x)+E>q (< -?) whenever XE [x,-v, x,+1]. Hence, 
Theorem 2.2 implies that (1 ), has a local solution in this case; 

(iii) If f is discontinuous at x0, then f (x0) + E > 0 by (9). By the right 
continuity of f at x0, there is an r] > 0 such that f(x) + E > v whenever 
.xE[x~,x,+~]. Delineg:R-+Rby 

and consider 

g(x) = 
f(x)+b x 3 xg 

f(xcJ +G x < xg 

x’ = g(x) 
x(0) = xg 1 

(12) 
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Theorem 2.2 can be used again to conclude that (11) has a local solution 
x(r). Clearly, x(r) > x,, for all t, and hence for suffkiently small t > 0, 
x,(t) = x(t) is a local solution of (l),. Furthermore, x,,(t) > x0 for all such 
t’s. Now we define the following class of functions 

Sz = { xh: x is a solution of (1 ),: on [0, h) satisfying (1 1 )} (13) 

and for xh, .v~ESZ, we define x,,<yyrl iff h<d and ydlCO,h,=~,,. Then 52 
becomes a partially ordered set. Given any chain S c Q, there must be a 
sequence xh, E S such that 

lim b,,=sup{h:thereisanx,~S}=d. 
II - -L 

Define 
x(t) = x/?,(t) for t E [IO, d). 

Thus XE Q and y 6 x for all y E S, hence S has an upper bound in 52. 
Zorn’s lemma implies that 52 has a maximal element x,. Evidently, x,(t) is 
a solution of (l), satisfying (11) on [0, a) because of (3). For the same 
reason x,(t) can be defined on the whole J. 

If we use D’ to denote right derivative, next we claim that, for the so 
obtained x,(t), Drx,( t) exists, and 

D’x,(t)=f(x,(t))+E (14) 

at every t E [0, a). In fact, (14) is obviously true iff is continuous at x,(t). 
If, however, f is discontinuous at x,(t), then 

1 .) 
D’x,(t) = lim - s r-r+s-t , Cf(-x,(S)) + ~1 & = f(-dt)) + c 

because of ( 11) and the right continuity of ,f at x,(t). 

Now we want to prove that if an x,(t) has been so obtained for every 
E > 0, then the functions {x,(t)} form a decreasing sequence as E + 0 +. In 
fact, if this is not true, then there are x,. t) and x&t) with E > 6 > 0 with the 
following properties: there are 0 6 t2 < t, 6 a such that x,(t2) = x,(t,) and 
x,:(s) < xg(S) whenever SE (t,, tl]. Set m(t) = x&(t)- x,(t), then 

D7m( tz) > 0. (15) 

On the other hand, however, 

D’m(t2) = Drx,(t,) - DrxF(tZ) = 6 -E < 0. (16) 

It is a contradiction. 
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Now choose a decreasing sequence E, -+ 0+ , accordingly we obtain a 
decreasing sequence of x,~. By letting n + a in the following relation 

’ x,,(t) = xo + s [.f(x&)) + 4 ds s 
(17) 

and because of the right continuity off, we obtain 

x(t) = x0 + I ’ f(x(s)) ds (18) 
.I 

for some continuous x: J --, R, which is a solution of the problem (1). 
In case f is left continuous, the proof is similar. Thus, the proof is 
complete. 1 

We now come to the question of the relations between problems (1) and 
(2) again. The following lemmas are needed. 

LEMMA 3.3 [lo]. A necessary and sufficient condition that a continuous, 
strictly increasing function x(t) he absolutely continuous is that 

m { x( t) : t is in the domain and x’(t) = + co } = 0. (19) 

LEMMA 3.4 [lo]. If y is continuous and of bounded variation on J, then 
y is AC iffy has (N) property, i.e., NC J and m(N) = 0 =z- m( y(N)) = 0. Zf 
y is continuous and has (N) property, then y(S) is (Lebesgue) measurable tf 
S c J is. 

Remark 3.5. Lemma 3.3 implies that the inverse of x(t) from Exam- 
ple 2.5 is not AC. Hence this together with Lemma 3.4 implies that for AC 
function x(t) and measurable S c R, x ~ ‘(5’) may not be measurable. 

