Extraction and recoding of input- ε-cycles in finite state transducers

André Kempe
Xerox Research Centre Europe, Grenoble Laboratory, 6 chemin de Maupertuis, Meylan 38240, France

Abstract

Much attention has been brought to determinization and ε-removal in previous work. This article describes an algorithm for extracting all ε-cycles, which are a particular type of nondeterminism, from an arbitrary finite-state transducer (FST). The algorithm decomposes the FST, T, into two FSTs, T_{1} and T_{2}, such that T_{1} contains no ε-cycles and T_{2} contains all ε-cycles of T. The article also proposes an alternative approach where each ε-cycle of T is replaced by a single transitions with a complex label that describes the output of the cycle. Since ε-cycles are an obstacle for some algorithms such as the decomposition of ambiguous FSTs, the proposed approaches allow us to by-pass this problem. ε-Cycles can be extracted or recoded before and re-inserted (by composition) after such algorithms. (c) 2003 Elsevier B.V. All rights reserved.

MSC: 05C85; 05C38; 68Q45; 68W30
Keywords: Finite state transducer; Decomposition; Non-determinism; Epsilon cycle

1. Introduction

Much attention has been brought to the problem of non-determinism. There has been work on both determinization in general and ε-removal (e.g. $[1,5,6]$).
This article describes an algorithm for extracting all ε-cycles, which represent a special type of non-determinism consisting of consecutive transitions with the empty string ε as input label, from an arbitrary finite-state transducer (FST). The algorithm decomposes the FST, T, into two FSTs, T_{1} and T_{2}, such that T_{1} contains no ε-cycles and T_{2} contains all ε-cycles of T. Jointly in a cascade (that simulates composition), T_{1} and T_{2} describe the same relation as T.

[^0]

Fig. 1. Transducer T with ε-cycles (Example 1).

(a)

$$
\mathrm{abc} \longrightarrow \mathrm{x} \xi_{1} \mathrm{y} \xi_{3} \mathrm{z} \longrightarrow \mathrm{x}(\mathrm{rs})^{*} \mathrm{y}(\mathrm{rs})^{*} \mathrm{z}
$$

Fig. 2. Decomposition of T into (a) an ε-cycle-free T_{1} that emits auxiliary symbols, and (b) a T_{2} that maps auxiliary symbols to ε-cycles (Example 1).

Motivation: Some algorithms, such as the decomposition of ambiguous FSTs [3,7,8], can only be performed on real-time FSTs, where every transition has exactly one symbol on the input side. Transitions with ε as input label are an obstacle for such algorithms. In many cases, an FST can be made real-time by removing its ε-transitions and concatenating their output labels with the output of adjacent non- ε-transitions. This classical method, however, is not applicable to FSTs with ε-cycles. To by-pass the problem, the ε-cycles of an FST, T, can be extracted by the approach below, where T is decomposed into T_{1} and T_{2}. Then, the ε-cycle-free and (at most) finitely ambiguous T_{1} can be made real-time and further decomposed into a sequential $T_{1,1}$ and an ambiguous flower transducer $T_{1,2}$ that contains no failing paths for any output string of $T_{1,1}$ [4]. Finally, the ε-cycles can be re-inserted by composing $T_{1,2}$ with T_{2}.

1.1. Conventions

Input and output side: Although FSTs are inherently bidirectional, they are often intended to be used in a given direction. The proposed algorithm is performed relative to the direction of application. In this article, the two sides (or tapes or levels) of an FST are referred to as input side and output side.

Examples of finite-state networks: Every example is shown in one or more figures. The first figure usually shows the original network. Possible following figures show modified forms of the same example. For example, Example 1 is shown in Figs. 1-3.

Fig. 3. Representation of ε-cycles by complex labels (a) with ε-transitions or (b) as a real-time transducer without ε-transitions (Example 1).

Finite-state graphs: Every FST has one initial state, labeled with number 0, and one or more final states marked by double circles. The initial state can also be final. All other state numbers and all transition numbers have no meaning for the FST but are just used to reference a state or a transition. A transition with n labels designates a set of n transitions with one label each that all have the same source and destination. In a symbol pair occurring as a transition label, the first symbol is the input and the second the output symbol. For example, in the symbol pair $a: b$, a is the input and b the output symbol. Simple, i.e., unpaired labels represent identity pairs. For example, a means a:a.

