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For a bounded domain O � R2; we establish a concentration-compactness result

for the following class of ‘‘singular’’ Liouville equations:

�Du ¼ eu � 4p
Xm

j¼1

ajdpj
in O;

where pj 2 O; aj > 0 and dpj
denotes the Dirac measure with pole at point

pj ; j ¼ 1; . . . ;m: Our result extends Brezis–Merle’s theorem (Comm. Partial

Differential Equations 16 (1991) 1223–1253) concerning solution sequences for

the ‘‘regular’’ Liouville equation, where the Dirac measures are replaced by

LpðOÞ-data p > 1: In some particular case, we also derive a mass-quantization

principle in the same spirit of Li–Shafrir (Indiana Univ. Math. J. 43 (1994)

1255–1270). Our analysis was motivated by the study of the Bogomol’nyi equations

arising in several self-dual gauge field theories of interest in theoretical physics,

such as the Chern–Simons theory (‘‘Self-dual Chern–Simons Theories,’’ Lecture

Notes in Physics, Vol. 36, Springer-Verlag, Berlin, 1995) and the Electroweak theory

(‘‘Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions,’’

World Scientific, Singapore). # 2002 Elsevier Science (USA)
1. INTRODUCTION

Motivated by the study of the Bogomol’nyi equations for self-dual field
theories of interest in theoretical physics such as the Chern–Simons Theory
[16–18], analyzed in [7, 9, 26, 28, 32, 37] and the Electroweak Theory [21],
discussed in [1, 33] and references therein, we investigate the singular
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Differential Equations.
2To whom correspondence should be addressed.

161
0022-0396/02 $35.00

# 2002 Elsevier Science (USA)

All rights reserved.

https://core.ac.uk/display/81992438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


BARTOLUCCI AND TARANTELLO162
Liouville equation on a bounded open domain O � R2 given as follows:

�Du ¼ eu � 4p
Xm

j¼1

ajdpj
in O; ð1Þ

where aj > 0 and pj 2 O; j ¼ 1; . . . ;m:
Here dp denotes the Dirac measure with pole at the point p; and by

keeping the physical notations, we shall refer to the given points pj ; j ¼
1; . . . ;m; as the vortex points.

Our work concerns two aspects of problem (1). Firstly, we shall derive an
explicit local representation formula for solutions of (1), see Theorem 1. In
this direction, we shall pursue further the analysis of Chou–Wan [13] relative
to the Liouville equation in the punctured disk, and extend the well-known
Liouville formula [25] valid for solutions of (1) in case aj ¼ 0; 8j ¼ 1; . . . ;m:

Secondly, we shall take advantage of such a ‘‘local’’ representation
formula, to derive a concentration-compactness principle in the same spirit
of the result derived by Brezis–Merle [6] for ‘‘regular’’ Liouville-type
equations, where the sum of Dirac measures in (1) is replaced by a more
regular Lp-function, p > 1: In this direction, we have:

Theorem. Let un be a solution sequence of (1) such thatZ
O

eun4C; 8n 2 N; ð2Þ

for some C > 0: Along a subsequence ukn
one of the following alternative holds:

(i) 8K �� O; there exist a constant CK > 0:
supK jukn

ðxÞ � 2
Pm

j¼1 aj ln jx � pj jj4CK :

(ii) 8K �� O; supKfukn
ðxÞ � 2

Pm
j¼1 aj ln jx � pj jg ! �1:

(iii) There exist a finite and nonempty set S ¼ fq1; . . . ; qlg � O; l 2 N;
and corresponding sequences fx1

ngn2N; . . . ; fxl
ngn2N � O=fp1; . . . ; plg; such

that xi
n ! qi and ukn

ðxi
nÞ ! 1 for i 2 f1; . . . ; lg: Furthermore, supKfukn

ðxÞ �
2
Pm

j¼1 aj ln jx � pj jg ! �1 on any compact set K � O=S; and

eukn !
Pl

i¼1 bidqi
weakly in the sense of measures on O; with bi 2 8pN if

qi=pj and bi58p if qi ¼ pj for some j ¼ 1; . . . ;m:

Clearly (i)–(iii) state a concentration-compactness principle for the
sequence eun :

If aj ¼ 0; 8j ¼ 1; . . . ;m; then the theorem above reduces to the Brezis–
Merle result in [6] as completed by Li–Shafrir [23]. In fact, if more generally
we knew that the set of blow up points S does not contain any of the vortex
points pj ; j ¼ 1; . . . ;m; or equivalently that the integral condition in (2)
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could be strengthened to the condition:
R
O expðun � 2

Pm
j¼1 aj ln jx � pj jÞ4

C; then Brezis–Merle’s analysis would be sufficient to guarantee (i)–(iii).
Thus, the true delicate case for us to analyze concerns the case where the

sequence un admits a blow up point that coincides with one of the given
vortex points.

