
Theoretical Computer Science 313 (2004) 145–158
www.elsevier.com/locate/tcs

Extraction and recoding of input-�-cycles
in 'nite state transducers

Andr)e Kempe
Xerox Research Centre Europe, Grenoble Laboratory, 6 chemin de Maupertuis,

Meylan 38240, France

Abstract

Much attention has been brought to determinization and �-removal in previous work. This
article describes an algorithm for extracting all �-cycles, which are a particular type of non-
determinism, from an arbitrary 'nite-state transducer (FST). The algorithm decomposes the FST,
T , into two FSTs, T1 and T2, such that T1 contains no �-cycles and T2 contains all �-cycles of
T . The article also proposes an alternative approach where each �-cycle of T is replaced by a
single transitions with a complex label that describes the output of the cycle. Since �-cycles are
an obstacle for some algorithms such as the decomposition of ambiguous FSTs, the proposed
approaches allow us to by-pass this problem. �-Cycles can be extracted or recoded before and
re-inserted (by composition) after such algorithms.
c© 2003 Elsevier B.V. All rights reserved.

MSC: 05C85; 05C38; 68Q45; 68W30

Keywords: Finite state transducer; Decomposition; Non-determinism; Epsilon cycle

1. Introduction

Much attention has been brought to the problem of non-determinism. There has been
work on both determinization in general and �-removal (e.g. [1,5,6]).
This article describes an algorithm for extracting all �-cycles, which represent a

special type of non-determinism consisting of consecutive transitions with the empty
string � as input label, from an arbitrary 'nite-state transducer (FST). The algorithm
decomposes the FST, T , into two FSTs, T1 and T2, such that T1 contains no �-cycles
and T2 contains all �-cycles of T . Jointly in a cascade (that simulates composition), T1
and T2 describe the same relation as T .

E-mail address: andre.kempe@xrce.xerox.com (A. Kempe).
URL: http://www.xrce.xerox.com/people/kempe/

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2003.10.012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81992345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:andre.kempe@xrce.xerox.com
http://www.xrce.xerox.com/people/kempe/

146 A. Kempe / Theoretical Computer Science 313 (2004) 145–158

Fig. 1. Transducer T with �-cycles (Example 1).

Fig. 2. Decomposition of T into (a) an �-cycle-free T1 that emits auxiliary symbols, and (b) a T2 that maps
auxiliary symbols to �-cycles (Example 1).

Motivation: Some algorithms, such as the decomposition of ambiguous FSTs [3,7,8],
can only be performed on real-time FSTs, where every transition has exactly one
symbol on the input side. Transitions with � as input label are an obstacle for such
algorithms. In many cases, an FST can be made real-time by removing its �-transitions
and concatenating their output labels with the output of adjacent non-�-transitions. This
classical method, however, is not applicable to FSTs with �-cycles. To by-pass the
problem, the �-cycles of an FST, T , can be extracted by the approach below, where T
is decomposed into T1 and T2. Then, the �-cycle-free and (at most) 'nitely ambiguous T1
can be made real-time and further decomposed into a sequential T1;1 and an ambiguous
Dower transducer T1;2 that contains no failing paths for any output string of T1;1 [4].
Finally, the �-cycles can be re-inserted by composing T1;2 with T2.

1.1. Conventions

Input and output side: Although FSTs are inherently bidirectional, they are often
intended to be used in a given direction. The proposed algorithm is performed relative
to the direction of application. In this article, the two sides (or tapes or levels) of an
FST are referred to as input side and output side.
Examples of 4nite-state networks: Every example is shown in one or more 'g-

ures. The 'rst 'gure usually shows the original network. Possible following 'gures
show modi'ed forms of the same example. For example, Example 1 is shown in
Figs. 1–3.

A. Kempe / Theoretical Computer Science 313 (2004) 145–158 147

Fig. 3. Representation of �-cycles by complex labels (a) with �-transitions or (b) as a real-time transducer
without �-transitions (Example 1).

