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For a bounded domain Q = R?, we establish a concentration-compactness result
for the following class of “‘singular” Liouville equations:

—Au=¢e"—4rn 00y, in Q,

m
J=1

where p;€Q, o;>0 and J, denotes the Dirac measure with pole at point
pj» j=1,...,m. Our result extends Brezis-Merle’s theorem (Comm. Partial
Differential Equations 16 (1991) 1223-1253) concerning solution sequences for
the “regular” Liouville equation, where the Dirac measures are replaced by
I7(Q)-data p>1. In some particular case, we also derive a mass-quantization
principle in the same spirit of Li-Shafrir (Indiana Univ. Math. J. 43 (1994)
1255-1270). Our analysis was motivated by the study of the Bogomol’nyi equations
arising in several self-dual gauge field theories of interest in theoretical physics,
such as the Chern—Simons theory (“Self-dual Chern—Simons Theories,” Lecture
Notes in Physics, Vol. 36, Springer-Verlag, Berlin, 1995) and the Electroweak theory
(““Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions,”
World Scientific, Singapore).  © 2002 Elsevier Science (USA)

1. INTRODUCTION

Motivated by the study of the Bogomol’nyi equations for self-dual field
theories of interest in theoretical physics such as the Chern—Simons Theory
[16-18], analyzed in [7,9,26,28,32,37] and the Electroweak Theory [21],
discussed in [1,33] and references therein, we investigate the singular
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Liouville equation on a bounded open domain Q = R? given as follows:

m
—Au=¢e"—4rn

%0y, in Q, (1)
J=1

where o; >0 and p;eQ, j=1,...,m.

Here 0, denotes the Dirac measure with pole at the point p, and by
keeping the physical notations, we shall refer to the given points p;, j =
1,...,m, as the vortex points.

Our work concerns two aspects of problem (1). Firstly, we shall derive an
explicit local representation formula for solutions of (1), see Theorem 1. In
this direction, we shall pursue further the analysis of Chou—Wan [13] relative
to the Liouville equation in the punctured disk, and extend the well-known
Liouville formula [25] valid for solutions of (1) incase o; =0, Vj =1,...,m.

Secondly, we shall take advantage of such a ‘“local” representation
formula, to derive a concentration-compactness principle in the same spirit
of the result derived by Brezis—Merle [6] for “‘regular” Liouville-type
equations, where the sum of Dirac measures in (1) is replaced by a more
regular I”-function, p > 1. In this direction, we have:

THEOREM. Let u, be a solution sequence of (1) such that
/ e < C, VneN, (2)
Q

Jfor some C > 0. Along a subsequence uy, one of the following alternative holds:

(1) VK < < Q, there exist a constant Cg > 0:
supx |u,(x) — 2377, o In|x — pyl| < Ck.

(ii) VK =< Q, supg{ug, (x) = 2377, oyln|x — pjl} — —oc.

(iii) There exist a finite and nonempty set S = {q1,...,qi1} < Q, leN,
and corresponding sequences {x'}.n, ..., {x ey = QWUp1,. . pit, such
that x! > q; and uy,(x') — oo for i € {1,...,1}. Furthermore, supg {u, (x) —
2300 }n Ix —pjl} > —o0 on any compact set K < Q\S, and
el — Y Pidg, weakly in the sense of measures on Q, with p; € 8aN if

qi#p; and B;=8n if q; = p; for some j=1,...,m.

Clearly (i)—(iii) state a concentration-compactness principle for the
sequence e,