Composition: In $T_{1} \diamond T_{2} \diamond T_{3}=T_{3} \circ T_{2} \circ T_{1}, T_{1}$ is applied first and T_{3} last [2]. We prefer left-to-right notation (and application) and will therefore use the \diamond-operator. We find it also clearer in examples such as $(\mathrm{a}: \mathrm{b}) \diamond(\mathrm{b}: \mathrm{c}) \diamond(\mathrm{c}: \mathrm{d})=(\mathrm{a}: \mathrm{d})$, compared to $(c: d) \circ(b: c) \circ(a: b)=(a: d)$.

Special symbols: The "?" denotes any symbol (except ε or $\hat{\varepsilon}$) when it is used in a regular expression. Both ε and $\hat{\varepsilon}$ mean the empty string and have the same effect when the FST is applied to an input sequence, but $\hat{\varepsilon}$ should be preserved in minimization and determinization. Greek letters are used to denote auxiliary symbols. Those have a "special" meaning and are distinct from the ordinary input and output symbols.

1.2. Preliminaries

An FST can be described by the six-tuple $T=\langle\Sigma, \Delta, Q, i, F, E\rangle$ with an input alphabet Σ, an output alphabet Δ, a state set Q, an initial state $i \in Q$, a set of final states $F \subseteq Q$, and a set of transitions E.

Given a transition $e \in E$, we denote its input label by $i(e)$, its output label by $o(e)$, its source state by $p(e)$, and its destination state by $n(e)$. The transition can be described by the quadruple $e=\langle p(e), i(e), o(e), n(e)\rangle$. Given a state $q \in Q$, we denote the set of its outgoing transitions by $E(q)$ and the set of its incoming transitions by $E^{R}(q)$. A path $\pi=e_{1}, \ldots, e_{k}$ is an element of E^{*} with consecutive transitions. To express that a transition e is on a path π, we write $e \bar{\epsilon} \pi$. To refer to a particular path in a figure, we give the transition numbers in ceiling brackets; e.g., $\pi=\lceil 100,101,102,103\rceil$ is a path consisting of the four named transitions. We denote by $P\left(q, q^{\prime}\right)$ the set of all paths $\pi_{i}\left(q, q^{\prime}\right)$ from q to q^{\prime}, by $C(q)$ the set of all cycles on q (i.e., all paths from q to q), and by $C_{\varepsilon}(q)$ the set of all ε-cycles on q, i.e., those cycles consisting only of
transitions with ε as input label:

$$
\begin{align*}
& P\left(q, q^{\prime}\right)=\bigcup_{i}\left\{\pi_{i}\left(q, q^{\prime}\right)\right\} \tag{1}\\
& C(q)=P(q, q) \tag{2}\\
& C_{\varepsilon}(q)=\{\pi \in C(q) \mid \forall e-\bar{\epsilon} \pi, i(e)=\varepsilon\} \tag{3}
\end{align*}
$$

We are particularly interested in simple ε-cycles $\hat{C}_{\varepsilon}(q)$ on a state q which do not traverse any state more than once:

$$
\begin{align*}
& \hat{C}_{\varepsilon}(q) \subseteq C_{\varepsilon}(q) \tag{4}\\
& \hat{C}_{\varepsilon}(q)=\left\{\pi \in C_{\varepsilon}(q) \mid \forall e, e^{\prime} \bar{\epsilon} \pi, e \neq e^{\prime} \Rightarrow n(e) \neq n\left(e^{\prime}\right)\right\} \tag{5}
\end{align*}
$$

We extend the notion of input and output labels to paths and sets of paths, cycles, or ε-cycles, and denote their sequences of input and output labels by $i\left(\pi\left(q, q^{\prime}\right)\right)$, $o\left(\pi\left(q, q^{\prime}\right)\right), i\left(C_{\varepsilon}(q)\right), o\left(C_{\varepsilon}(q)\right)$, etc. Note that $i(), o()$, and their arguments can be single elements or sets.