Finite-state graphs: Every FST has one initial state, labeled with number 0, and one
or more 'nal states marked by double circles. The initial state can also be 'nal. All
other state numbers and all transition numbers have no meaning for the FST but are
just used to reference a state or a transition. A transition with n labels designates a
set of n transitions with one label each that all have the same source and destination.
In a symbol pair occurring as a transition label, the 'rst symbol is the input and the
second the output symbol. For example, in the symbol pair a:b, a is the input and b
the output symbol. Simple, i.e., unpaired labels represent identity pairs. For example,
a means a:a.
Composition: In T1 �T2 �T3 =T3 ◦T2 ◦T1, T1 is applied 'rst and T3 last [2].

We prefer left-to-right notation (and application) and will therefore use the �-operator.
We 'nd it also clearer in examples such as (a:b) � (b:c) � (c:d)= (a:d), compared
to (c:d) ◦ (b:c) ◦ (a:b)= (a:d).

Special symbols: The “?” denotes any symbol (except � or �̂) when it is used in a
regular expression. Both � and �̂ mean the empty string and have the same eKect when
the FST is applied to an input sequence, but �̂ should be preserved in minimization
and determinization. Greek letters are used to denote auxiliary symbols. Those have a
“special” meaning and are distinct from the ordinary input and output symbols.

1.2. Preliminaries

An FST can be described by the six-tuple T = 〈�; �; Q; i; F; E〉 with an input alphabet
�, an output alphabet �, a state set Q, an initial state i∈Q, a set of 'nal states F ⊆Q,
and a set of transitions E.
Given a transition e∈E, we denote its input label by i(e), its output label by o(e), its

source state by p(e), and its destination state by n(e). The transition can be described
by the quadruple e= 〈p(e); i(e); o(e); n(e)〉. Given a state q∈Q, we denote the set
of its outgoing transitions by E(q) and the set of its incoming transitions by ER(q).
A path �= e1; : : : ; ek is an element of E∗ with consecutive transitions. To express that
a transition e is on a path �, we write e∈ �. To refer to a particular path in a 'gure,
we give the transition numbers in ceiling brackets; e.g., �= �100; 101; 102; 103� is a
path consisting of the four named transitions. We denote by P(q; q′) the set of all
paths �i(q; q′) from q to q′, by C(q) the set of all cycles on q (i.e., all paths from q
to q), and by C�(q) the set of all �-cycles on q, i.e., those cycles consisting only of

148 A. Kempe / Theoretical Computer Science 313 (2004) 145–158

transitions with � as input label:

P(q; q′) =
⋃
i
{�i(q; q′)} (1)

C(q) = P(q; q) (2)

C�(q) = {� ∈ C(q) | ∀e
- -∈ �; i(e) = �} (3)

We are particularly interested in simple �-cycles Ĉ�(q) on a state q which do not
traverse any state more than once:

Ĉ�(q) ⊆ C�(q) (4)

Ĉ�(q) = {� ∈ C�(q) | ∀e; e′ M∈�; e
= e′ ⇒ n(e)
= n(e′)} (5)

We extend the notion of input and output labels to paths and sets of paths, cycles, or
�-cycles, and denote their sequences of input and output labels by i(�(q; q′)),
o(�(q; q′)), i(C�(q)), o(C�(q)), etc. Note that i(), o(), and their arguments can be
single elements or sets.

2. Basic idea

Any arbitrary FST, T , containing �-cycles can be decomposed into two FSTs, T1
and T2, such that T1 contains no �-cycles and is therefore at most 'nitely ambiguous,
and T2 contains all �-cycles of T . The set of �-cycles C�(qi) of every state qi in T is
represented by a single transition mapping � to an auxiliary symbol �i in T1. Instead
of (perhaps in'nitely) traversing C�(qi), �i is emitted. All �i are then mapped to the
corresponding original C�(qi) in T2:

C�(qi)→ (� : �i) � (�i : o(C�(qi))) (6)