If a; =0, Vj=1,...,m, then the theorem above reduces to the Brezis—
Merle result in [6] as completed by Li—Shafrir [23]. In fact, if more generally
we knew that the set of blow up points S does not contain any of the vortex
points p;, j=1,...,m, or equivalently that the integral condition in (2)
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could be strengthened to the condition: [, exp(u, —2>7", o In|x — p) <
C, then Brezis—Merle’s analysis would be sufficient to guarantee (i)—(iii).
Thus, the true delicate case for us to analyze concerns the case where the
sequence u, admits a blow up point that coincides with one of the given
vortex points.
Under no circumstances, this situation can be fitted into Brezis—Merle’s
assumptions. Indeed, by setting

m
0u(x) = w,(X) =2 Y oy In|x — pyl,

J=1

then v, defines the regular part of u,, and satisfies
—Av, = Vy(x)e™ in Q,
3)

with V,(x) = H]’”:l |x — pj|2‘“f'. It is possible to check that u, and v, admit the
same set of blow up points. Thus, if u, blows up at a vortex point so does v,,.
In this case, by a standard blow up argument, we see that necessarily we
must have, [, e” —» 00 as n— co. Consequently, the Brezis—Merle
assumptions fail to apply to v, in this situation and furthermore, it is not
at all clear that the sequence e should be subject to a concentration
phenomenon.

The analysis of this situation is the goal of our main Theorem 2, whose
proof is also interesting in itself as it illustrates in a clear way the origin of
the concentration-compactness principle stated above. Concerning alter-
native (iii), the values f3; relative to each concentration point ¢;, i = 1,...,1,
have been investigated by Li-Shafrir [23]. In our setting, the Li—Shafrir
result states that each concentration point ¢; which does not coincide with a
vortex point, carries a “mass” f; = 8mm;, m; e N (mass quantization
principle). Unfortunately, in case the concentration point coincides with a
vortex point, we will be able to obtain an analogous “‘mass quantization”
property only in certain cases, by means of the Alexandrov—Bol inequality
(cf. [2]) as proved by Suzuki [36].

We hope that our analysis will be relevant to the understanding of related
problems. For instance, we mention the following mean-field equation:

m

—Ap = A 47TZ s,  in M (3,)

with M a Reimannian compact 2-manifold without boundary, which bares
significant applications towards the Bogomol’'nyi equations mentioned
above. Note that the condition 1 =4n} ", o;0, is necessary to the
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solvability of (3),. Problem (3), suites particularly well our framework.
Indeed, if we were to investigate a solution sequence ¢, for (3), with 7, —
A, we could use the transformation:

Uy = ¢, +1In, —In / e,
M

and reduce to consider a solution sequence of (1) satisfying (2).

Thus, on the ground of the Brezis—Merle and Li—Shafrir results, quite
interesting existence results have been derived for problem (3), in the
“regular” case, where the measure 27’:1 a;0p, is replaced by a LP(M)-
function p>1, (cf. [8,14,20,22,24,35]). On the contrary, much less is
known about the singular problem (3); with the exception of the
(coercive) case where 2 = 473" | o; is assumed to satisfy / € (0, 8n). Indeed,
in this case, the presence of the singular datum does not affect in any
significant way the analysis of (3),. Thus, as for the regular case, problem
(3), can be set in a coercive variational framework, and a solution may be
derived by direct minimization. In the particular case where 1 = 4n, an
explicit solution for (3),_,, has been obtained by Olesen [29]. Olesen has
treated (3), over the flat two torus with a single vortex point, i.e. m = 1,
having multiplicity o; =1, and derived his solution in term of the
Weierstrass 2-function. In this way, he was able to claim the presence of
Abrikosov mixed states of 1-vortex type for the Chern—Simons model
proposed in [17, 18].

We conclude by mentioning that the situation where 4 = 8= is already
more delicate to analyze and problem (3),_g, has attracted interest also in
the context of the assigned Gauss curvature problem over the two sphere
M = 52, see [10, 11, 19] and references therein. For manifolds M other than
the sphere problem (3);_g, has been treated in [15, 27]. Quite more involved
is the case 4 > 8n, and we refer to our forthcoming paper [5] for some recent
progress in this direction. Other partial results concerning this problem are
contained in [3,4].