2. Basic idea

Any arbitrary FST, T, containing ε-cycles can be decomposed into two FSTs, T_{1} and T_{2}, such that T_{1} contains no ε-cycles and is therefore at most finitely ambiguous, and T_{2} contains all ε-cycles of T. The set of ε-cycles $C_{\varepsilon}\left(q_{i}\right)$ of every state q_{i} in T is represented by a single transition mapping ε to an auxiliary symbol ξ_{i} in T_{1}. Instead of (perhaps infinitely) traversing $C_{\varepsilon}\left(q_{i}\right), \xi_{i}$ is emitted. All ξ_{i} are then mapped to the corresponding original $C_{\varepsilon}\left(q_{i}\right)$ in T_{2} :

$$
\begin{equation*}
C_{\varepsilon}\left(q_{i}\right) \rightarrow\left(\varepsilon: \xi_{i}\right) \diamond\left(\xi_{i}: o\left(C_{\varepsilon}\left(q_{i}\right)\right)\right) \tag{6}
\end{equation*}
$$

Fig. 1 shows a simple example of an FST with two ε-cycles, $C_{\varepsilon}(1)=\{\lceil 101,102\rceil\}$ and $C_{\varepsilon}(3)=\{\lceil 104,105\rceil\}$. The FST maps the input string abc to the output string xyz, and inserts an arbitrary number of substrings r s inside.

Fig. 2 shows the same example after the extraction of ε-cycles (decomposition). T_{1} maps the input string abc to the intermediate string $x \xi_{1} y \xi_{3} z$ (Fig. 2a). T_{2} maps the auxiliary symbols, ξ_{1} and ξ_{3}, to ε-cycles, and every other symbol of the intermediate string to itself (Fig. 2b). Although the auxiliary symbols are single symbols, they describe (sets of) ε-cycles. Since actually ξ_{1} and ξ_{3} describe equal ε-cycles in this example, it would be sufficient to use two occurrences of the same auxiliary symbol, e.g. ξ_{1}, instead. In such cases, the number of auxiliary symbols can be reduced a posteriori [3]. The $\hat{\varepsilon}$ denotes the empty string, like ε, but it should be preserved in minimization and determinization. Otherwise T_{2} would become larger (Example 1, Fig. 2b, and Example 2, Fig. 9b).

$$
\begin{aligned}
\varepsilon & \longrightarrow(\mathrm{rst} \mid \mathrm{vt})^{*} \mathrm{r} \\
\mathbf{a} \mathbf{a}^{n} & \longrightarrow(\mathrm{rst} \mid \mathrm{vt})^{*} \mathbf{x}\left(\mathrm{st}(\mathrm{vt})^{*} \mathrm{r}\right)^{*}\left(\mathrm{~s}(\mathrm{tv} \mid \mathrm{trs})^{*} \mathrm{t} \mathbf{x}\left(\mathrm{st}(\mathrm{vt})^{*} \mathrm{r}\right)^{*}\right)^{n}
\end{aligned}
$$

Fig. 4. Transducer T with ε-cycles (Example 2).
T_{1} can be converted into a real-time FST, without ε-transitions, by removing the ε-transitions and concatenating their output symbols with the output of adjacent non- ε transitions.
An alternative to decomposing T into T_{1} and T_{2} would be representing it by a single FST, \hat{T}, that is similar to T_{1} but with complex output labels that directly describe sets of ε-cycles $C_{\varepsilon}\left(q_{i}\right)$. Every $C_{\varepsilon}\left(q_{i}\right)$ in T would be reduced to a single transition in \hat{T} that maps ε to a complex label (Fig. 3a). \hat{T} can be further converted into a real-time FST, without input- ε-transitions (Fig. 3b). This representation of ε-cycles is similarly to what can be seen, e.g., in [7, p. 221, Fig. 6], and is equivalent to our decomposition.