Fig. 1 shows a simple example of an FST with two �-cycles, C�(1)= {�101; 102�} and
C�(3)= {�104; 105�}. The FST maps the input string abc to the output string xyz, and
inserts an arbitrary number of substrings rs inside.
Fig. 2 shows the same example after the extraction of �-cycles (decomposition). T1

maps the input string abc to the intermediate string x�1y�3z (Fig. 2a). T2 maps the
auxiliary symbols, �1 and �3, to �-cycles, and every other symbol of the intermedi-
ate string to itself (Fig. 2b). Although the auxiliary symbols are single symbols, they
describe (sets of) �-cycles. Since actually �1 and �3 describe equal �-cycles in this
example, it would be suNcient to use two occurrences of the same auxiliary sym-
bol, e.g. �1, instead. In such cases, the number of auxiliary symbols can be reduced
a posteriori [3]. The �̂ denotes the empty string, like �, but it should be preserved
in minimization and determinization. Otherwise T2 would become larger (Example 1,
Fig. 2b, and Example 2, Fig. 9b).

A. Kempe / Theoretical Computer Science 313 (2004) 145–158 149

Fig. 4. Transducer T with �-cycles (Example 2).

T1 can be converted into a real-time FST, without �-transitions, by removing the
�-transitions and concatenating their output symbols with the output of adjacent non-�-
transitions.
An alternative to decomposing T into T1 and T2 would be representing it by a sin-

gle FST, T̂ , that is similar to T1 but with complex output labels that directly describe
sets of �-cycles C�(qi). Every C�(qi) in T would be reduced to a single transition
in T̂ that maps � to a complex label (Fig. 3a). T̂ can be further converted into a
real-time FST, without input-�-transitions (Fig. 3b). This representation of �-cycles is
similarly to what can be seen, e.g., in [7, p. 221, Fig. 6], and is equivalent to our
decomposition.

3. Algorithm

The above Example 1 contains only �-cycles that could be removed by physically
removing their transitions (Fig. 1). However, �-cycles can be more complex. They
can overlap with each other, with non-�-cycles, or with other (non-cyclic) paths. This
means, �-cycles must be removed without physically removing their transitions.
Fig. 4 shows a more complex example. 1 None of the �-transitions 101, 103, and

104 can be physically removed because they are not only part of �-cycles but among
others also of the complete paths �101� and �100; 103; 104; 100� that accept the input
strings � and aa, respectively.

3.1. Preparation

To extract all �-cycles of an arbitrary FST, T , the algorithm proceeds as follows.
First, T is concatenated on both ends with boundary symbols, # (Fig. 5). This operation
causes that the properties of initiality and 'nality, so far only described by states, are
now also described by transitions and can therefore be ignored by the algorithm (cf.
all pseudo code).

1 In all the following 'gures, thin arrows are used for �-transitions and thick arrows for non-�-transitions.

150 A. Kempe / Theoretical Computer Science 313 (2004) 145–158

Fig. 5. Transducer T ′ with boundaries, auxiliary symbols, and �-cycle information (Example 2).

T → T′:
1 for ∀q∈Q do
2 Stack←{}
3 Ĉ�(q)←{}
4 FOLLOWEPSILONARCS(q; q)

FOLLOWEPSILONARCS(p; q) :
5 for ∀e∈E(p) do
6 if i(e)= �
7 then PUSH(Stack, e)
8 if n(e)= q
9 then Ĉ�(q)← Ĉ�(q)∪{� | �=PATH(Stack)}
10 else if ∀e′ ∈ PATH(Stack), n(e)
= n(e′)
11 then FOLLOWEPSILONARCS(n(e); q)
12 POP(Stack)

