
FEBS Letters 581 (2007) 3626–3633

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Minireview

Crosstalk between xenobiotics metabolism and circadian clock

Thierry Claudela, Gaspard Cretenetb,c, Anne Saumetb,c, Frédéric Gachonb,c,*

a Department of Pediatrics, Research Laboratory, University Medical Center Groningen, Groningen, ND-9700 RB, The Netherlands
b Inserm, Equipe Avenir, Montpellier F-34396, France

c CNRS, Institut de Génétique Humaine, UPR 1142, Montpellier F-34396, France

Received 22 February 2007; revised 30 March 2007; accepted 3 April 2007

Available online 17 April 2007

Edited by Robert Barouki
Abstract Many aspects of physiology and behavior in organ-
isms from bacteria to man are subjected to circadian regulation.
Indeed, the major function of the circadian clock consists in the
adaptation of physiology to daily environmental change and the
accompanying stresses such as exposition to UV-light and food-
contained toxic compounds. In this way, most aspects of xenobi-
otic detoxification are subjected to circadian regulation. These
phenomena are now considered as the molecular basis for the
time-dependence of drug toxicities and efficacy. However, there
is now evidences that these toxic compounds can, in turn, regu-
late circadian gene expression and thus influence circadian
rhythms. As food seems to be the major regulator of peripheral
clock, the possibility that food-contained toxic compounds par-
ticipate in the entrainment of the clock will be discussed.
� 2007 Federation of European Biochemical Societies.
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1. Introduction

Virtually all light-sensitive organisms from cyanobacteria to

humans show rhythmic regulation of many aspects of physiol-

ogy and behavior. The cycles with a period of approximately

24 h are considered to be circadian, derived from the Latin

words circa diem (meaning about a day). It has been recently

suggested that the evolution of circadian clock in the early

metazoan period was to avoid genotoxic UV-light [1]. Primi-

tive marine organisms have used blue-light receptors (e.g.,

photolyase and cryptochromes) to avoid UV-rich sunlight by

moving to deeper sea levels. These blue-light receptors later

evolved to become coupled to a circadian oscillator that could

anticipate this up-and-down migratory behavior. In mammals,

this behavior has evolved to include the anticipation of daily

food availability and predator threat.

At a physiological level, the main task of the circadian clock

is the optimization of metabolism and energy utilization for

sustaining life processes in the organism. In this context, many

aspects of the physiological adaptation to daily food intake,
*Corresponding author. Address: CNRS, Institut de Génétique
Humaine, UPR 1142, Montpellier F-34396, France. Fax: +33 (0) 499
61 99 01.
E-mail address: Frederic.Gachon@igh.cnrs.fr (F. Gachon).

0014-5793/$32.00 � 2007 Federation of European Biochemical Societies. Pu

doi:10.1016/j.febslet.2007.04.009
metabolism and detoxification are regulated in an anticipatory

fashion by the circadian clock [2]. For example, rest and activ-

ity cycles, heart rate, blood pressure, bile and urine produc-

tion, drug metabolism and transport in liver and intestine as

well as endocrine functions are all subjected to daily fluctua-

tions. The mammalian timing system is organized in a hierar-

chical manner with a central pacemaker located in the

suprachiasmatic nucleus (SCN) of the hypothalamus which

synchronizes in a coordinated fashion cellular circadian oscil-

lators present in all peripheral organs by cyclic neuronal and

humoral signals emanating directly or indirectly from the

SCN [3]. At a molecular level, there is no difference in the cir-

cadian clock of SCN neurons and peripheral cells [4]. How-

ever, there is a major distinction in their synchronization:

SCN neurons phase is engendered by light-dark cycles per-

ceived by the retina [5], whereas peripheral oscillators phase

is adjusted by chemical zeitgebers, like for example signals gen-

erated by feeding-fasting rhythms [6,7]. In this context, the

time-dependent inactivation of food-contained toxic com-

pounds is among the important function of the circadian

clock. As a consequence, the circadian pharmacokinetics and

pharmacodynamics that modulate drug effectiveness and toxic-

ity are a manifestation of the circadian regulation of xenobi-

otic detoxification and could have important clinical

applications since they allow treatment modification in order

to increase drug effects or decrease side effects [8] (see Fig. 1).