3. Algorithm

The above Example 1 contains only ε-cycles that could be removed by physically removing their transitions (Fig. 1). However, ε-cycles can be more complex. They can overlap with each other, with non- ε-cycles, or with other (non-cyclic) paths. This means, ε-cycles must be removed without physically removing their transitions.
Fig. 4 shows a more complex example. ${ }^{1}$ None of the ε-transitions 101, 103, and 104 can be physically removed because they are not only part of ε-cycles but among others also of the complete paths $\lceil 101\rceil$ and $\lceil 100,103,104,100\rceil$ that accept the input strings ε and aa, respectively.

3.1. Preparation

To extract all ε-cycles of an arbitrary FST, T, the algorithm proceeds as follows. First, T is concatenated on both ends with boundary symbols, \# (Fig. 5). This operation causes that the properties of initiality and finality, so far only described by states, are now also described by transitions and can therefore be ignored by the algorithm (cf. all pseudo code).

[^1]

Fig. 5. Transducer T^{\prime} with boundaries, auxiliary symbols, and ε-cycle information (Example 2).

```
T }->\mp@subsup{\mathbf{T}}{}{\prime
1 for }\forallq\inQ d
2 Stack\leftarrow{}
3 
FollowEpsilonArcs(q,q)
FollowEpsilonArcs(p,q) :
for }\foralle\inE(p)\mathrm{ do
6 if i(e)=\varepsilon
7 then Push(Stack,e)
8 if n(e)=q
        then \mp@subsup{C}{\varepsilon}{}(q)\leftarrow\mp@subsup{\hat{C}}{\varepsilon}{}(q)\cup{\pi|\pi=\operatorname{Path}(\mathrm{ Stack ) }}
        else if \foralle' 
12 Pop(Stack)
```

Each state q_{i} in T is then assigned both information about its $\hat{C}_{\varepsilon}\left(q_{i}\right)$ and an auxiliary symbol ξ_{i} that (at this stage) is considered as equivalent to $\hat{C}_{\varepsilon}\left(q_{i}\right)$. The resulting FST is called T^{\prime} (Fig. 5). For example, state 1 is assigned the set $\hat{C}_{\varepsilon}(1)=\{\lceil 102,105,106\rceil$, $\lceil 103,106\rceil\}$ and the auxiliary symbol ξ_{1} which means that two ε-cycles consisting of the named transitions start at state 1 and are equivalent to ξ_{1}. These two ε-cycles generate the output substrings (rst)* and (vt) ${ }^{*}$, respectively.

There are different ways to compute the $\hat{C}_{\varepsilon}(q)$ of all q. For example, starting from a state q, we traverse every ε-path that does not encounter any state, except q, more than once. If the path ends at its start state q, it is an ε-cycle, and is inserted into $\hat{C}_{\varepsilon}(q)$. All transitions e along a traversed path are put onto a stack (pseudo code, line 7: $\operatorname{PUSH}(\operatorname{Stack}, e))$ so that at any time we can describe the path by the content of the stack (line 9: $\pi=\operatorname{Path}($ Stack $)$).

Although the $\hat{C}_{\varepsilon}(q)$ do not contain all ε-cycles of a state q, the missing ε-cycles, that traverse a state q^{\prime} more than once, do not escape our attention. They are in the $\hat{C}_{\varepsilon}\left(q^{\prime}\right)$

Fig. 6. Transducer T_{1}^{\prime} with redirected ε-transitions (Example 2).
of q^{\prime} which is sufficient for our final purpose. The reason for building $\hat{C}_{\varepsilon}(q)$ instead of $C_{\varepsilon}(q)$ is that $\hat{C}_{\varepsilon}(q)$ is easier to construct, to represent (by a transition sequence), and to "rotate" (Section 3.2).

3.2. Construction of T_{1}

Two steps are required to build T_{1} from T^{\prime} (Fig. 5). First, at every state q_{i} with a non-empty set $\hat{C}_{\varepsilon}\left(q_{i}\right)$, a transition mapping ε to ξ_{i} must be inserted. Second, all ε-cycles must be removed without physically removing their transitions.