2. A LOCAL REPRESENTATION FORMULA

In this section, we derive a local representation formula for the
solutions of (1) around each one of the vortex points. So, without
loss of generality, we take the origin as such vortex point and let
D, = {xeR% |x|<r}, r>0. We set D = D,_, and for o > 0, consider the
problem:

—Au = €' — 4nod)—g in D. 4)
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Since ¢” is smooth away from zero, and ¢ = O(|x|2°‘) as |x| — 0, we can also
assure that every solution of (4) satisfies

/ M dx < 0. (5)
D

By introducing complex notations we set: z = x + iy, for (x,y) € D. The
following Liouville-type representation formula holds for the solution of (4).

THEOREM 1.  Any solution u(z) of problem (4) can be decomposed as u(z) =
20 1n |z| + v(z) and for some function  analytic in D with y(0)#0, v(z) may
take only one of the following forms:

2y P
(1 + |z 0(2) + al?)

v(z) +1n38, (6)

with z*YW(z) locally univalent in D*, a € C and a = 0 if and only if o ¢ N; or,

| = (L + () + Y Q)
(=11 + WP’

with z=+tW(z) locally univalent in D*;
or, limited to the case where o. = m — % for some me N,

v(z) =1In

+In8, (7)

| ez"’*%wc)((m + D) + ' )P 4l

v(z) =1In -
(1+ e y(2)1)

ns, (8)

with 2" 3(z) locally univalent in D¥.

Proof. 1In the punctured disk D* = D\ {0}, the function:
u(z) = v(z) + 2o ln |z|, 9)
solves the problem:
—Au=é" in D¥*,
(10)
[p €' <oo.

A result due to Chou and Wan, see [13, Theorem 3], gives the following
Liouville-type representation formula for u:

TAG)
L+ 1@

where f(z) is a meromorphic locally univalent function in D* such that:

u(z) =In8 (11)
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Case A.
f@) =9,  BeR, (12)
with ¢(z) single-valued analytic in D¥,
or,
Case B.
f@=0(/2, (-2 =1, (13)
with ¢(z) single-valued analytic in D*.

We will analyze Cases A and B separately. In particular, we will show that
Case A leads to (6) or (7), while Case B leads to (8).

Case A. Since [, e"< + oo, the function g(z) in (12) cannot have an
essential singularity at the origin, see Lemma 4 in [13]. Thus, for some n € Z,
we may write

9(2) = 2 "Y(2),
with (z) holomorphic in D and (0)#0. Hence,

() =2""Y(2), (14)
and inserting (14) into (11) we get

(B — mz"""(2) + Y )
(1 + I2-mp(2)1) '

u(z)=1n8

Since,
u(z) = 2aln |z| + O(1), as z — 0, (15)
we have the following three possibilities:

(A.1) p—n>0. In this case by (15) we have that necessarily f —n =
o+ 1, and

gld +o0y(z) + W' @)P

+In |z,
(1 + 2 (2)7)

u(z) =In

which leads to (6) with a = 0.

(A.2) B —n = 0. In this case (15) requires that y' admits a zero of order o
at the origin. Since y is analytic, this situation can occur only for o € N.
Therefore for some m € N, we must have that o = m and ¥(z) = 2" o(2) +
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a, for some a € C\ {0} and ¢(0)#0. Hence, by reading ¢ in place of v, this
case yields to (6) when o € N and a#0.

(A.3) f—n<0. In this case using again (15) we have that necessarily
| —n| =1+ a. Thus,

| — (1 + o)(2) + 2/ (2)1
(1 + (=)

u(z)=1n8 +1In|z|*,

which leads to (7).

Case B. As in Case A, using Lemma 4 in [13], we see that the function ¢(z)
in (13) cannot have an essential singularity at the origin, and for some n € Z,
we may write

d(2) = z"p(2), (16)

with ¢ holomorphic in D and ¢(0)#0. On the other hand, in view of the
condition

P(2)p(=2) =1, (17)

we have that ¢(z)¢(—z) = (—1)"z*". This, together with the fact that ¢(0)
#0, implies that necessarily n = 0 (i.e. ¢ = ). Thus, ¢ is holomorphic in D
and ¢(0) = +1. Furthermore, ¢(z)#0, Vz € D as it easily follows by (17).
Consequently, i(z) = In ¢(z) is a well-defined holomorphic function on D.
Also note that, by (17), & is odd in D. Thus, for some m € N U {0}, & takes
the form:

o0
/’Z(Z) — ZZm-H Z th2k.
k=0
Setting f = 2m + 1, we have

1) = d(/7) = ¢V = exp </ > hkz") = exp(@Y(2).  (18)

k=0

for some y(z) holomorphic in D, with 1/(0) #0. Inserting expression (18) into
(11) and using (15), we find that necessarily g —1=uo,thatisa =m — %, for
some m € N, and (8) immediately follows.
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3. THE CONCENTRATION PHENOMENA: THE CASE OF BLOW
UP AT A VORTEX POINT

In this section, we analyze the situation where a solution sequence for (4)
admits a blow up point at a vortex point. Localizing our analysis around
such a vortex point, taken for simplicity to be the origin, we consider a
sequence u, satisfying

(19)

—Au, = e — 4no,6,—0 in D,
fD &) dx <C,

for suitable C > 0. Furthermore, to express the fact that the origin is the only
blow up point for u, in D, we assume that, for any r € (0, 1),

1C,>0: max u,<C,, (20)
r<lx|<1
max u, — +00, as n — 00. (21)

"

We have:

THEOREM 2. Let uy satisfy (19) with o,, — o> 0 and assume (20) and (21).
There exist a subsequence uy, of u, such that

(a) maxg uy, — —00, as n — oo, for every compact set K = D\{0}
(b) e — Bd,—o, weakly in the sense of measures on D, with =8

Furthermore, if
(¢) limsup,_,., [, e <lém,
then, either § = 8n or f=8xn(1 + a).
REMARK 1. Note first that from parts (a) and (b) of Theorem 2, it
follows that, if the sequence u, satisfies (19) and lim,,_,~ f p € <8, then u,
cannot blow up in D. Indeed, while it is a well-known fact (cf. [23]) that u,

cannot admit a blow up point in D\ {0}, Theorem 2 excludes the possibility
of blow up at zero.

REMARK 2. If u, satisfies (19) with o,>1 and we assume (c), then
necessarily ff = 8.

Proof of Theorem 2. We start with some general observations. Set,

va(2) = upy(z) — 20, In|z|, z €D, (22)
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which satisfies,

—Av, = |z]P et in D,
(23)

Io |zret < C.
Taking into account (22) and (23), assumptions (20)—(21) can be restated
equivalently in terms of v, as follows:

for any r € (0, 1),

iC,>0: max v,<C,, (24)
r<|x <1
max v, — 4090, as n — 00. (25)

"

Set z, € D: v,(z,) = max, and so by (24) and (25),

z, — 0 and v,(z,) - 400, as n — o0. (26)

A standard blow up argument shows that, in view of (23) and (26)
necessarily, || p € — +00. So the situation analyzed here can never fulfil the
assumptions of the Brezis—Merle result, but must be handled directly.

We start with property (a). Note that by (23) and (24) we can use
Harnack’s inequality to reduce to prove that for every r e (0,1), along a
subsequence, v, satisfies

fn‘in vy = —00, as n — oo. 27
x|=r

By Theorem 1, along a subsequence which for simplicity we still denote by
vy, We may assume that v, takes either one of the form (6), (7) or (8) with
a=0o,>0 and Y =y, holomorphic on D, ¥,0)#0. We consider

separately each one of these different cases.
Case 1.

0+ )@ + 204 o

vn(z) = In (14 [z, (z) + an|2)2

(28)

with a, € C and a, #0 if and only if o, € N.