In mammals, the xenobiotic defense system involved in

drug metabolism is composed of three groups of proteins

assuming distinct functions [9]. The phase I group contains

the microsomal P450 cytochrome super-family enzymes

with oxidase, reductase or hydroxylase activities. Phase II,

or conjugating enzymes, comprises sulfotransferases (SULT),

UDP-glucuronotransferases (UGT), NAD(P)H:quinine

oxidoreductases (NQO), epoxide hydrolases (EPH), glutathi-

one-S-transferases (GSH), and N-acetyltransferases (NAT).

Conjugation help to make lipophilic compounds hydrophilic

enough to subsequently control and facilitate their excretion

into bile, faeces and/or urine by the transporters or phase

III group, like multidrug resistance-associated proteins

(MRP) or P-glycoprotein (P-gp), which serve as barriers to

limit the penetration of xenobiotics. In addition, some other

proteins like the Aminolevulinic acid synthase (ALAS1) and

the P450 oxidoreductase (POR) regulate the activity of most

of the phase I enzymes. ALAS1 is the rate-limiting enzyme

in heme synthesis, the prosthetic group of all cytochrome

P450 enzymes. Since monooxygenase reaction requires elec-

trons that are extracted from NAD(P)H and transferred via
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Hierarchical organization of the circadian detoxification
machinery. The light/dark cycle resets the activity of the master
pacemaker located in the SCN via ganglionar cells of the retina. The
SCN then provides timing cues that will synchronize other slave
oscillators located in peripheral tissues. Peripheral oscillators can also
be reset by changing the feeding rhythm. As a result, peripheral organs
display synchronized orchestration of their individual detoxification
processes which lead to circadian detoxification of the organism.

Fig. 2. Simplified model of the mammalian circadian oscillator. The
molecular mammalian circadian clock is based on molecular feedback
loops with a positive limb (BMAL1 heterodimer) and a negative limb
(PER/CRY complex) that are interconnected via the nuclear orphan
receptor REV-ERBa. This core oscillator, in addition to the core
oscillator-regulated circadian transcription factors REV-ERBa and
PARbZip, contribute to the generation of circadian clock controlled
genes which participate in the generation of circadian physiology and
behavior.
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the flavin group of POR to the heme group of the cytochrome

P450 enzymes, expression of cytochrome P450 enzymes,

ALAS1 and POR are coordinated.

Interestingly, genome-wide analysis of liver transcriptome

revealed that proteins of the phase I–III groups of detoxifica-

tion as well as ALAS1 and POR are expressed in a circadian

fashion [10–13]. It is thus conceivable that the circadian

expression of proteins involved in xenobiotic detoxification is

responsible for the daytime-dependent drug metabolism that

modulates drug effectiveness and toxicity.
2. Control of circadian genes expression

Studies in mice have shown that the circadian rhythm in

gene expression is generated by a molecular oscillator, presents

in all cells of the animal, driven by transcriptional and post-

transcriptional feedback loop involving a positive and a

negative limb. The positive limb consists of the bHLH-PAS

transcription factor BMAL1 and its dimerization partners

CLOCK or NPAS2. This heterodimer activates the transcrip-

tion of the members of the negative limb cryptochrome (Cry)

and period (Per). As a consequence, CRY and PER accumu-

late until they reach a treshold level that will allow them to

form complexes to attenuate the transcriptional activity of

the BMAL1 heterodimer and thereby autorepress their own

genes. Subsequently, this leads to a decrease of the CRY-

PER complex now unable to perform the autorepression and
a new cycle of Cry and Per transcription can start. The same

activators and repressors drive the circadian expression of

the orphan nuclear receptor REV-ERBa which periodically

represses Bmal1 expression and then contributes to the

circadian expression of Bmal1 (see Fig. 2 and for more detailed

reviews, see Ref. [14]).

In addition to the core oscillator genes, the circadian clock

drives numerous output genes to translate circadian rhythm

into physiological and behavioral events. These output genes

comprise transcription factors directly controlled by the core

oscillator [15,16] that repress (REV-ERBa) [17] or activate

(PARbZip) [18,19] their target gene. This transcription factors

cascade thus orchestrates the circadian genes expression

involved in the daytime-dependent xenobiotic detoxifications.