We insert for every state q_{i} with non-empty $\hat{C}_{\varepsilon}\left(q_{i}\right)$, an auxiliary state q_{i}^{\prime} and an auxiliary transition e_{i}^{\prime} leading from q_{i}^{\prime} to q_{i} (Fig. 6, dashed states and transitions; pseudo code line 2-4). The transition e_{i}^{\prime} is labeled with $\varepsilon: \xi_{i}$, i.e., it emits the auxiliary symbol ξ_{i} when it is traversed. For example, the auxiliary state 1^{\prime} in created for state 1 , and the auxiliary transition 200 labeled with $\varepsilon: \xi_{1}$ is inserted from state 1^{\prime} to 1 .

$$
\begin{aligned}
& \mathbf{T}^{\prime} \rightarrow \mathbf{T}_{1}^{\prime}: \\
& \text { for } \forall q_{i} \in Q \text { do } \\
& \text { if } \hat{C}_{\varepsilon}\left(q_{i}\right) \neq\{ \} \\
& \text { then } Q \leftarrow Q \cup\left\{q_{i}^{\prime}\right\} \\
& E \leftarrow E \cup\left\{\left(q_{i}^{\prime}, \varepsilon, \xi_{i}, q_{i}\right)\right\} \\
& \text { for } \forall e \in E^{R}\left(q_{i}\right) \text { do } \\
& \text { if } \hat{C}_{\varepsilon}\left(q_{i}\right) \not \equiv \operatorname{Rotate}_{e}^{L R}\left(\hat{C}_{\varepsilon}(p(e))\right) \\
& \text { then } n(e) \leftarrow q_{i}^{\prime}
\end{aligned}
$$

Then, some incoming transitions of every state q_{i} are redirected to the corresponding auxiliary state q_{i}^{\prime} so that ξ_{i} is emitted before q_{i} is reached. An incoming transition e requires no redirection if the set $\hat{C}_{\varepsilon}\left(q_{i}\right)$ of its destination state $n(e)=q_{i}$ is a "repetition", relative to e, of part of the $\hat{C}_{\varepsilon}(p(e))$ of its source state $p(e)$. This is the case if every ε-cycle in $\hat{C}_{\varepsilon}\left(q_{i}\right)$ can be obtained by "rotating" an ε-cycle in $\hat{C}_{\varepsilon}(p(e))$, left to right, over e (pseudo code, line 6). In this case a redirection of e would not be wrong but it is redundant and can lead to a larger T_{1} and T_{2}.
For example, the transition 106 requires no redirection from state 1 to 1^{\prime} because every ε-cycle in $\hat{C}_{\varepsilon}(1)$ can be obtained by rotating an ε-cycle in $\hat{C}_{\varepsilon}(3)$ over the tran-

Fig. 7. Transducer $T_{1}^{\prime \prime}$ with redirected and overwritten ε-transitions (Example 2).
sition 106; namely the ε-cycle $\lceil 102,105,106\rceil$ in $\hat{C}_{\varepsilon}(1)$ by rotating $\lceil 106,102,105\rceil$ in $\hat{C}_{\varepsilon}(3)$ over the transition 106, and the ε-cycle $\lceil 103,106\rceil$ in $\hat{C}_{\varepsilon}(1)$ by rotating $\lceil 106,103\rceil$ in $\hat{C}_{\varepsilon}(3)$ over the same transition 106 (Figs. 5, 6). In other terms, since $\left\lceil(106,102,105)^{*}, 106\right\rceil=\left\lceil 106,(102,105,106)^{*}\right\rceil$ and $\left\lceil(106,103)^{*}, 106\right\rceil=\lceil 106,(103$, $\left.106)^{*}\right\rceil$, which in both cases means $\left\lceil\xi_{3}, 106\right\rceil=\left\lceil 106, \xi_{1}\right\rceil$, the insertion of ξ_{1} after the transition 106, which would result from a redirection of this transition, is unnecessary; ξ_{1} would not express anything that has not been described yet by ξ_{3}.
The transition 103 must be redirected from state 3 to 3^{\prime} because the ε-cycle 「106, 102, 1057 in $\hat{C}_{\varepsilon}(3)$ cannot be obtained by rotating any of the ε-cycles in $\hat{C}_{\varepsilon}(1)$ over the transition 103. The transition 101 must be redirected from state 2 to 2^{\prime} because it is not an ε-transition which means that no ε-cycles can be rotated over it.