By (26) we have that |(1 + o,)¥,(z,) + z,,lp;(zn)|2 — 00. Since z!*# (2) is
locally univalent in D* and ,(0) #0, we derive that g,(z) = (1 + e, (2) +
2! (z) is holomorphic and never vanishes in D. So, In lgn(2)]* defines an
harmonic function in D. Fix r; € (r,1), and set y, = minp <, lgn(2)]*. If
lim sup,,_,, 7, = 0, from (28), we immediately derive (27). Hence, suppose
that there exist y > 0 such that, along a subsequence, we have y, >y. In this
situation, we may apply Harnack’s inequality to the positive harmonic
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function In ‘g”( 2l on D,,. Hence, for 0<e<r; —r, we find a constant 7> 1
(depending on ¢ and r only) such that

2 2
z . z
max lnm <7t min In M
|zl <r+e Yn |zl <r+e Vn

Consequently,

min, gD =77 max gn(2)F =77 max. gn(2).

Setting f = 7!, we may conclude,

min (1 + o)y, (2) + 2 () = B max A o)y (2) + 2,2)

lzl<r+
(1 + ey, (2) + 2y, ()
f<re (14 2570, (2) + a,)? ’
as n — 0o0.
That is,
min |(1 + o,)¢,(2) + 2,,(2)| = +00, as n — oo. (29)

lzZl<r+e
On the other hand, for ¢ > 0 sufficiently small, by assumption we have

|+ ), (2) + 2 P _
rmeslsree (14 215, (2) + al)

re-
B

Setting,  fu(2) = z#"W,(2)+a,, by (29) we conclude that
min,_;<iz<rte [fn(z)] = +00. Hence, for every z:|zl=r, we may use
Cauchy’s integral formula to derive

(42,0, C) + 2] _
U, )l

1

"

d 1
dz fu(2)

Ja(2)
fu2)?

1 1 1
d
S 2 /. TR R
1

er Min,_,<|z|<r+e | fn(2)]

>

and (27) is established.
Case 2.

| — (1 + 0)P,(2) + 2y, (2)
(21 + [, ()

vy(z) = In +In8. (30)
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By hypothesis v,(z,) = 00, as n — oco. In case max <, | — (1 + a)¥,(2) +
2y (2)] > +00, we can proceed exactly as in the previous case to derive the
desired conclusion. Hence we suppose that, along a subsequence, still
denoted by ,, there exist a constant C >0, such that max;<.|—(1+
W) + 2] = max, | — (L + @), (2) + 20, () < C. I limsup,
max <, [¥,| = 400, by (30), we immediately get (27). So we are left to
consider the case where we have

max |,|<C, (31

G

for suitable C > 0. Since ¥, is a sequence of holomorphic functions in D, in
this case, passing to a subsequence, we may conclude that, y, converges to ¥
uniformly in D, /2 together with its derivatives. By (26) and (30), we get that
necessarily, (0) = 0. Thus,

V,(0) - 0, as n — o9,
and, consequently,
0,(0) > +o0, as n — 0. (32)

At this point, the following claim together with (32), yields (27) and we
conclude the proof in this case as well.

Claim. For any r € (0, 1), we have

8(1 + o,)*

v,(0) + l’glll)fl v, <21In A7)

Proof. The idea of our proof is inspired by that of Theorem 2 given by
Shafrir [31]. For given r € (0, 1), define

= (L4 ) (D) + 20,

on(z) =In8 (r20+m) 4 (2)])?

Clearly, g, is superharmonic in D, and so,

,(0)= Ii{l—f' o, = inf v,. (33)

lzl=r
On the other hand,

(L+ o)W, OF 81 +a,)’

7,(0) = In 8(r2(‘+°‘”) W, O S =S5,

+lnf,OF.  (34)
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Using (33) and (34), we obtain

_ 8o’ (81 + o)) 8(1+2)
Un(O) =In |[//n(0)|2 <1n A0 ,) — an(0)<2 lnm — llzlll:f; Uy,
which gives the desired estimates. 1
Case 3. Suppose o+ 1 =m + 5 1, for some m € N and
" g,)
o) — 1l D)+ 2P )

(1 + le" )2

For fixed r € (0, 1), we claim that we can find Zz,: |z,| = r, such that, along a
subsequence, we have

max [(m + IW(2) + 29D = 1m0+ W, En) + Zai,(Za)l > +00. (36)

Indeed, if this was not the case, we would have

max |(m + ), (2) + 2, (2)] = max |(m + W(2) + 2, () < C,

lzl<r

for suitable C > 0. By (26), this implies that necessarily,

W(m%)l// @)
e~ Vn'¥| — 400, as n — o0.