Each state qi in T is then assigned both information about its Ĉ�(qi) and an auxiliary
symbol �i that (at this stage) is considered as equivalent to Ĉ�(qi). The resulting FST
is called T ′ (Fig. 5). For example, state 1 is assigned the set Ĉ�(1)= {�102; 105; 106�;
�103; 106�} and the auxiliary symbol �1 which means that two �-cycles consisting of
the named transitions start at state 1 and are equivalent to �1. These two �-cycles
generate the output substrings (rst)∗ and (vt)∗, respectively.
There are diKerent ways to compute the Ĉ�(q) of all q. For example, starting from

a state q, we traverse every �-path that does not encounter any state, except q, more
than once. If the path ends at its start state q, it is an �-cycle, and is inserted into
Ĉ�(q). All transitions e along a traversed path are put onto a stack (pseudo code, line
7: PUSH (Stack; e)) so that at any time we can describe the path by the content of
the stack (line 9: �=PATH(Stack)).
Although the Ĉ�(q) do not contain all �-cycles of a state q, the missing �-cycles, that

traverse a state q′ more than once, do not escape our attention. They are in the Ĉ�(q′)

A. Kempe / Theoretical Computer Science 313 (2004) 145–158 151

4

2'

3'

3 ε:ξ3

1
ε:ξ 2

ε:t

ε:v

ε:r

ε:s

21'0 #

100

ε:ξ1

a:x

#
200

101

102

103

106
202

201

105

104

Fig. 6. Transducer T ′
1 with redirected �-transitions (Example 2).

of q′ which is suNcient for our 'nal purpose. The reason for building Ĉ�(q) instead
of C�(q) is that Ĉ�(q) is easier to construct, to represent (by a transition sequence),
and to “rotate” (Section 3.2).

3.2. Construction of T1

Two steps are required to build T1 from T ′ (Fig. 5). First, at every state qi with
a non-empty set Ĉ�(qi), a transition mapping � to �i must be inserted. Second, all
�-cycles must be removed without physically removing their transitions.
We insert for every state qi with non-empty Ĉ�(qi), an auxiliary state q′i and an

auxiliary transition e′i leading from q′i to qi (Fig. 6, dashed states and transitions;
pseudo code line 2–4). The transition e′i is labeled with �:�i, i.e., it emits the auxiliary
symbol �i when it is traversed. For example, the auxiliary state 1′ in created for state
1, and the auxiliary transition 200 labeled with �:�1 is inserted from state 1′ to 1.

T′ → T′
1:

1 for ∀qi ∈Q do
2 if Ĉ�(qi)
= {}
3 then Q←Q∪{q′i}
4 E←E ∪{(q′i ; �; �i; qi)}
5 for ∀e∈ER(qi) do
6 if Ĉ�(qi)* ROTATELRe (Ĉ�(p(e)))
7 then n(e)← q′i

Then, some incoming transitions of every state qi are redirected to the corresponding
auxiliary state q′i so that �i is emitted before qi is reached. An incoming transition e
requires no redirection if the set Ĉ�(qi) of its destination state n(e)= qi is a “repetition”,
relative to e, of part of the Ĉ�(p(e)) of its source state p(e). This is the case if every
�-cycle in Ĉ�(qi) can be obtained by “rotating” an �-cycle in Ĉ�(p(e)), left to right,
over e (pseudo code, line 6). In this case a redirection of e would not be wrong but
it is redundant and can lead to a larger T1 and T2.
For example, the transition 106 requires no redirection from state 1 to 1′ because

every �-cycle in Ĉ�(1) can be obtained by rotating an �-cycle in Ĉ�(3) over the tran-

152 A. Kempe / Theoretical Computer Science 313 (2004) 145–158

4

2'

3'

3 ε:ξ 3

1
ε:ξ 2

ζ 0:r

ζ1:s

ζ :t2

ζ 3:v

21'0
#

100

ε:ξ
1

a:x

#
200

101

102

103

106 202

201

105

104

Fig. 7. Transducer T ′′
1 with redirected and overwritten �-transitions (Example 2).