$$
\begin{aligned}
& \mathbf{T}_{1}^{\prime} \rightarrow \mathbf{T}_{1}^{\prime \prime}: \\
& 1 \quad j \leftarrow 0 \\
& \text { for } \forall q \in Q \text { do } \\
& \text { for } \forall e \bar{\in} \pi \in \hat{C}_{\varepsilon}(q) \text { do } \\
& \text { if } i(e)=\varepsilon \\
& \text { then } i(e) \leftarrow \zeta_{j} \\
& j \leftarrow j+1
\end{aligned}
$$

To prepare the removal of ε-cycles, the ε on the input side of every transition of every $\hat{C}_{\varepsilon}\left(q_{i}\right)$ is temporarily overwritten by an auxiliary symbol ζ_{j} (Figs. 6, 7). This auxiliary symbol is different for every concerned transition, e.g., it is ζ_{0} for the transition 102 and ζ_{1} for the transition 105 . We call the result $T_{1}^{\prime \prime}$.

Every ε-cycle in $T_{1}^{\prime \prime}$ is then described by a sequence of ζ_{j}. For example, the ε-cycle $\lceil 102,105,106\rceil$ in $\hat{C}_{\varepsilon}(1)$ is described by the sequence $\left\lceil\zeta_{0}, \zeta_{1}, \zeta_{2}\right\rceil$ that consists of the new input symbols of this cycle (Figs. 5-7). Then, a constraint R_{1} is formulated to disallow all ε-cycles in all sets $\hat{C}_{\varepsilon}\left(q_{i}\right)$, by disallowing the corresponding ζ_{j}-sequences:

$$
\begin{equation*}
R_{1}=\neg\left(?^{*}\left(\bigcup_{q} i\left(\hat{C}_{\varepsilon}(q)\right)\right) ?^{*}\right) \tag{7}
\end{equation*}
$$

Fig. 8. Transducer T_{2}^{\prime} (Example 2).
In Example 2, this constraint is (Fig. 7):

$$
\begin{align*}
R_{1}= & \neg\left(?^{*}\left(\left(\zeta_{0} \zeta_{1} \zeta_{2}\right) \cup\left(\zeta_{3} \zeta_{2}\right) \cup\left(\zeta_{1} \zeta_{2} \zeta_{0}\right) \cup\left(\zeta_{2} \zeta_{0} \zeta_{1}\right) \cup\left(\zeta_{2} \zeta_{3}\right)\right) ?^{*}\right) \\
& \text { example } \tag{8}
\end{align*}
$$

When R_{1} is composed on the input side of $T_{1}^{\prime \prime}$, all ε-cycles disappear; even those that are in $C_{\varepsilon}\left(q_{i}\right)$, but not in $\hat{C}_{\varepsilon}\left(q_{i}\right)$, of a state q_{i} because they appear in $\hat{C}_{\varepsilon}\left(q_{k}\right)$ of at least one other state q_{k} :

$$
\begin{equation*}
T_{1}^{\prime \prime \prime}=R_{1} \diamond T_{1}^{\prime \prime} \tag{9}
\end{equation*}
$$

However, instances of the ζ_{j}-transitions remain in $T_{1}^{\prime \prime \prime}$ if they are also part of another path that is not an ε-cycle. Finally, every remaining ζ_{j}, which stands for ε, and every boundary symbol, \#, which has to be removed, is replaced with ε, and $T_{1}^{\prime \prime \prime}$ is minimized. We call the result T_{1}. Note that an initially introduced auxiliary symbol ξ_{i} does no appear in T_{1} if none of the incoming transitions of the state q_{i} have been redirected.