But this is impossible, since (35) would imply that v,(z,) > —o0, as
n — oo, in contradiction with (26). Hence, along a subsequence, we may

_(m\l) -
assume that (36) holds and also that |e? = ¥»@)| admits a limit as n — oc.
Recalling that

I LACREAC)

ma C, VneN, (37)
lel=r (1 + " Py
only one of the following two situations are possible:
Case A.
m+7)
le? = ) 0, as n — 0o,
or
Case B.

,(+
e~ V| o oo, as n — oo.
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Case A. Possibly extracting a subsequence, assume that z, — zy, with

|zo| =r. We claim that there exist sufficiently small 6 >0 and C>0,
independent of n, such that

L
le”" AP <C, Yz — 2| <0. (38)
Indeed, take 6 > 0 sufficiently small so that 1_325(20) < D\{0}. Consider the
1
function ¢, (z) = 2In(1 + [¢*" *¥?) which satisfies

Ao, = |Z|2(m7%)e“", in Bys(zp),

¢©,=0  in Bys(zo).

In view of (24), we have 0</,(z) == |22 Pe < C in Bss(zo). With the help
of Harnack’s inequality, we obtain suitable constants f>1 and C>0
(depending on J > 0 only) such that

L ok
max |¢° W~<Z>|<c( min |7 2O 4 1). (39)

|z—z0| <6 |z—z0| <6
Hence, taking into account the hypothesis of Case A, we derive

1 _m+l _
max |e¢ V@< C(le ThENF £ 1) = C(1 +o(1)), asn— oo, (40)

[z—20| <6

and (38) follows. Therefore, in Bs(zo) = D\{0}, we can apply Harnack’s

+1 . .
inequality to the bounded harmonic function In [e?" > ¥+()|? to obtain suitable
constants ff € (0,1) and 4 > 0 (depending on ¢ > 0 only), such that

1 ik _
max Inje”" "O|<B min In Ale” ), 41)
2—20|<3 lz—z0l<3

Whence, as z, — zy, under the hypothesis of Case A, from (41) we derive

1 .l
max_|¢& V@] = max |0

0
l-—z0=5 z—20|<3

1
_(m+5) .
S Aﬁ|ezrz l//n(zn)|/; N 0’ as n — 00.
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At this point, we can conclude our proof as in Case 1 above. Indeed, by
Cauchy integral formula, we have

_(NH»l )

anzwﬁ»<<mki)w@»+zw%aiﬂ

(mL E(m%) . 1 _ B d oy (-
= z,(1 +z)<e 0 2 n)(<m _1_5)‘/,(%) + ZlV(%)))‘ _ ‘5 & 2/,l(~)|z:2”

1
1 e:m+2 ‘//n(z)
=bm s T3 dz| < max
T z—20|=3 (z—2zp)

N

r(er%

1
&)

o(1)
— 0

z—z0l=7

This immediately implies v,(z,) - —o0, and (38) is established in Case A.

Case B. This case is analogous to Case 1 above. We can complete the
proof exactly in the same way with the help of Harnack’s inequality and
Cauchy integral formula.

So (a) has been established.

In order to obtain (b), by (5), we can further extract a subsequence so that
e — v, weakly in the sense of measure in D. In view of (a), the measure v is
supported at zero, that is v = $J,— for some > 0.