Under no circumstances, this situation can be fitted into Brezis–Merle’s
assumptions. Indeed, by setting

vnðxÞ ¼ unðxÞ � 2
Xm

j¼1

aj ln jx � pj j;

then vn defines the regular part of un; and satisfies

�Dvn ¼ VnðxÞevn in O;R
O VnðxÞevn4C;

(
ð3Þ

with VnðxÞ ¼
Qm

j¼1 jx � pj j
2aj : It is possible to check that un and vn admit the

same set of blow up points. Thus, if un blows up at a vortex point so does vn:
In this case, by a standard blow up argument, we see that necessarily we
must have,

R
O evn ! 1 as n ! 1: Consequently, the Brezis–Merle

assumptions fail to apply to vn in this situation and furthermore, it is not
at all clear that the sequence eun should be subject to a concentration
phenomenon.

The analysis of this situation is the goal of our main Theorem 2, whose
proof is also interesting in itself as it illustrates in a clear way the origin of
the concentration-compactness principle stated above. Concerning alter-
native (iii), the values bi relative to each concentration point qi; i ¼ 1; . . . ; l;
have been investigated by Li–Shafrir [23]. In our setting, the Li–Shafrir
result states that each concentration point qi which does not coincide with a
vortex point, carries a ‘‘mass’’ bi ¼ 8pmi; mi 2 N (mass quantization
principle). Unfortunately, in case the concentration point coincides with a
vortex point, we will be able to obtain an analogous ‘‘mass quantization’’
property only in certain cases, by means of the Alexandrov–Bol inequality
(cf. [2]) as proved by Suzuki [36].

We hope that our analysis will be relevant to the understanding of related
problems. For instance, we mention the following mean-field equation:

�Df ¼ l
efR

M
ef

� 4p
Xm

j¼1

ajdpj
in M ð3lÞ

with M a Reimannian compact 2-manifold without boundary, which bares
significant applications towards the Bogomol’nyi equations mentioned
above. Note that the condition l ¼ 4p

Pm
j¼1 ajdpj

is necessary to the
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solvability of ð3Þl: Problem ð3Þl suites particularly well our framework.
Indeed, if we were to investigate a solution sequence fn for ð3Þln

with ln !
l; we could use the transformation:

un ¼ fn þ ln ln � ln

Z
M

efn ;

and reduce to consider a solution sequence of (1) satisfying (2).
Thus, on the ground of the Brezis–Merle and Li–Shafrir results, quite

interesting existence results have been derived for problem ð3Þl in the
‘‘regular’’ case, where the measure

Pm
j¼1 ajdpj

is replaced by a LpðMÞ-
function p > 1; (cf. [8, 14, 20, 22, 24, 35]). On the contrary, much less is
known about the singular problem ð3Þl with the exception of the
(coercive) case where l ¼ 4p

Pm
j¼1 aj is assumed to satisfy l 2 ð0; 8pÞ: Indeed,

in this case, the presence of the singular datum does not affect in any
significant way the analysis of ð3Þl: Thus, as for the regular case, problem
ð3Þl can be set in a coercive variational framework, and a solution may be
derived by direct minimization. In the particular case where l ¼ 4p; an
explicit solution for ð3Þl¼4p has been obtained by Olesen [29]. Olesen has
treated ð3Þl over the flat two torus with a single vortex point, i.e. m ¼ 1;
having multiplicity a1 ¼ 1; and derived his solution in term of the
Weierstrass P-function. In this way, he was able to claim the presence of
Abrikosov mixed states of 1-vortex type for the Chern–Simons model
proposed in [17, 18].

We conclude by mentioning that the situation where l ¼ 8p is already
more delicate to analyze and problem ð3Þl¼8p has attracted interest also in
the context of the assigned Gauss curvature problem over the two sphere
M ¼ S2; see [10, 11, 19] and references therein. For manifolds M other than
the sphere problem ð3Þl¼8p has been treated in [15, 27]. Quite more involved
is the case l > 8p; and we refer to our forthcoming paper [5] for some recent
progress in this direction. Other partial results concerning this problem are
contained in [3, 4].

2. A LOCAL REPRESENTATION FORMULA

In this section, we derive a local representation formula for the
solutions of (1) around each one of the vortex points. So, without
loss of generality, we take the origin as such vortex point and let
Dr ¼ fx 2 R2: jxj5rg; r > 0: We set D ¼ Dr¼1; and for a > 0; consider the
problem:

�Du ¼ eu � 4padp¼0 in D: ð4Þ
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Since eu is smooth away from zero, and eu ¼ Oðjxj2aÞ as jxj ! 0; we can also
assure that every solution of (4) satisfiesZ

D

euðxÞ dx51: ð5Þ

By introducing complex notations we set: z ¼ x þ iy; for ðx; yÞ 2 D: The
following Liouville-type representation formula holds for the solution of (4).