LEMMA 3.6. Let y be AC on J, g be measurable andfinite-valued on y(J), 
SC J be measurable. Suppose h(t) = g( y(t)) y’(t) is integrable on J. Then 

s 
?(h) 

s 
II 

0) g ds = h dt zf S= [a, b], 
v(4 a 

(ii) s g ds= 5 h dt (f y is increasing 
.v(S) s 

(iii) s g ds G j s g(y(t)) Iv’(t)1 dt if 830 on Y(J). 
1’C.V 

Proof The proof of (i) is given in [ll J, and (ii) in [2]; the proof of 
(iii) is as follows. 
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For any given E > 0, there is a 6 > 0 s.t. 

i g(Af)) Iv’(f)1 dt <E f 

for any measurable e c J with m(e) < 6. Now we take a sequence of disjoint 
intervals (a,, hi) c J s.t. SC A = U,:, [a,, bi] and m(A\S) < 6. Let 
a,, 6,~ [a,, b,] be such that 

~(5,) = min{ y(t): a, d t 6 h,} 

and 

y(d,)=max{y(t):aidt<bi}. 

Then, (i) =- 

Hence, 

s 
A&) 

s 
6 

g ds = h dt, Vi3 1. 
.S(CT,) 0, 

s g ds < g ds 
Y(S) 

= f i-“(;” gds< f lb’g(y(t)) Iy’(t)l dt 
,=I Y(U,) ,=, 6 

< .r g(y(f)) Iv’(t)1 dt + E. s 

Since E > 0 is arbitrary, (iii) is thus proved. 1 

As an immediate consequence of Lemma 3.6, we have 

LEMMA 3.7 [lo]. For any x: J + R which is AC, we have 

m{x(t):tEJs.t.x’(t)=O}=O. (20) 

Proo$ Let A4= {x(t):t~Js.t.x’(t)=O} and ,S=x-‘(M)=(x’)-‘(0) 
then 5’ is measurable. If we take g = 1 and y = x, then Lemma 3.6(m) 
implies 
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COROLLARY 3.8. Ij”G: J-+2R\0 zs such that G(x) = {0} ax., then any 
solution of x’(t) E G(x(t)) is a constant solution x(t) = c st. 0 E G(c). 

Lemma 3.2 [2] shows that any solution of the problem (1) in R is 
monotone, therefore if S(F, x0) n S(h x,,) # 0, S(F, x0) must contain 
monotone functions. This observation leads to the following results. 

THEOREM 3.9. Let IS he any Bore1 set in R with m(a) = 0. Assume that f 
is continuous on R except on a, and 

x E a and oEF(x)*,f(O)=o. (21) 

Then, any monotone x of S(F, x,,) is also in S(f, x,,). 

Proof: Set S= x -‘(a), then S is measurable. Put g = 1 and JJ = x in 
Lemma 3.6(ii) we obtain 

O=m(a)=j ds= *s x’(t)dt. 
d s (22) 

Since x’(t) keeps one sign a.e., we must have x’(t) = 0 a.e. on S. Thus, 
x’(t) = f(x(t)) on S, hence x’(t) = ,f(x(r)) a.e. on J. 1 

Note that given an monotone AC function x: R + R and a Bore1 set a 
in R with m(a)=O, we may not have m(x-‘(a)} =0 in general, but we 
always have x’(t) = 0 a.e. on {x-‘(a) 1 as is shown in the proof above. 

LEMMA 3.10. Assume that f is continuous except on a subset a = a, + a2 
of R, where a, is a zero-measure set but a2 is arbitrary (may not be 
measurable). Assume furthermore that 

xea, and O~F(x)af(x)=O, 
x E a2 =S 0 $ F(x). I 

(23) 

Then any x(t) of S( F, x0) is monotone. 

ProojY Let S,= (t~J:x’(t)$F(x(t))} and A,=x(S,)ua,, then 
m(S,) =m(/io) =O, by Lemma 3.4. Suppose there are t,, t, E J such that 
x(t,) = x(2,) = CI and 

/I=max{x(t):t,<t<tz~>z. (24 1 

Let the maximum be attained at t =s and set n = [II, fi]\AO. F‘or any 
n~A\{b}, let 

s, =max{f: t<s,s(2)=1.} 
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and 

s,=min{t: t>s,x(t)=1}. 

Then, S, <s<s2 and s,, S>E [t,, t2]\S0. 
Hence 

0 6 x’(s,) E F(L) and 0 > X’(Q) E F(i). 

This implies OE F(J) since F(I.) is convex. Thus, ~$cT, hence i. is a 
continuous point of ,f: Therefore, x’(s, ) = x’(sZ) = 0, and consequently, 

m{x(t): tE [t,, t,] s.t.x’(t)=O} =p-cl 

a contradiction to Theorem 3.7. A similar procedure can also give a 
contradiction if instead of (24) we have 

Hence the lemma is proved. 1 

A combination of Theorem 3.9 and Lemma 3.10 immediately implies the 
following theorem which is a generalization of Theorem 2.2 in X= R. 