To show that §>8n, we use a blow up argument for the sequence u,. Let
x, € D: maxj, u, = uy(x,). As for v,, by (20) and (21), we have that

{%u»a+m, @)
x, — 0.
Set
S, = ex <un(2x,,)> 0, as n — oo,
and define
t, = max{o,, |x,|} — 0, as n — 00.
The sequence,
E.(x) = up(t,x) + 21In t,
defined on the set B, = Dy, satisfies
—A&, = e — 4ma, 0, in B,
' e 43)
J5, €W dx<C,
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for some C>0. Set y, =32, and note that |y,|<1, so by taking a

[_”a

subsequence, we can assume y, — yo € R>. Furthermore,

max &, = &,(yy) = up(x,) +21Int, = u,(x,) +21Ind, = 0.

n

We distinguish two cases:
Case A: £,(yn)<C, VneN.
Case B: limsup,,_,, &,(yn) = +00.
Concerning the Case A, we claim that,

limint [ & >8n(1 + ) (44)
n—oo D
Indeed, in this case,
0< max én = fn(yn)S C, (45)
B,

and so, if we write &,(x) = 2a, In |x| + ¢, (x), then ¢,(x) defines the regular
part of &,, and for every R > 0, it satisfies:

7A¢n = |X|2“" e(bn on DR, (46)
maanR |¢n| < CR7

for suitable Cg > 0. Since e = |x|*¢? is uniformly bounded in Dg, by
standard elliptic estimates, we derive that |¢,| is uniformly bounded in Dg.
Therefore, we can use elliptic regularity theory together with a diagonal
process to conclude that, along a subsequence, ¢, — ¢ in CIIO’S(RZ) for some
d €(0,1). Furthermore, ¢ satisfies

{—Aqs = [x*e?  in R, @

Jre IXIPe? < + o0.

By the results in [12], see also [30], necessarily [g. Ix|?e? = 8n(1 + «). So,

liminf [ ¢“ = liminf ¢ = lim inf |x|?% e
n—-+00 D n——+00 B, n—+00 B,
> / Ix|2e? = 8n(1 + w).
RZ

Hence, (44) holds and > 8n(1 + ) in this case.
Case B. In this case, necessarily ¢, = |x,| (along a subsequence) and

consequently |yo| = 1 (recall yo = limy,_,o 7).

Hence, in this situation, &, admits a blow up point at yy#0 and we can
apply the Li—Shafrir result [23] to the sequence ¢, in any small
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neighborhood of yy away from zero, and obtain that

lim ¢ = 8mm, for some me N, (48)
=00 J Bs(n)

for every ¢ > 0 sufficiently small. As above, this yields >8nm, and in any
event, the desired conclusion that > 8r is established.

We now turn to the proof of the last part of the statement. For this
purpose, we recall the Alexandrov—Bol inequality (cf. [2]), as derived by
Suzuki [36].

The Alexandrov—Bol inequality. Let p e C*(Q) n CY(Q) satisfy the elliptic
inequality:

—Alogp<p inQc R~

Then,
P(6Q) =181 — m(Q))m(Q),

where

Q) = / pids  and  m(Q) = / pdx.
oQ Q

We need to prove that, if
p = lim e <8n(1 + o), (49)
D

n—-oo
then necessarily ff = 8.
In view of (44), if (49) holds, then Case A can be ruled out and we have
that necessarily Case B must occur.
Furthermore, since f<limsup,_,, |, p € <16m, then for the sequence &,
(48) must hold with m = 1 and consequently,

n—0oo

lim sup / e < 8, for every open regular set 4 = < R*\{yo}. (50)
4

At this point, we may use Remark 1, and conclude that y; is the only blow
up point for the sequence &, in Dg, for every R > 1. In particular, around the
origin, ¢, is uniformly bounded from above, and so the presence of the
Dirac measure in (43) is no longer problematic for the use of the Brezis—
Merle analysis to derive,

max ¢, - —o0, as n — 00,
[xI=R

lim ¢ = lim e = 8,

n=Fe0 Jin <R n=400 JBs(vo)
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for every R > 1. Going back to the original coordinates, those conditions
read as follows:

‘Ejaél)(lun+2ln|xn| - —00, (51)
lim e = 8m, (52)

"R Jnl < Rl
for every given R > 1. Thus, in the set
Qn, r = DV\DR|X,I|9
u, satisfies,

—Au, = et in Q, ,,
(53)

limsup, . fo e dx = pu<8m.