Theorem 1. Any solution uðzÞ of problem (4) can be decomposed as uðzÞ ¼
2a ln jzj þ vðzÞ and for some function c analytic in D with cð0Þ=0; vðzÞ may

take only one of the following forms:

vðzÞ ¼ ln
jð1þ aÞcðzÞ þ zc0ðzÞj2

ð1þ jzaþ1cðzÞ þ aj2Þ
þ ln 8; ð6Þ

with zaþ1cðzÞ locally univalent in Dn; a 2 C and a ¼ 0 if and only if a =2 N; or,

vðzÞ ¼ ln
j � ð1þ aÞcðzÞ þ zc0ðzÞj2

ðjzaþ1j2 þ jcðzÞj2Þ2
þ ln 8; ð7Þ

with z�ðaþ1ÞcðzÞ locally univalent in Dn;
or, limited to the case where a ¼ m � 1

2
for some m 2 N;

vðzÞ ¼ ln
jezmþ1

2 þcðzÞððm þ 1
2
ÞcðzÞ þ zc0ðzÞÞj2

ð1þ jezmþ1
2 cðzÞj2Þ2

þ ln 8; ð8Þ

with zmþ1
2cðzÞ locally univalent in Dn:

Proof. In the punctured disk Dn ¼ D=f0g; the function:

uðzÞ ¼ vðzÞ þ 2a ln jzj; ð9Þ

solves the problem:

�Du ¼ eu in Dn;R
D

eu51:

(
ð10Þ

A result due to Chou and Wan, see [13, Theorem 3], gives the following
Liouville-type representation formula for u:

uðzÞ ¼ ln 8
j f 0ðzÞj2

ð1þ j f ðzÞj2Þ2
; ð11Þ

where f ðzÞ is a meromorphic locally univalent function in Dn such that:
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Case A.

f ðzÞ ¼ gðzÞzb; b 2 R;

with gðzÞ single-valued analytic in Dn;

(
ð12Þ

or,
Case B.

f ðzÞ ¼ fð
ffiffiffi
z

p
Þ; fðzÞfð�zÞ ¼ 1;

with fðzÞ single-valued analytic in Dn:

(
ð13Þ

We will analyze Cases A and B separately. In particular, we will show that
Case A leads to (6) or (7), while Case B leads to (8).

Case A. Since
R

D
eu5þ1; the function gðzÞ in (12) cannot have an

essential singularity at the origin, see Lemma 4 in [13]. Thus, for some n 2 Z;
we may write

gðzÞ ¼ z�ncðzÞ;

with cðzÞ holomorphic in D and cð0Þ=0: Hence,

f ðzÞ ¼ zb�ncðzÞ; ð14Þ

and inserting (14) into (11) we get

uðzÞ ¼ ln 8
jðb� nÞzb�n�1cðzÞ þ zb�nc0ðzÞj2

ð1þ jzb�ncðzÞj2Þ2
:

Since,

uðzÞ ¼ 2a ln jzj þ Oð1Þ; as z ! 0; ð15Þ

we have the following three possibilities:

(A.1) b� n > 0: In this case by (15) we have that necessarily b� n ¼
aþ 1; and

uðzÞ ¼ ln 8
jð1þ aÞcðzÞ þ zc0ðzÞj2

ð1þ jzaþ1cðzÞj2Þ2
þ ln jzj2a;

which leads to (6) with a ¼ 0:
(A.2) b� n ¼ 0: In this case (15) requires that c0 admits a zero of order a

at the origin. Since c is analytic, this situation can occur only for a 2 N:
Therefore for some m 2 N; we must have that a ¼ m and cðzÞ ¼ zmþ1jðzÞ þ
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a; for some a 2 C=f0g and jð0Þ=0: Hence, by reading j in place of c; this
case yields to (6) when a 2 N and a=0:

(A.3) b� n50: In this case using again (15) we have that necessarily
jb� nj ¼ 1þ a: Thus,

uðzÞ ¼ ln 8
j � ð1þ aÞcðzÞ þ zc0ðzÞj2

ðjzaþ1j2 þ jcðzÞj2Þ2
þ ln jzj2a;

which leads to (7).
Case B. As in Case A, using Lemma 4 in [13], we see that the function fðzÞ

in (13) cannot have an essential singularity at the origin, and for some n 2 Z;
we may write

fðzÞ ¼ z�njðzÞ; ð16Þ

with j holomorphic in D and jð0Þ=0: On the other hand, in view of the
condition

fðzÞfð�zÞ ¼ 1; ð17Þ

we have that jðzÞjð�zÞ ¼ ð�1Þnz2n: This, together with the fact that jð0Þ
=0; implies that necessarily n ¼ 0 (i.e. f ¼ j). Thus, f is holomorphic in D

and fð0Þ ¼ �1: Furthermore, fðzÞ=0; 8z 2 D as it easily follows by (17).
Consequently, hðzÞ ¼ ln fðzÞ is a well-defined holomorphic function on D:
Also note that, by (17), h is odd in D: Thus, for some m 2 N[ f0g; h takes
the form:

hðzÞ ¼ z2mþ1
X1
k¼0

hkz2k:

Setting b ¼ 2m þ 1; we have

f ðzÞ ¼ fð
ffiffiffi
z

p
Þ ¼ e

hð
ffiffi
z

p
Þ ¼ exp z

b
2

X1
k¼0

hkzk

 !
¼ expðz

b
2cðzÞÞ; ð18Þ

for some cðzÞ holomorphic in D; with cð0Þ=0: Inserting expression (18) into
(11) and using (15), we find that necessarily b

2
� 1 ¼ a; that is a ¼ m � 1

2
; for

some m 2 N; and (8) immediately follows.
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3. THE CONCENTRATION PHENOMENA: THE CASE OF BLOW
UP AT A VORTEX POINT

In this section, we analyze the situation where a solution sequence for (4)
admits a blow up point at a vortex point. Localizing our analysis around
such a vortex point, taken for simplicity to be the origin, we consider a
sequence un satisfying

�Dun ¼ eun � 4pandp¼0 in D;R
D

eunðxÞ dx4C;

(
ð19Þ

for suitable C > 0: Furthermore, to express the fact that the origin is the only

blow up point for un in D; we assume that, for any r 2 ð0; 1Þ;

9Cr > 0: max
r4jxj41

un4Cr; ð20Þ

max
%DDr

un ! þ1; as n ! 1: ð21Þ

We have:

Theorem 2. Let un satisfy (19) with an ! a > 0 and assume (20) and (21).
There exist a subsequence ukn

of un such that

(a) maxK ukn
! �1; as n ! 1; for every compact set K � D=f0g

(b) eukn ! bdp¼0; weakly in the sense of measures on D; with b58p:

Furthermore, if

(c) lim supn!1

R
D

eun516p;

then, either b ¼ 8p or b58pð1þ aÞ:

Remark 1. Note first that from parts (a) and (b) of Theorem 2, it
follows that, if the sequence un satisfies (19) and limn!1

R
D

eun58p; then un

cannot blow up in D: Indeed, while it is a well-known fact (cf. [23]) that un

cannot admit a blow up point in D=f0g; Theorem 2 excludes the possibility
of blow up at zero.

Remark 2. If un satisfies (19) with an51 and we assume (c), then
necessarily b ¼ 8p:

Proof of Theorem 2. We start with some general observations. Set,

vnðzÞ ¼ unðzÞ � 2an ln jzj; z 2 D; ð22Þ



LIOUVILLE EQUATION WITH SINGULAR DATA 169
which satisfies,

�Dvn ¼ jzj2an evn in D;R
D
jzj2an evn4C:

(
ð23Þ

Taking into account (22) and (23), assumptions (20)–(21) can be restated
equivalently in terms of vn as follows:

for any r 2 ð0; 1Þ;

9Cr > 0: max
r4jxj41

vn4Cr; ð24Þ

max
%DDr

vn ! þ1; as n ! 1: ð25Þ

Set zn 2 %DD: vnðznÞ ¼ max %DD; and so by (24) and (25),

zn ! 0 and vnðznÞ ! þ1; as n ! 1: ð26Þ

A standard blow up argument shows that, in view of (23) and (26)
necessarily,

R
D

evn ! þ1: So the situation analyzed here can never fulfil the
assumptions of the Brezis–Merle result, but must be handled directly.

We start with property (a). Note that by (23) and (24) we can use
Harnack’s inequality to reduce to prove that for every r 2 ð0; 1Þ; along a
subsequence, vn satisfies

min
jxj¼r

vn ! �1; as n ! 1: ð27Þ

By Theorem 1, along a subsequence which for simplicity we still denote by
vn; we may assume that vn takes either one of the form (6), (7) or (8) with
a ¼ an > 0 and c ¼ cn holomorphic on D; cnð0Þ=0: We consider
separately each one of these different cases.

Case 1.

vnðzÞ ¼ ln
jð1þ anÞcnðzÞ þ zc0

nðzÞj
2

ð1þ jz1þancnðzÞ þ anj2Þ
2
þ ln 8 ð28Þ

with an 2 C and an=0 if and only if an 2 N:
By (26) we have that jð1þ anÞcnðznÞ þ znc

0
nðznÞj

2 ! 1: Since z1þancnðzÞ is
locally univalent in Dn and cnð0Þ=0; we derive that gnðzÞ ¼ ð1þ anÞcnðzÞ þ
zc0

nðzÞ is holomorphic and never vanishes in D: So, ln jgnðzÞj
2 defines an

harmonic function in D: Fix r1 2 ðr; 1Þ; and set gn ¼ minjzj4r1 jgnðzÞj2: If
lim supn!1 gn ¼ 0; from (28), we immediately derive (27). Hence, suppose
that there exist g > 0 such that, along a subsequence, we have gn5g: In this
situation, we may apply Harnack’s inequality to the positive harmonic
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function ln jgnðzÞj2

gn
on Dr1 : Hence, for 05e5r1 � r; we find a constant t51

(depending on e and r only) such that

max
jzj4rþe

ln
jgnðzÞj2

gn

4t min
jzj4rþe

ln
jgnðzÞj2

gn

:

Consequently,

min
jzj4rþe

jgnðzÞj
2t5gt�1

n max
jzj4rþe

jgnðzÞj
25gt�1 max

jzj4rþe
jgnðzÞj

2:

Setting b ¼ gt�1; we may conclude,

min
jzj4rþe

jð1þ anÞcnðzÞ þ zc0
nðzÞj

2t5b max
jzj4rþe

jð1þ anÞcnðzÞ þ zc0
nðzÞj

2

5b max
jzj4rþe

jð1þ anÞcnðzÞ þ zc0
nðzÞj

2

ð1þ jz1þancnðzÞ þ anj
2Þ2

! þ1;

as n ! 1:

That is,

min
jzj4rþe

jð1þ anÞcnðzÞ þ zc0
nðzÞj ! þ1; as n ! 1: ð29Þ

On the other hand, for e > 0 sufficiently small, by assumption we have

max
r�e4jzj4rþe

jð1þ anÞcnðzÞ þ zc0
nðzÞj

2

ð1þ jz1þancnðzÞ þ anj2Þ
2
4Cr;e:

Setting, fnðzÞ ¼ zanþ1cnðzÞ þ an; by (29) we conclude that
minr�e4jzj4rþe jfnðzÞj ! þ1: Hence, for every z: jzj ¼ r; we may use
Cauchy’s integral formula to derive

jð1þ anÞcnðzÞ þ zc0
nðzÞj

1þ jz1þancnðzÞ þ anj2
4

1

ran

f 0
nðzÞ

fnðzÞ
2

����
���� ¼ 1

ran

d

dz

1

fnðzÞ

����
����

4
1

2pran

Z
jz�xj¼e

1

jðx� zÞj2
1

j fnðxÞj
jdxj

4Ce;r
1

minr�e4jzj4rþe j fnðzÞj
! 0;

and (27) is established.
Case 2.

vnðzÞ ¼ ln
j � ð1þ anÞcnðzÞ þ zc0

nðzÞj
2

ðjz1þan j2 þ jcnðzÞj
2Þ2

þ ln 8: ð30Þ
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By hypothesis vnðznÞ ! 1; as n ! 1: In case maxjzj4r j � ð1þ anÞcnðzÞ þ
zc0

nðzÞj ! þ1; we can proceed exactly as in the previous case to derive the
desired conclusion. Hence we suppose that, along a subsequence, still
denoted by cn; there exist a constant C > 0; such that maxjzj4r j � ð1þ
anÞcnðzÞ þ zc0

nðzÞj ¼ maxjzj¼r j � ð1þ anÞcnðzÞ þ zc0
nðzÞj4C: If lim supn!1

maxjzj4r jcnj ¼ þ1; by (30), we immediately get (27). So we are left to
consider the case where we have

max
%DDr

jcnj4C; ð31Þ

for suitable C > 0: Since cn is a sequence of holomorphic functions in D; in
this case, passing to a subsequence, we may conclude that, cn converges to c
uniformly in %DDr=2 together with its derivatives. By (26) and (30), we get that
necessarily, cð0Þ ¼ 0: Thus,

cnð0Þ ! 0; as n ! 1;

and, consequently,

vnð0Þ ! þ1; as n ! 1: ð32Þ

At this point, the following claim together with (32), yields (27) and we
conclude the proof in this case as well.

Claim. For any r 2 ð0; 1Þ; we have

vnð0Þ þmin
@Dr

vn42 ln
8ð1þ anÞ

2

r2ð1þanÞ
:

Proof. The idea of our proof is inspired by that of Theorem 2 given by
Shafrir [31]. For given r 2 ð0; 1Þ; define

snðzÞ ¼ ln 8
j � ð1þ anÞcnðzÞ þ zc0

nðzÞj
2

ðr2ð1þanÞ þ jcnðzÞj
2Þ2

:

Clearly, sn is superharmonic in Dr and so,

snð0Þ5 inf
jzj¼r

sn ¼ inf
jzj¼r

vn: ð33Þ

On the other hand,

snð0Þ ¼ ln 8
ð1þ anÞ

2jcnð0Þj
2

ðr2ð1þanÞ þ jcnð0Þj
2Þ2

4ln
8ð1þ anÞ

2

r4ð1þanÞ
þ ln jcnð0Þj

2: ð34Þ
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Using (33) and (34), we obtain

vnð0Þ ¼ ln
8ð1þ anÞ

2

jcnð0Þj
2

4ln
ð8ð1þ anÞ

2Þ2

r4ð1þanÞ
� snð0Þ42 ln

8ð1þ anÞ
2

r2ð1þanÞ
� inf

jzj¼r
vn;

which gives the desired estimates. ]