sition 106; namely the �-cycle �102; 105; 106� in Ĉ�(1) by rotating �106; 102; 105�
in Ĉ�(3) over the transition 106, and the �-cycle �103; 106� in Ĉ�(1) by rotating
�106; 103� in Ĉ�(3) over the same transition 106 (Figs. 5, 6). In other terms, since
�(106; 102; 105)∗; 106�= �106; (102; 105; 106)∗� and �(106; 103)∗; 106�= �106; (103;
106)∗�, which in both cases means ��3; 106�= �106; �1�, the insertion of �1 after the
transition 106, which would result from a redirection of this transition, is unnecessary;
�1 would not express anything that has not been described yet by �3.
The transition 103 must be redirected from state 3 to 3′ because the �-cycle �106; 102;

105� in Ĉ�(3) cannot be obtained by rotating any of the �-cycles in Ĉ�(1) over the
transition 103. The transition 101 must be redirected from state 2 to 2′ because it is
not an �-transition which means that no �-cycles can be rotated over it.

T′
1 → T′′

1 :
1 j← 0
2 for ∀q∈Q do
3 for ∀e∈ �∈ Ĉ�(q) do
4 if i(e)= �
5 then i(e)← �j
6 j← j + 1

To prepare the removal of �-cycles, the � on the input side of every transition of every
Ĉ�(qi) is temporarily overwritten by an auxiliary symbol �j (Figs. 6, 7). This auxiliary
symbol is diKerent for every concerned transition, e.g., it is �0 for the transition 102
and �1 for the transition 105. We call the result T ′′

1 .
Every �-cycle in T ′′

1 is then described by a sequence of �j. For example, the �-cycle
�102; 105; 106� in Ĉ�(1) is described by the sequence ��0; �1; �2� that consists of the
new input symbols of this cycle (Figs. 5–7). Then, a constraint R1 is formulated to
disallow all �-cycles in all sets Ĉ�(qi), by disallowing the corresponding �j-sequences:

R1 = ¬
(
?∗
(⋃

q
i(Ĉ�(q))

)
?∗
)

(7)

A. Kempe / Theoretical Computer Science 313 (2004) 145–158 153

1

3

ε:v
ε:t

ε:s

ε:r
0 2 4

ξ 2

ξ 2

ξ 1

ξ 1

ξ 3 ξ3

#

a:x

100

106

103

102

101

105

104

300
301

302

304
305

306

Fig. 8. Transducer T ′
2 (Example 2).

In Example 2, this constraint is (Fig. 7):

R1 =¬(?∗((�0 �1 �2) ∪ (�3 �2) ∪ (�1 �2 �0) ∪ (�2 �0 �1) ∪ (�2 �3))?∗)
example (8)

When R1 is composed on the input side of T ′′
1 , all �-cycles disappear; even those that

are in C�(qi), but not in Ĉ�(qi), of a state qi because they appear in Ĉ�(qk) of at least
one other state qk :

T ′′′
1 = R1�T ′′

1 (9)

However, instances of the �j-transitions remain in T ′′′
1 if they are also part of another

path that is not an �-cycle. Finally, every remaining �j, which stands for �, and every
boundary symbol, #, which has to be removed, is replaced with �, and T ′′′

1 is minimized.
We call the result T1. Note that an initially introduced auxiliary symbol �i does no
appear in T1 if none of the incoming transitions of the state qi have been redirected.

3.3. Construction of T2

T2 is built from T ′ (as was the case with T1) (Fig. 5). T2 must map any auxiliary
symbol �i to the corresponding set of �-cycles C�(qi) rather than Ĉ�(qi). For every state
qi with non-empty Ĉ�(qi), two auxiliary transitions, both labeled with the auxiliary
symbol �i, are created (Fig. 8); one transition leading from the initial state i to qi, the
other from qi to the only 'nal state f (pseudo code, lines 3 and 4). The resulting FST
will be referred to as T ′

2 .