3.3. Construction of T_{2}

T_{2} is built from T^{\prime} (as was the case with T_{1}) (Fig. 5). T_{2} must map any auxiliary symbol ξ_{i} to the corresponding set of ε-cycles $C_{\varepsilon}\left(q_{i}\right)$ rather than $\hat{C}_{\varepsilon}\left(q_{i}\right)$. For every state q_{i} with non-empty $\hat{C}_{\varepsilon}\left(q_{i}\right)$, two auxiliary transitions, both labeled with the auxiliary symbol ξ_{i}, are created (Fig. 8); one transition leading from the initial state i to q_{i}, the other from q_{i} to the only final state f (pseudo code, lines 3 and 4). The resulting FST will be referred to as T_{2}^{\prime}.

```
\(\mathbf{T}^{\prime} \rightarrow \mathbf{T}_{2}^{\prime}:\)
1 for \(\forall q_{i} \in Q\) do
2 if \(\hat{C}_{\varepsilon}\left(q_{i}\right) \neq\{ \}\)
\(3 \quad\) then \(E \leftarrow E \cup\left\{\left\langle i, \xi_{i}, \xi_{i}, q_{i}\right\rangle\right\}\)
\(4 \quad E \leftarrow E \cup\left\{\left\langle q_{i}, \xi_{i}, \xi_{i}, f\right\rangle\right\}\)
```

All paths in T_{2}^{\prime} that contain only full (and no partial) ε-cycles of a state q_{i} must be kept and all others removed. For example, the set of paths $\left\lceil 301,(102,105,106)^{*}, 304\right\rceil$
containing all ε-cycles of $C_{\varepsilon}(1)$ must be kept and $\left\lceil 301,(102,105,106)^{*}, 102,305\right\rceil$ must be removed (Fig. 8). The paths to be kept, consist of twice the same auxiliary symbol, $\xi_{i} \xi_{i}$, on the input side. To allow only them, T_{2}^{\prime} is composed with a constraint:

$$
\begin{equation*}
T_{2}^{\prime \prime}=\left(\bigcup_{i}\left\{\xi_{i} \xi_{i}\right\}\right) \diamond T_{2}^{\prime} \tag{10}
\end{equation*}
$$

This removes all undesired paths. In Example 2, the composition is (Fig. 8):

$$
\begin{align*}
T_{2}^{\prime \prime}= & \left(\left(\xi_{1} \xi_{1}\right) \cup\left(\xi_{2} \xi_{2}\right) \cup\left(\xi_{3} \xi_{3}\right)\right) \diamond T_{2}^{\prime} \\
& \text { exam ple } \tag{11}
\end{align*}
$$

The resulting $T_{2}^{\prime \prime}$ maps any sequence of two identical auxiliary symbols $\xi_{i} \xi_{i}$ to itself, and inserts the corresponding set of ε-cycles $C_{\varepsilon}\left(q_{i}\right)$ in between. The second occurrence of every ξ_{i} is actually unwanted. The following composition removes this second occurrence on the input and output side, and the first occurrence of ξ_{i} on the output side only:

$$
\begin{equation*}
T_{2}^{\prime \prime \prime}=(? \hat{\varepsilon}: ?) \diamond T_{2}^{\prime \prime} \diamond\left(?: \varepsilon ?^{*} ?: \hat{\varepsilon}\right) \tag{12}
\end{equation*}
$$

The resulting $T_{2}^{\prime \prime \prime}$ maps any single auxiliary symbol ξ_{i} to the corresponding set $C_{\varepsilon}\left(q_{i}\right)$. The $\hat{\varepsilon}$ denotes the (ordinary) empty string, like ε. It is, however, preserved in minimization and determinization which prevents T_{2} from becoming larger. If the size is of no concern, ε can be used instead.
T_{2} must accept any sequence of output symbols of T_{1}, i.e., any sequence in $\Delta_{T_{1}}^{*}$. It must map every auxiliary symbol ξ_{i} to the corresponding set of ε-cycles $C_{\varepsilon}\left(q_{i}\right)$, and every other symbol to itself. T_{2} is built by:

$$
\begin{equation*}
T_{2}=\left(\Delta_{T_{1}} \diamond\left(T_{2}^{\prime \prime \prime} \cup \neg \bigcup_{i} \xi_{i}\right)\right)^{*} \tag{13}
\end{equation*}
$$

This operation has the side effect that all initially introduced auxiliary symbols ξ_{i} that later disappeared from T_{1}, are now also removed from T_{2}. Finally, T_{2} is minimized (Fig. 9a, b).