Case 3. Suppose aþ 1 ¼ m þ 1
2
; for some m 2 N and

vnðzÞ ¼ ln
jezmþ1

2 cnðzÞððm þ 1
2
ÞcnðzÞ þ zc0

nðzÞÞj
2

ð1þ jezmþ1
2 cnðzÞj2Þ2

: ð35Þ

For fixed r 2 ð0; 1Þ; we claim that we can find %zzn: j%zznj ¼ r; such that, along a
subsequence, we have

max
jzj¼r

jðm þ 1
2ÞcnðzÞ þ zc0

nðzÞj ¼ jðm þ 1
2Þcnð%zznÞ þ %zznc

0
nð%zznÞj ! þ1: ð36Þ

Indeed, if this was not the case, we would have

max
jzj4r

jðm þ 1
2
ÞcnðzÞ þ zc0

nðzÞj ¼ max
jzj¼r

jðm þ 1
2
ÞcnðzÞ þ zc0

nðzÞj4C;

for suitable C > 0: By (26), this implies that necessarily,

jez
ðmþ1

2 Þ
n cnðznÞj ! þ1; as n ! 1:

But this is impossible, since (35) would imply that vnðznÞ ! �1; as
n ! 1; in contradiction with (26). Hence, along a subsequence, we may

assume that (36) holds and also that je%zz
ðmþ1

2 Þ
n cnð%zznÞj admits a limit as n ! 1:

Recalling that

max
jzj¼r

jezmþ1
2 cnðzÞððm þ 1

2
ÞcnðzÞ þ zc0

nðzÞÞj
2

ð1þ jezmþ1
2 cnðzÞj2Þ2

4Cr 8n 2 N; ð37Þ

only one of the following two situations are possible:
Case A.

je%zz
ðmþ1

2 Þ
n cnð%zznÞj ! 0; as n ! 1;

or
Case B.

je%zz
ðmþ1

2 Þ
n cnð%zznÞj ! 1; as n ! 1:
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Case A. Possibly extracting a subsequence, assume that %zzn ! z0; with
jz0j ¼ r: We claim that there exist sufficiently small d > 0 and C > 0;
independent of n; such that

jezmþ1
2 cnðzÞj24C; 8jz � z0j4d: ð38Þ

Indeed, take d > 0 sufficiently small so that %BB2dðz0Þ � D=f0g: Consider the

function jnðzÞ ¼ 2 lnð1þ jezmþ1
2 cn j2Þ which satisfies

�Djn ¼ jzj2ðm�1
2 Þevn ; in B2dðz0Þ;

jn50 in B2dðz0Þ:

In view of (24), we have 04fnðzÞ :¼ jzj2ðm�1
2 Þevn4C in B2dðz0Þ: With the help

of Harnack’s inequality, we obtain suitable constants b > 1 and C > 0
(depending on d > 0 only) such that

max
jz�z0 j4d

jezmþ1
2 cnðzÞj4C min

jz�z0 j4d
jezmþ1

2 cnðzÞjb þ 1

� 
: ð39Þ

Hence, taking into account the hypothesis of Case A, we derive

max
jz�z0 j4d

jezmþ1
2 cnðzÞj4Cðje%zz

mþ1
2

n cnð%zznÞjb þ 1Þ ¼ Cð1þ oð1ÞÞ; as n ! 1; ð40Þ

and (38) follows. Therefore, in Bdðz0Þ � D=f0g; we can apply Harnack’s

inequality to the bounded harmonic function ln jezmþ1
2 cnðzÞj2 to obtain suitable

constants b 2 ð0; 1Þ and A > 0 (depending on d > 0 only), such that

max
jz�z0 j4

d
2

ln jezmþ1
2 cnðzÞj4b min

jz�z0 j4
d
2

ln Ajezmþ1
2 cnðzÞj: ð41Þ

Whence, as %zzn ! z0; under the hypothesis of Case A, from (41) we derive

max
jz�z0 j¼

d
2

jezmþ1
2 cnðzÞj ¼ max

jz�z0 j4
d
2

jezmþ1
2 cnðzÞj

4Abje%zz
ðmþ1

2 Þ
n cnð%zznÞjb ! 0; as n ! 1:
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At this point, we can conclude our proof as in Case 1 above. Indeed, by
Cauchy integral formula, we have

rðmþ1
2 Þ e%zz

ðmþ1
2 Þ

n cnð%zznÞ m þ
1

2

� 
cð%zznÞ þ %zznc

0ð%zznÞ
� ����

����
¼ %zz

ðmþ1
2 Þ

n e%zz
ðmþ1

2 Þ
n cnð%zznÞ m þ

1

2

� 
cð%zznÞ þ zc0ð%zznÞ

� � ����
���� ¼ d

dz
ezmþ1

2 cnðzÞjz¼%zzn

����
����

¼
1

2pi

Z
jz�z0 j¼

d
2

ezmþ1
2 cnðzÞ

ðz � %zznÞ
2

dz

������
������4 max

jz�z0 j¼
d
2

ezmþ1
2 cnðzÞ

����
����Oð1Þ

d
! 0:

This immediately implies vnð%zznÞ ! �1; and (38) is established in Case A.
Case B. This case is analogous to Case 1 above. We can complete the

proof exactly in the same way with the help of Harnack’s inequality and
Cauchy integral formula.