Transcriptome profiling in several tissues indicated that

2–10% of the genes are transcribed in a circadian manner

[10–13]. The transcriptional circuitry leading to circadian

detoxification is resumed in Fig. 3 and will be described in

the next section.
3. Circadian transcription factors and detoxification

3.1. PARbZip transcription factors

Recent data suggests that the well-conserved transcription

factors of the PARbZip family play an important role in xeno-

biotic detoxification. This family is composed of the three

members DBP (albumin site D-binding protein), TEF (thyro-

troph embryonic factor) and HLF (hepatocyte leukemia fac-

tor). These proteins bind DNA elements of the consensus

sequence 5 0-VTTAYGTAAY-3 0(where V is C, G or A, and

Y is C or T) as homo- or heterodimer [20]. They are expressed

under a robust circadian fashion in most organs, although the



Fig. 3. Transcriptional network controlling circadian detoxification. The core oscillator control circadian expression of PARbZip transcription
factors which, in turn, control the expression of CAR and PPARa, but also Alas1 and P450 OxRed, to coordinate an important part of the circadian
xenobiotic detoxification. In addition, this oscillator induces the circadian expression of AhR, contributing to another way of regulation of circadian
drug metabolism. Finally, the BMAL1-controlled circadian expression of SHP negatively modulates different aspects of the xenobiotic response and
amplifies the circadian regulation.
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expression of HLF is more restricted to brain, liver, kidney and

small intestine [21]. Mice devoid of one or two PARbZip genes

show mild phenotypes. However, mice deficient of all three

members suffer from a high juvenile mortality and a high adult

morbidity. The high mortality within the first three months is

due to spontaneous and sound-induced seizures probably

caused by a defect in vitamin B6 metabolism. PARbZip-defi-

cient mice have reduced level of pyridoxal phosphate (PLP),

the active form of vitamin B6 and a required coenzyme in-

volved in neurotransmitter synthesis. The gene coding for pyr-

idoxal kinase (Pdxk), that controls PLP synthesis, is under the

control of PARbZip transcription factors [19]. Despite the fact

that after three months the seizures decreased, the mice con-

tinue to present an important mortality since less than 20%

of them are still alive after one year. Moreover, PARbZip-defi-

cient mice show signs of accelerated aging, such as cachexia,

lordokyphosis, and an absence of vigor. Transcriptome profil-

ing using DNA microarray technology revealed that PARbZip

proteins control expression of many genes involved in xenobi-

otic detoxification in liver and kidney [18]. These include genes

of the phase I (Cyp 2b, 2c and 2a), phase II (Ces3, Cml3,4,5,

GSTt1, a3) and phase III (ABCG2) group of detoxification.

In addition, these proteins control the expression of ALAS1

and POR, two enzymes required for the activity of cytochrome

P450 enzymes.

Importantly, this study revealed that PARbZip transcription

factor control the circadian expression of the constitutive

androstane receptor (CAR), a key nuclear receptor involved

in xenobiotic detoxification [22]. The consequence of the circa-

dian expression of CAR is a strong daytime-dependent induc-

tion of Cyp2b10 mRNA by phenobarbital in liver and small

intestine of wild-type mice, whereas PARbZip-deficient mice

have a very low induction throughout the day. Moreover,

PARbZip-deficient mice are highly susceptible to toxicity in-

duced by anticancer drugs. Therefore, it is possible that the

downregulation of some detoxification genes in PARbZip tri-

ple knockout mice, including Cyp2b10, is a consequence of

the decreased expression of CAR but not a consequence of

the PARbZip deficiency per se. A recent study also revealed
a role for clock genes in xenobiotic tolerability [23]. The

authors of this study show that mice with a Bmal1 null allele

or a mutation of the Clock gene displayed increased sensibility

to the toxic effect of the anticancer agent cyclophosphamide,

whereas mice devoid of the two Cry genes were more resistant

to this effect. As, at least for DBP, the expression of PARbZip

transcription factor is obliterated in Clock and Bmal1 knock-

out mice whereas this expression is constitutively high in

Cry-deficient mice [16,24], it is conceivable that these effects

reflect the level of PARbZip transcription factors, and of their

target genes.

3.2. Peroxisome proliferator activated receptor a
Peroxisome proliferator activated receptor alpha (PPARa) is

a nuclear receptor with a modular structure typical for steroid

receptor that binds to its cognate DNA elements as heterodi-

mers with the retinoid X receptor a (RXRa). PPARa is acti-

vated by compounds referred to as peroxisome proliferators,

such as lipid lowering fibrates, phthalate-ester plasticizers, as

well as endogenous fatty acids. In response to these xenobiotic

toxic compounds, activated PPARa stimulates the expression

of phase I and II proteins such as Cyp4a [25] and UGT

[26,27]. If the major function of PPARa is to regulate lipid

and glucose homeostasis [28], the requirement of the PPARa
detoxification pathway has been shown recently in the case

of toxic compounds contained in vegetal food such as sesame

grains [29].