So, for n large, we can apply the Alexandrov—Bol inequality to u, in Q, ,
and conclude that

2
1
/ s | == 8n—/ et / e, (54)
., 2 Q.. Q..

that is,

2
1
(/ eun/2> >-8r—pu+ 0(1))/ e, as n — o0. (55)
GO 2 Q,,

We will show that the L.h.s. of (55) goes to zero as n — +00. In turn, the r.h.s
goes to zero, and since u<8xn, we conclude

/ e’ — 0. (56)
Qn, r

/ eun/2 ds — / eun/z ds 4+ / eu"/z ds_
Q. oD, [X|=Rlxy|

Using the already established property (a) with K = 0D,, we find

Indeed,

/ & ds — 0, as n — 00.
aD,
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On the other hand, using (51), we have

1, (v
/ é/* ds<2nR|x,| max e
IX|=R|x,] [x]=R]x,]

— 27R max e@®@+2Inluh o as n — 00.
[X[=R]x,|

Thus, (56) holds and by (52) we conclude

f = lim e = lim e + lim e =8n. 1
=0 Jp, "0 JIx| < Rl =0 JQy,

From Theorem 2, we immediately derive the following version of the
Brezis—Merle result [6] for a solution sequence u, satisfying (19).

THEOREM 3. Let u, be a solutions sequence for problem (19) with
oy, = 00> 0. There exists a subsequence uy, of u, for which one of the
following alternative holds:

(i) supgluk,(x) — 204, In|x||< Cx VK = < D, and suitable constant Cg
> 0.

(i1) supg {uk,(x) — 204, In|x|} - —oco0, VK < < D.

(ii1) There exist a finite and nonempty set S = {qi,...,q;} < D, le N,
corresponding sequences {x'},cn, ..., {x'} ey = D, such that x' — g; and
u,(x,) = oo for iel,..., . Furthermore, supg{u,(x) — 20, In |x|} - —o0
on any compact set K = D\S, and e — Zle Bid4, weakly in the sense of
measures on D, with B; € 8N if ¢;#0 and p;=8n if q; = 0 for some i =
...,

At this point, the more general version of Theorem 3, as stated in the
Introduction, may be easily derived.

Proof. As above, we shall work with the sequence v, defined in (22).
Note that in any subdomain D' < = D\ {0}, we have

/ " < Cpr, (57)
D/

with Cp > 0 a suitable constant depending on D’ only. Recall that the blow
up set S of v, in D is defined as follows:

S = {xe D: 3{x,} = D such that x, - x and v,(x,) - +00}.
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In view of (21), the solutions sequence v, satisfies to all assumptions of the
Brezis—Merle Theorem in D\ D; for every 6 > 0 sufficiently small. Recalling
that v,(x) = u,(x) — 2, In|x| in D, we may conclude that S’ = S\{0} is a
finite set, and along a subsequence, u,(x) — 2a, In |x| satisfies one of the
alternatives (i)(iii) above with D replaced by D’ = D\ {0} and S replaced by
S’. Obviously, each blow up point for v, in S’ (when not empty) is also a blow
up point for u,. Hence, we are left to analyze what happens around zero.
Observe first that the point x = 0 is a blow up point for v, if and only if it is a
blow up point for u,. At this point, we may conclude our proof by observing
that, in case zero is not a blow up point for v, (and hence for u,), that is
S = &', then v, is uniformly bounded above in a small neighborhood of zero.
This, combined with (57), gives that v, satisfies to «all assumptions of the
Brezis—Merle Theorem in the set D, and so we immediately derive the desired
conclusion in this case. If zero is a blow up point for v,, and hence for u,,
then S = S’ U {0}. Thus, u, satisfies to all assumptions of Theorem 2 in a ball
B,,(0). For §' #0, take ry > 0 sufficiently small so that B,,(0) n S’ = 0. Thus,
the conclusion follows in this case as well, by combining the Brezis-Merle
result applied to v, on D\ {0} with Theorem 2 applied to u, in B, (0). 1
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