So (a) has been established.
In order to obtain (b), by (5), we can further extract a subsequence so that

eun ! n; weakly in the sense of measure in D: In view of (a), the measure n is
supported at zero, that is n ¼ bdp¼0 for some b > 0:

To show that b58p; we use a blow up argument for the sequence un: Let
xn 2 %DD: max %DD un ¼ unðxnÞ: As for vn; by (20) and (21), we have that

unðxnÞ ! þ1;

xn ! 0:

(
ð42Þ

Set

dn ¼ exp �
unðxnÞ

2

� 
! 0; as n ! 1;

and define

tn ¼ maxfdn; jxnjg ! 0; as n ! 1:

The sequence,

xnðxÞ ¼ unðtnxÞ þ 2 ln tn;

defined on the set Bn ¼ D1=tn
; satisfies

�Dxn ¼ exn � 4pandp¼0 in Bn;R
Bn

exnðxÞ dx4C;

(
ð43Þ
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for some C > 0: Set yn ¼ xn

tn
; and note that jynj41; so by taking a

subsequence, we can assume yn ! y0 2 R2: Furthermore,

max
%BBn

xn ¼ xnðynÞ ¼ unðxnÞ þ 2 ln tn5unðxnÞ þ 2 ln dn ¼ 0:

We distinguish two cases:
Case A: xnðynÞ4C; 8n 2 N:
Case B: lim supn!1 xnðynÞ ¼ þ1:
Concerning the Case A, we claim that,

lim inf
n!1

Z
D

eun58pð1þ aÞ: ð44Þ

Indeed, in this case,

04max
%BBn

xn ¼ xnðynÞ4C; ð45Þ

and so, if we write xnðxÞ ¼ 2an ln jxj þ fnðxÞ; then fnðxÞ defines the regular
part of xn; and for every R > 0; it satisfies:

�Dfn ¼ jxj2an efn on DR;

max@DR
jfnj4CR;

(
ð46Þ

for suitable CR > 0: Since exn ¼ jxj2an efn is uniformly bounded in DR; by
standard elliptic estimates, we derive that jfnj is uniformly bounded in DR:
Therefore, we can use elliptic regularity theory together with a diagonal
process to conclude that, along a subsequence, fn ! f in C1;d

locðR
2Þ for some

d 2 ð0; 1Þ: Furthermore, f satisfies

�Df ¼ jxj2aef in R2;R
R2 jxj2aef5þ1:

(
ð47Þ

By the results in [12], see also [30], necessarily
R
R2 jxj2aef ¼ 8pð1þ aÞ: So,

lim inf
n!þ1

Z
D

eun ¼ lim inf
n!þ1

Z
Bn

exn ¼ lim inf
n!þ1

Z
Bn

jxj2an efn

5
Z
R2

jxj2aef ¼ 8pð1þ aÞ:

Hence, (44) holds and b58pð1þ aÞ in this case.
Case B. In this case, necessarily tn ¼ jxnj (along a subsequence) and

consequently jy0j ¼ 1 (recall y0 ¼ limn!1
xn

tn
Þ:

Hence, in this situation, xn admits a blow up point at y0=0 and we can
apply the Li–Shafrir result [23] to the sequence xn in any small
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neighborhood of y0 away from zero, and obtain that

lim
n!1

Z
Bdðy0Þ

exn ¼ 8pm; for some m 2 N; ð48Þ

for every d > 0 sufficiently small. As above, this yields b58pm; and in any
event, the desired conclusion that b58p is established.

We now turn to the proof of the last part of the statement. For this
purpose, we recall the Alexandrov–Bol inequality (cf. [2]), as derived by
Suzuki [36].

The Alexandrov–Bol inequality. Let p 2 C2ðOÞ \ C0ðOÞ satisfy the elliptic
inequality:

�Dlog p4p in O � R2:

Then,

l2ð@OÞ51
2
ð8p� mðOÞÞmðOÞ;

where

lðOÞ ¼
Z
@O

p
1
2 ds and mðOÞ ¼

Z
O

p dx:

We need to prove that, if

b ¼ lim
n!1

Z
D

eun58pð1þ aÞ; ð49Þ

then necessarily b ¼ 8p:
In view of (44), if (49) holds, then Case A can be ruled out and we have

that necessarily Case B must occur.
Furthermore, since b4lim supn!1

R
D

eun516p; then for the sequence xn;
(48) must hold with m ¼ 1 and consequently,

lim sup
n!1

Z
A

exn58p; for every open regular set A �� R2=fy0g: ð50Þ

At this point, we may use Remark 1, and conclude that y0 is the only blow
up point for the sequence xn in DR; for every R > 1: In particular, around the
origin, xn is uniformly bounded from above, and so the presence of the
Dirac measure in (43) is no longer problematic for the use of the Brezis–
Merle analysis to derive,

max
jxj¼R

xn ! �1; as n ! 1;

lim
n!þ1

Z
jxj4R

exn ¼ lim
n!þ1

Z
Bdðy0Þ

exn ¼ 8p;
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for every R > 1: Going back to the original coordinates, those conditions
read as follows:

max
jxj¼Rjxn j

un þ 2 ln jxnj ! �1; ð51Þ

lim
n!þ1

Z
jxj4Rjxn j

eun ¼ 8p; ð52Þ

for every given R > 1: Thus, in the set

On; r ¼ Dr=DRjxn j;

un satisfies,

�Dun ¼ eun in On; r;

lim supn!1

R
On; r

eunðxÞ dx ¼ m58p:

(
ð53Þ

So, for n large, we can apply the Alexandrov–Bol inequality to un in On; r

and conclude that

Z
@On; r

eun=2 ds

 !2

5
1

2
8p�

Z
On; r

eun

 ! Z
On; r

eun

 !
; ð54Þ

that is,

Z
@On; r

eun=2

 !2

5
1

2
ð8p� mþ oð1ÞÞ

Z
On; r

eun ; as n ! 1: ð55Þ

We will show that the l.h.s. of (55) goes to zero as n ! þ1: In turn, the r.h.s
goes to zero, and since m58p; we concludeZ

On; r

eun ! 0: ð56Þ

Indeed, Z
@On; r

eun=2 ds ¼
Z
@Dr

eun=2 ds þ
Z
jxj¼Rjxn j

eun=2 ds:

Using the already established property (a) with K ¼ @Dr; we findZ
@Dr

eun=2 ds ! 0; as n ! 1:
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On the other hand, using (51), we have

Z
jxj¼Rjxn j

eun=2 ds42pRjxnj max
jxj¼Rjxn j

e
1
2unðxÞ

¼ 2pR max
jxj¼Rjxn j

e
1
2 ðunðxÞþ2 ln jxn jÞ ! 0; as n ! 1:

Thus, (56) holds and by (52) we conclude

b ¼ lim
n!1

Z
Dr

eun ¼ lim
n!1

Z
jxj4Rjxn j

eun þ lim
n!1

Z
On; r

eun ¼ 8p: ]

From Theorem 2, we immediately derive the following version of the
Brezis–Merle result [6] for a solution sequence un satisfying (19).

Theorem 3. Let un be a solutions sequence for problem (19) with

an ! a > 0: There exists a subsequence ukn
of un for which one of the

following alternative holds:

(i) supK jukn
ðxÞ � 2akn

ln jxjj4CK 8K �� D; and suitable constant CK

> 0:

(ii) supK fukn
ðxÞ � 2akn

ln jxjg ! �1; 8K �� D:

(iii) There exist a finite and nonempty set S ¼ fq1; . . . ; qlg � D; l 2 N;
corresponding sequences fx1

ngn2N; . . . ; fxl
ngn2N � D; such that xi

n ! qi and

ukn
ðxi

nÞ ! 1 for i 2 1; . . . ; l: Furthermore, supKfukn
ðxÞ � 2an ln jxjg ! �1

on any compact set K � D=S; and eukn !
Pl

i¼1 bidqi
weakly in the sense of

measures on D; with bi 2 8pN if qi=0 and bi58p if qi ¼ 0 for some i ¼
1; . . . ; l:

At this point, the more general version of Theorem 3, as stated in the
Introduction, may be easily derived.

Proof. As above, we shall work with the sequence vn defined in (22).
Note that in any subdomain D0 �� D=f0g; we have

Z
D0

evn4CD 0 ; ð57Þ

with CD0 > 0 a suitable constant depending on D0 only. Recall that the blow
up set S of vn in D is defined as follows:

S ¼ fx 2 D: 9fxng � D such that xn ! x and vnðxnÞ ! þ1g:
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In view of (21), the solutions sequence vn satisfies to all assumptions of the
Brezis–Merle Theorem in D= %DDd for every d > 0 sufficiently small. Recalling
that vnðxÞ ¼ unðxÞ � 2 an ln jxj in D; we may conclude that S0 ¼ S=f0g is a
finite set, and along a subsequence, unðxÞ � 2an ln jxj satisfies one of the
alternatives (i)–(iii) above with D replaced by D0 ¼ D=f0g and S replaced by
S0: Obviously, each blow up point for vn in S0 (when not empty) is also a blow
up point for un: Hence, we are left to analyze what happens around zero.
Observe first that the point x ¼ 0 is a blow up point for vn if and only if it is a
blow up point for un: At this point, we may conclude our proof by observing
that, in case zero is not a blow up point for vn (and hence for un), that is
S ¼ S0; then vn is uniformly bounded above in a small neighborhood of zero.
This, combined with (57), gives that vn satisfies to all assumptions of the
Brezis–Merle Theorem in the set D; and so we immediately derive the desired
conclusion in this case. If zero is a blow up point for vn; and hence for un;
then S ¼ S0 [ f0g: Thus, un satisfies to all assumptions of Theorem 2 in a ball
Br0 ð0Þ: For S0

=|; take r0 > 0 sufficiently small so that Br0ð0Þ \ S0 ¼ |: Thus,
the conclusion follows in this case as well, by combining the Brezis-Merle
result applied to vn on D=f0g with Theorem 2 applied to un in Br0ð0Þ: ]
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