T′ → T′
2:

1 for ∀qi ∈Q do
2 if Ĉ�(qi)
= {}
3 then E←E ∪{〈i; �i; �i; qi〉}
4 E←E ∪{〈qi; �i; �i; f〉}

All paths in T ′
2 that contain only full (and no partial) �-cycles of a state qi must be

kept and all others removed. For example, the set of paths �301; (102; 105; 106)∗; 304�

154 A. Kempe / Theoretical Computer Science 313 (2004) 145–158

containing all �-cycles of C�(1) must be kept and �301; (102; 105; 106)∗; 102; 305� must
be removed (Fig. 8). The paths to be kept, consist of twice the same auxiliary symbol,
�i�i, on the input side. To allow only them, T ′

2 is composed with a constraint:

T ′′
2 =

(⋃
i
{�i �i}

)
�T ′

2 (10)

This removes all undesired paths. In Example 2, the composition is (Fig. 8):

T ′′
2 = ((�1 �1) ∪ (�2 �2) ∪ (�3 �3))�T ′

2

example (11)

The resulting T ′′
2 maps any sequence of two identical auxiliary symbols �i�i to itself,

and inserts the corresponding set of �-cycles C�(qi) in between. The second occurrence
of every �i is actually unwanted. The following composition removes this second oc-
currence on the input and output side, and the 'rst occurrence of �i on the output side
only:

T ′′′
2 = (? �̂: ?)�T ′′

2 � (?:� ?∗ ?:�̂) (12)

The resulting T ′′′
2 maps any single auxiliary symbol �i to the corresponding set C�(qi).

The �̂ denotes the (ordinary) empty string, like �. It is, however, preserved in mini-
mization and determinization which prevents T2 from becoming larger. If the size is
of no concern, � can be used instead.
T2 must accept any sequence of output symbols of T1, i.e., any sequence in �∗

T1 . It
must map every auxiliary symbol �i to the corresponding set of �-cycles C�(qi), and
every other symbol to itself. T2 is built by:

T2 =
(
�T1�

(
T ′′′
2 ∪ ¬

⋃
i
�i

))∗
(13)

This operation has the side eKect that all initially introduced auxiliary symbols �i that
later disappeared from T1, are now also removed from T2. Finally, T2 is minimized
(Fig. 9a, b).

3.4. Proof

For the following reason, the algorithm always leads to the described result.
In T1: If an �-cycle in C�(qi) contains a state qk more that once, which means that
this cycle has an “embedded” �-cycle on qk , than C�(qi) also contains an �-cycle
where no qk is encountered more that once, which can be obtained by not traversing
the embedded cycle on qk . This also holds if there are several embedded cycles. In
general:

C�(qi)
= {} ⇒ Ĉ�(qi)
= {} (14)

This means, every qi with C�(qi)
= {} will be assigned an auxiliary symbol �i, although
this action is triggered by Ĉ�(qi)
= {}.

A. Kempe / Theoretical Computer Science 313 (2004) 145–158 155

Fig. 9. Decomposition of T with �-cycles into (a) T1 that emits auxiliary symbols, and (b) T2 that maps
auxiliary symbols to �-cycles (Example 2).

All embedded �-cycles, that are not in Ĉ�(qi), are in Ĉ�(qk), of some other state qk .
Consequently, they will be removed as well, i.e., all �-cycles of T1 will be removed.

Example 2 (Fig. 5). Since state 2 has a non-empty C�(2)= {�105; (106; 103)∗; 106;
102�}, it also has a non-empty Ĉ�(2)= {�105; 106; 102�} and will therefore be assigned
�2. The embedded cycle �(106; 103)∗� in C�(2) will be removed from T1, despite not
being in Ĉ�(2), because it is in Ĉ�(1) and Ĉ�(3).

In T2: The C�(qi) of every state qi that has been assigned an auxiliary symbol �i
are preserved whereas every other path is removed. This means, the �i are mapped to
C�(qi) rather than to Ĉ�(qi) that originally caused their introduction.
The initial limitation to Ĉ�(qi) is not reDected in the 'nal result, T1 and T2.