THEOREM 3.11. Let u he a Bore1 set in R with m(a) = 0. Suppose that f 
is continuous except on 0, and (21) holds. Then, 

Let C(J) = {x: J--P R continuous j and S: R -+ 2c“J’ be defined by S(x) = 
S(f, X) for any x E R. Then because of the properties of S(F, x) (see Cl]), 
Theorem 3.11 implies 

COROLLARY 3.12. Under the conditions of Theorem 3.11, \ce have 

(i) S(J x) is a nonempty compact continuum in C(J) for every x E R, 

(ii) S: R -+ 2c’J’ is upper semi-continuous. 

The following theorem is a consequence of [2, Theorem 4.11, here we 
supply a different proof. 

THEOREM 3.13. Assume that f: R + R is continuous almost everywhere 
and there are two constants 0 < c < d such that 

c<f(x)<d (or -db.f(x)< -cl (25) 

on R. Then S(,f, x0) # 0 ,for ever?> x0 E R. 
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ProoJ: Note first that f is Lebesgue measurable. We assume here 
c <<f(x) d d on R, the other case can be treated analogously. For each 
n > 1 define x,(t) on [ - 1, 0] to be any function satisfying x,(O) = x0 and 

Cd 
x,(t) -x,(s) < d 

t-s ’ (26) 

for all t, s E [ - LO]. By Lemma 3.3, both x,(t) and x;‘(t) (the inverse of 
x,) are absolutely continuous, hence have property (N). Thus, f(x,(t)) is 
measurable on [ - 1,O). Repeating the same argument, we can recursively 
define x,(t) on [0, a) by 

s I- l/n 

x,(t) = x0 + f(x,(s)) ds. 
0 

Suppose that x,,(t) +x(t) uniformly on J with some continuous x on J. 
Evidently, x(t) satisfies condition (26), hence xP1 has property (N). Thus, 
for J, = {t E J: f is discontinuous at x(t)}, we have 

m(J,) = 0. (28) 

Therefore, by letting n+ m in (27), we obtain 

x(t)=x,+ ‘f(x(s))ds 
s (29) 

0 

hence x E S(h x0) # @. The proof is thus complete. a 

Remark 3.14. The following example shows that the problem (1) may 
not have a solution if f is too irregular. 

EXAMPLE 3.15. Take a function g: [0, l] + [0, l] (see [6]), which is 
strictly increasing and continuous, g(0) = 0, g( 1) = 1 and A = gP ‘(B) is not 
measurable for some B c C, where C is the Cantor set in [O, 11. Define 
f: R+R by 

f(x) = { ;(x) + l x4 NJ 11 
9 XE [O, 11. (30) 

We claim that S(f, 0) = Iz(. Otherwise suppose there is an x E S(f, 0), then 
x’(t) = f(x(t)) is measurable. On the other hand, x(t) certainly satisfies 
(26) with c= 1, d=2, hence x’(t)= g(x(t))+ 1 on some [0, p] with 
x(p) = 1 and x(t) has property (N). Therefore, 
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is not measurable since otherwise it would be against the property (N). 
This contradiction shows that S(,f, 0) = @. 

4. NONAUTONOMOUS CASES 

Suppose that f: Jx X+ X is Lebesgue measurable in its first variable. 
Consider 

x’(t) = f(f, x(t)) 
x(0) = x0 I (I)* 

and 

x’(t) E F( t, x(t)) 
40) = x0, I (2)* 

where F(t, x) = fi,,, con f( t, x + B,). It can be easily checked that some of 
the previous results can be carried over to problem (l)* and (2)* if we 
assume that there is a measurable JocJ with m(Jo) =m(.J) such that, for 
every t E Jo, f( t, .) is continuous at every x E .X’\a, where c is some given 
countable set. Unfortunately, G, the set of all the points at which f is dis- 
continuous with some t E Jo, has to be independent of t E Jo. The following 
example shows this point. 

EXAMPLE 4.1. f: R x R --) R is defined by 

(31) 

Then f‘(t, .) is right continuous at every (t, x), and even inf f( t, x) = 4 > 0. 
However, (l)* with x0 = 0 does not have a solution since otherwise, 
suppose x is a solution, then x(t) cannot be identically equal to t, and by 
the delinition off we cannot have x(t) > t or x(t) < t at any t either. It is 
a contradiction. 

It is known that f: Jx X + X is Caratheodory iff, for any E > 0, there 
is a measurable JocJ such that m(J-J,) <E and f: J,x A’-+ X is 
continuous. Example 4.1 also shows that an analogous result for those 
functions f that is measurable in t and right continuous in x is not true. 
This is indeed the reason why the set 0 has to be independent of t E Jo in 
order to carry the results of Sections 2 and 3 to problems (1 )* and (2)*. 
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