Like other nuclear receptor, PPARa expression follows a

circadian rhythm at the mRNA and protein level [30]. It has

been suggested that this circadian expression is controlled

directly by BMAL1 and the molecular oscillator [31]. How-

ever, recent data suggests that lipid metabolism regulated by

PARbZip proteins seems to be also involved in the regulation

of PPARa expression (F. Gachon and Ueli Schibler, unpub-

lished results).

3.3. Aryl hydrocarbon receptor

The aryl hydrocarbon receptor (AhR), and its dimerization

partner AhR nuclear translocator (Arnt), belong to the



Table 1
Transcriptional regulation of circadian clock genes by xenobiotics

Circadian gene Drug Receptor Reference

BMal1 WY14643 PPARa Canaple et al. [53]
TCDD AhR Miller et al. [56]

Per1 FICZ AhR Mukai and Tischkau [57]
TCDD AhR Garrett and Gasiewicz [55]

Miller et al. [56]

Per2 TCDD AhR Garrett and Gasiewicz [55]
Fletcher et al. [33]

Per3 DEHP PPARa Currie et al. [54]
Cry1 FICZ AhR Mukai and Tischkau [57]

DEHP PPARa Currie et al. [54]

Cry2 FICZ AhR Mukai and Tischkau [57]
Dbp DEHP PPARa Currie et al. [54]

FICZ: 6-Formylindolo[3,2-b]carbazole.
TCDD: 2,3,7,8-Tetrachlorodibenzo-p-dioxin.
DEHP: Diethylhexylphtalate.
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basic-helix-loop-helix (bHLH)-PAS family of transcription

factors. AhR/Arnt is activated by halogenated and polycyclic

aromatic hydrocarbons such as dioxin [32]. Once activated,

the AhR/Arnt heterodimer binds to its cognate DNA elements

and activate phase I and II enzymes such as Cyp1a and 1b,

UGT and NAD(P)H dehydrogenase [33,34]. AhR is known

to be modulated by a variety of dietary plant constituents pres-

ent in vegetables and fruits and is also one of the major effec-

tors of the elimination of food-contained toxic compounds

[35]. Finally, and not surprisingly, AhR and Arnt show both

a diurnal expression in many organs including liver [36]. Inter-

estingly, Cyp1a1, the major AhR target gene, displays a circa-

dian expression suggesting a daily activation of the receptor by

food-contained toxic compounds [37].

3.4. Small heterodimer partner

The small heterodimer partner (SHP) is an atypical orphan

nuclear receptor containing the ligand-binding and dimeriza-

tion domains but lacking a DNA-binding domain. However,

SHP is located in the cell nucleus where it can interact with

many nuclear receptors and repress their transcriptional activ-

ity [38,39]. Interestingly, it has been shown that SHP is able to

interact and inhibit CAR [38,40], and also the related pregnane

X receptor (PXR) [41], two nuclear receptors that play a fun-

damental role in xenobiotic detoxification. Importantly, these

two proteins are involved in the detoxification of more than

60% of the drugs currently available and which display consid-

erable overlap in their action [42–44]. In addition, an interac-

tion between SHP and Arnt has been also described, despite

the fact that Arnt is not a nuclear receptor. This interaction

leads to the repression of the activated AhR/Arnt heterodimer

by SHP [45].

Since CAR, PXR and AhR constitute the major part of the

response to xenobiotics, the ability of SHP to interact and thus

subsequently inactivate them, identify SHP as a major repres-

sor of the xenobiotic detoxification. Interestingly, it has been

shown that SHP mRNA showed a circadian expression pat-

tern in mouse liver, with a maximum of expression at the

end of the night which corresponds to the mouse active period

[46]. The authors speculate that this circadian expression is

directly controlled by the positive branch of the oscillator via

an interaction with the nuclear receptor LRH-1 (liver receptor

homolog-1), whereas the phase of SHP expression did not cor-

respond to the one of a classical BMAL1 target gene. In addi-

tion, this maximum time of expression correspond to the time

where CAR and AhR/Arnt start to show decreased expression

and also less transcriptional response to their normal activa-

tors. It seems that circadian SHP expression acts as a negative

modulator of the xenobiotic response and could play poten-

tially an important role in liver metabolism of toxic drugs by

amplifying the time-dependent response to toxic compounds.