4. Alternative representation with complex labels

As previously shown for Example 1, instead of decomposing T into T1 and T2, one
can represent it by a single FST, T̂ , that is similar to T1 but with complex output
labels that directly describe sets of �-cycles C�(q) (Fig. 3). Every C�(q) in T would
be reduced to a single transition in T̂ . Both representations are equivalent.
To build T̂ , we 'rst create T ′ as described above (Section 3.1, Fig. 5). Each state q

with non-empty C�(q) is then additionally assigned a complex label L(q) that describes
C�(q). The resulting FST is called T ′′ (Fig. 10, pseudo code line 1 to 3). For example,
state 2 with Ĉ�(2)= {�105; 106; 102�} is assigned L(2)= “(s(tv) ∗ tr) ∗ ”.

156 A. Kempe / Theoretical Computer Science 313 (2004) 145–158

Fig. 10. Transducer T ′′ with boundaries, auxiliary symbols, �-cycle information, and complex labels (Exam-
ple 2).

A label L(q) begins with “(” (line 8), ends with “)∗” (line 8), and contains the
labels of all paths �∈ Ĉ�(q) separated by “|” (line 7). (Note, the “|” after the last path
label is 'rst appended and then removed (line 7, 8)). The label of a path � is created
form the output symbols o(e) of its transitions e∈ � (line 12) and from the labels of
embedded �-cycles encountered along �.

T′ → T′′:
1 for ∀q∈Q do
2 if Ĉ�(q)
= {}
3 then L(q)←LABELOFCYCLES(Ĉ�(q); q)

LABELOFCYCLES(C; q):
4 Lc← “(”
5 for ∀�∈C do
6 Lc←Lc ·LABELOFPATH(�; q)
7 Lc←Lc · “|”
8 Lc←Lc · “|”−1 · “)∗”
9 return Lc

LABELOFPATH(�; q):
10 L�← �
11 for ∀e∈ � do
12 L�←L� · o(e)
13 C′

�←{�′ ∈ Ĉ�(n(e)) | ROTATERL(�′) =∈ Ĉ�(p(e))
∧∀e′ ∈ �′; n(e′)
= q }

14 if C′
�
= {}

15 then L�←L� ·LABELOFCYCLES(C′
� ; q)

16 return L�

A. Kempe / Theoretical Computer Science 313 (2004) 145–158 157

Fig. 11. Representation of �-cycles by complex labels (Example 2).

To account for those cycles, we create for each e∈ � a set C′
� of embedded �-cycles

that immediately follow e (line 13). This set C′
� contains all those paths �

′ ∈C�(n(e))
assigned to the transition’s destination state n(e) that meet the following two constrains:
First, �′ must not be a repetition (obtained by rotation) of any of the paths in the
transition’s source state p(e) because then �′ has already been taken into account with
p(e) or earlier. Second, �′ must not traverse the state q for which we are creating the
label L(q) because then it is taken into account as an ordinary �-cycle of q rather than
as an embedded one. The label of the set of embedded �-cycles C′

� encountered after a
transition e∈ � is included (if not empty) into the label of the path � after the output
symbol of e (line 15). Note that the paths of embedded cycles can as well contain
embedded cycles.
For example, L(2) of state 2 describes the only path �= �105; 106; 102� of Ĉ�(2)

(Fig. 10). After the output symbol “s” of transition 105, we append the label “(tv)∗”
of the embedded �-cycle �′1 = �106; 103� ∈ Ĉ�(3). The other path �′2 = �106; 102; 105�
∈Ĉ�(3) is ignored because it is a rotation of �. �′1 has no embedded �-cycles to be
taken into account. The next symbol in L(2) is “t”, the output of transition 106. The
�-cycles of Ĉ�(1) of the following state 1 are all ignored because they are rotations of
cycles in Ĉ�(3).
T̂ is then built from T ′′ by the same algorithm as T1 was built from T ′ (Section 3.2).

Consequently, T̂ has the same structure as T1 (Figs. 9a, 11). However, instead of
auxiliary symbols � that represent �-cycles, T̂ has complex labels L(q) that directly
describe them.