Since SHP does still have the ability to bind a ligand, it will

be of interest to determine whether xenobiotics and/or their

metabolites can modulate SHP activity and therefore the end

of the xenobiotic response. Moreover, the recent characteriza-

tion of small molecules those are able to activate LRH-1 open

the possibility to study detoxification modulation by nuclear

receptors in a circadian manner [47]. Intriguingly, SHP was

originally described as a CYP7A1 repressor, the limiting step

of the bile acid synthesis [48,49]. Bile acids are toxic com-

pounds detoxified by CAR among other nuclear receptors
and are involved in cholesterol metabolism [50]. Enzymes gen-

erating endogenous toxics are often call ‘‘Phase 0 enzymes’’ by

analogy with the phase I–III detoxification systems (see

above). Based on the hopeful role of SHP, it was anticipated

that SHP and CYP7A1 rhythms will be strictly antiphasic.

However, SHP regulation by BMAL1/CLOCK and LRH-1

on one hand and CYP7A1 promoter trans-activation by

LRH-1 on the other hand seem to exclude a major role for

SHP in CYP7A1 bile acid-mediated negative feedback and

makes more likely that SHP will control CYP8B1 a down-

stream enzyme of the pathway. This can explain why SHP

transgenic mice that over express SHP do not have a smaller

bile pool as assessed by the bile acid content of the blood

[51]. It explains also why CYP7A1 expression does not always

negatively correlate with SHP expression [52]. More research

will be required to elucidate the interactions between produc-

tion and inactivation of toxics.
4. Perturbation of the circadian clock by xenobiotics

If the impact of circadian rhythm on drug metabolism and

xenobiotic detoxification start to be described, there is also

now evidences showing perturbations of circadian rhythm by

xenobiotics [33,53–57]. Indeed, at a molecular level, xenobiotic

exposure can significantly alter the expression of circadian

clock genes by different pathways; mostly AhR and PPARa
(see Table 1). By disturbing the circadian clock, and hence cir-

cadian expression of xenobiotic metabolism and transport

genes, some drugs might modify their own metabolism, and

consequently their toxicity. Hence, WY14643, a synthetic

PPARa ligand, could entrain the circadian clock by activation

of the Bmal1 promoter [53], whereas TCDD, an activator of

AhR, disrupts the circadian clock by downregulation of Per1

and Per2 expression [55].

Various other compounds that target known signaling path-

ways, such as PMA (phorbol 12-myristate 13-acetate) or for-

skolin, and are sometimes used as medical drugs can also

perturb or entrain the circadian clock [58]. In the same context,

drugs that mimic natural hormones like glucocorticoid or
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steroid can also have strong effects on circadian gene expres-

sion [59,60]. It is also interesting to mention the possible effect

of retinoic acid in circadian regulation of detoxification. Like

other drugs or hormones cited above, retinoic acid can also

interfere with the circadian clock by inactivating the

BMAL1/CLOCK or NPAS2 heterodimers after the ligand-

dependent interaction of its receptors RAR and RXR with

CLOCK or NPAS2 [61]. In addition, RXR, as heterodimeriza-

tion partner of the nuclear receptor PPARa, CAR, and PXR,

can synergically reinforced the transcriptional activity of the

heterodimer after binding of its ligand, 9-cis-retinoic acid

[62], but not always [63]. Interestingly, the concentrations of

retinoic acid and of some of its metabolites are increased after

retinoic acid administration [64] and have been found to follow

a moderate circadian rhythm in serum [65]. RXR seems thus to

play a role in the circadian rhythm of detoxification and

administration of retinoic acid during medical treatment,

particularly of cancer [66], can both perturb circadian

rhythms and the nuclear receptor-dependent detoxification

pathways.