5. Conclusion and !nal remarks

The article has shown that an arbitrary FST, T , containing �-cycles can be decom-
posed into two FSTs, T1 and T2, such that T1 contains no �-cycles and T2 contains all
�-cycles of T . Jointly in a cascade, T1 and T2 describe the same relation (and perform

158 A. Kempe / Theoretical Computer Science 313 (2004) 145–158

10

2ε: ξ1r

a: ξ1xξ2

a: s ξ3txξ2

100

102101

10

2ε:(rst|vt)*r

100

102101

a:(rst|vt)*x(s(tv)*tr)*

a:s(tv|trs)*tx(s(tv)*tr)*

(a) (b)

Fig. 12. (Almost) Real-time representation of �-cycles (a) by auxiliary symbols and (b) by complex labels
(Example 2).

the same mapping) as the original FST T (Fig. 9). When T1 and T2 are composed with
each other, T is obtained. The size increase of T2, compared to T , is not necessarily
a concern. T2 could be an intermediate result that is further processed.
As an alternative to decomposition, T can be represented by a single FST, T̂ , that is

similar to T1 but with complex output labels directly describing sets of �-cycles. Every
such set in T is reduced to a single transition in T̂ (Fig. 11). Both representations
(T1 �T2 and T̂) are equivalent and can be constructed by similar algorithms.
Both T1 and T̂ (in Example 2) cannot be converted into real-time FSTs because they

accept � as input. To make them almost real-time they can be split into the union of
an FST that accepts only � (Figs. 9a and 11: transitions {100; 102}) and another FST
that does not accept � (transitions {100; 101; 103; 104; 105; 106; 107}). The second of
these FSTs can be made real-time and then unioned again with the 'rst (Fig. 12).

References

[1] A.V. Aho, R. Sethi, J.D. Ullman, Compilers—Principles, Techniques and Tools, Addison-Wesley,
Reading, MA, USA, 1986.

[2] G. BirkhoK, T.C. Bartee, Modern Applied Algebra, McGraw-Hill, New York, USA, 1970.
[3] A. Kempe, Reduction of intermediate alphabets in 'nite-state transducer cascades, in: Proc. 7th Conf. on

Automatic Natural Language Processing (TALN), Lausanne, Switzerland. ATALA, 2000, pp. 207–215.
[4] A. Kempe, Factorization of ambiguous 'nite-state transducers, in: S. Yu, A. Paun (Ed.), Proc. 5th Internat.

Conf. on Implementation and Application of Automata (CIAA 2000), The University of Western Ontario,
London, Ontario, Canada, July 24–25, 2000. Lecture Notes in Computer Science, Vol. 2088, Springer,
Berlin, 2001, pp. 170–181.

[5] M. Mohri, Generic �-removal algorithm for weighted automata, in: S. Yu, A. Paun (Eds.), Proc. 5th
Internat. Conf. on Implementation and Application of Automata (CIAA 2000), The University of Western
Ontario, London, Ontario, Canada, July 24–25, 2000. Lecture Notes in Computer Science, Vol. 2088
Springer, Berlin, 2001, pp. 230–242.

[6] G. van Noord, Treatment of �-moves in subset construction, in: Proc. Internat. Workshop on Finite-State
Methods in Natural Language Processing (FSMNLP), Bilkent University, Ankara, Turkey, June 29–July
1, 1998, pp. 1–12.

[7] J. Sakarovitch, A construction on 'nite automata that has remained hidden, Theoret. Comput. Sci. 204
(1998) 205–231.

[8] M.P. SchYutzenberger, Sur les relations rationnelles entre monoYZdes libres, Theoret. Comput. Sci. 3 (1976)
243–259.

	Extraction and recoding of input-epsilon-cyclesin finite state transducers
	Introduction
	Conventions
	Preliminaries

	Basic idea
	Algorithm
	Preparation
	Construction of T1
	Construction of T2
	Proof

	Alternative representation with complex labels
	Conclusion and final remarks
	References