In all cases, if circadian rhythms have an important impact

on drug toxicity and effectiveness, the impact of drugs on cir-

cadian rhythm should be not neglected and on the other hand

can also have an influence on drug metabolism and drug/drug

deleterious interactions. By giving a rational reason to study

the interactions between circadian rhythm, administration tim-

ing of a drug and drug metabolism, studies deciphering xeno-

biotic influence on clock systems will help to define a molecular

clock-controlled pharmacology.
5. Circadian clock, detoxification and aging

It is known for decades that circadian rhythms change with

aging: absent in the newborn, they start three months after

birth, undergo changes during adolescence, stabilize in adult-

hood and deteriorated with advanced age [67,68]. As shown

in rodent, this perturbation of the circadian clock during aging

is characterized by a general alteration of the circadian expres-

sion of the circadian clock genes in the SCN and in peripheral

organs [69,70]. Interestingly, the aging-linked changes are also

described for the detoxification capacity in both rodents and

humans [71]. This decrease in detoxification efficiency seems

to be linked to a decrease in the expression of genes coding

for detoxification enzymes and their regulators [72,73].

Whereas it has not been clearly demonstrated, some evidence

suggest that this age-dependent decrease in detoxification is

related to the deterioration of circadian rhythms in aged peo-

ple, as circadian-regulated transcription factors play an impor-

tant role in xenobiotic detoxification. Moreover, it has been

shown that the life span of the nematode Caenorhabditis ele-

gans is dependent of the DAF-2/Insulin growth factor receptor

pathway that was recently described to control the expression

of genes involved in many aspects of detoxification [74].

Accordingly, a reduced activity of detoxification genes would

be expected to promote premature aging and reduced life span,

two features shared by the PARbZip and BMal1 deficient mice

[18,75]. It is likely, therefore, that age-dependent perturbations

of the circadian rhythms could be linked to the detoxification

capacity and thus contribute to acceleration of the aging pro-

cess.
6. Conclusion

Recent discoveries start to reveal the molecular mechanisms

of circadian drug metabolism. Not surprisingly, this highlights

the fact that the mechanisms involved are the same as the one

implied in the metabolism of food-contained toxic compound.

As this function is one of the major functions of circadian

rhythm in living organisms, we now start to understand the

time-dependent drug toxicity and effectiveness in rodent and

human. In addition, it has been shown that xenobiotics can

perturb normal circadian rhythm by acting on circadian gene

expression. As food seems to be the major zeitgebber for most

peripheral organs [6,7], it is conceivable that food-contained

toxic compounds modulate expression of circadian clock genes

via xenobiotic-sensible transcription factors and, in turn, plays

a role in the food entrainment of the circadian oscillator. Inter-

estingly, it has been recently shown that an oscillator-indepen-

dent circadian transcription could exist, with a Heat Shock

factor 1 (HSF1)-dependent transcriptional regulation of the

mouse Per2 gene [76]. As HSF1 is known to be activated by

a wide range of stimuli including toxic compounds contained

in food [77], this possibility will have to be taken into account.

Finally, the biological consequence of xenobiotics exposure

depends on interactions between the timing of exposure and

the xenobiotic effect on circadian clock machinery. The final

goal of chronobiology is to find the optimal time to administer

drugs in order to obtain maximum efficiency with minimum

doses and side-effects. However, to reach this goal, we have

to better understand human circadian clock. Unfortunately,

determination of period length of circadian behavior and phys-

iology in human is costly and time consuming, and cannot be

realize by simple clinical test. Nevertheless, recent in vitro re-

sults show the relative easy recording of period length on cul-

tured primary fibroblasts obtained from skin punch biopsies,

using lentiviral vectors encompassing a circadian luciferase re-

porter gene [78]. These experiments revealed a high variability

in the circadian period length between human individuals

which can possibly reflect genetic variations in genes control-

ling the human circadian clock. In the same time, to personal-

ize chronotherapy and obtain better adapted treatments,

knowledge of pharmacogenomics profile of the patient will

be required. Genomic data acquired through the international

HapMap project will help in this attempt [79]. Interestingly,

this study revealed that the genes involved in detoxification

are under positive and negative selection in populations with

different diets and lifestyle, and showed that some phase

I–III drug-metabolizing enzymes are highly polymorphismic

[80]. Integration of genomic informations concerning circadian

rhythm and drug metabolism may lead to the understanding of

circadian xenobiotic detoxification in each individual and thus

to the formulation of novel therapeutic regimens. It will be

important to take into account the perturbations of circadian

gene expression induced by xenobiotics since they can have

harmful effects like increased predisposition to breast cancer

among women [81], or atherosclerosis in male-shift workers

[82], who together represent 10% of the working force across

the European Union.
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