3.4. Proof

For the following reason, the algorithm always leads to the described result.
In \mathbf{T}_{1} : If an ε-cycle in $C_{\varepsilon}\left(q_{i}\right)$ contains a state q_{k} more that once, which means that this cycle has an "embedded" ε-cycle on q_{k}, than $C_{\varepsilon}\left(q_{i}\right)$ also contains an ε-cycle where no q_{k} is encountered more that once, which can be obtained by not traversing the embedded cycle on q_{k}. This also holds if there are several embedded cycles. In general:

$$
\begin{equation*}
C_{\varepsilon}\left(q_{i}\right) \neq\{ \} \Rightarrow \hat{C}_{\varepsilon}\left(q_{i}\right) \neq\{ \} \tag{14}
\end{equation*}
$$

This means, every q_{i} with $C_{\varepsilon}\left(q_{i}\right) \neq\{ \}$ will be assigned an auxiliary symbol ξ_{i}, although this action is triggered by $\hat{C}_{\varepsilon}\left(q_{i}\right) \neq\{ \}$.

$\mathbf{a} \mathbf{a}^{n} \longrightarrow \xi_{1} \mathbf{x} \xi_{2}\left(\mathrm{~s} \xi_{3} \mathrm{t} \mathbf{x} \xi_{2}\right)^{n}$

$$
\longrightarrow(\mathrm{rst} \mid \mathrm{vt})^{*} \mathbf{x}\left(\mathrm{~s}(\mathrm{tv})^{*} \operatorname{tr}\right)^{*}\left(\mathrm{~s}(\mathrm{tv} \mid \operatorname{trs})^{*} \mathrm{t} \mathbf{x}\left(\mathrm{~s}(\mathrm{tv})^{*} \operatorname{tr}\right)^{*}\right)^{n}
$$

Fig. 9. Decomposition of T with ε-cycles into (a) T_{1} that emits auxiliary symbols, and (b) T_{2} that maps auxiliary symbols to ε-cycles (Example 2).

All embedded ε-cycles, that are not in $\hat{C}_{\varepsilon}\left(q_{i}\right)$, are in $\hat{C}_{\varepsilon}\left(q_{k}\right)$, of some other state q_{k}. Consequently, they will be removed as well, i.e., all ε-cycles of T_{1} will be removed.

Example 2 (Fig. 5). Since state 2 has a non-empty $C_{\varepsilon}(2)=\left\{\left\lceil 105,(106,103)^{*}, 106\right.\right.$, $102\rceil\}$, it also has a non-empty $\hat{C}_{\varepsilon}(2)=\{\lceil 105,106,102\rceil\}$ and will therefore be assigned ξ_{2}. The embedded cycle $\left\lceil(106,103)^{*}\right\rceil$ in $C_{\varepsilon}(2)$ will be removed from T_{1}, despite not being in $\hat{C}_{\varepsilon}(2)$, because it is in $\hat{C}_{\varepsilon}(1)$ and $\hat{C}_{\varepsilon}(3)$.

In \mathbf{T}_{2} : The $C_{\varepsilon}\left(q_{i}\right)$ of every state q_{i} that has been assigned an auxiliary symbol ξ_{i} are preserved whereas every other path is removed. This means, the ξ_{i} are mapped to $C_{\varepsilon}\left(q_{i}\right)$ rather than to $\hat{C}_{\varepsilon}\left(q_{i}\right)$ that originally caused their introduction.

The initial limitation to $\hat{C}_{\varepsilon}\left(q_{i}\right)$ is not reflected in the final result, T_{1} and T_{2}.

4. Alternative representation with complex labels

As previously shown for Example 1, instead of decomposing T into T_{1} and T_{2}, one can represent it by a single FST, \hat{T}, that is similar to T_{1} but with complex output labels that directly describe sets of ε-cycles $C_{\varepsilon}(q)$ (Fig. 3). Every $C_{\varepsilon}(q)$ in T would be reduced to a single transition in \hat{T}. Both representations are equivalent.

To build \hat{T}, we first create T^{\prime} as described above (Section 3.1, Fig. 5). Each state q with non-empty $C_{\varepsilon}(q)$ is then additionally assigned a complex label $L(q)$ that describes $C_{\varepsilon}(q)$. The resulting FST is called $T^{\prime \prime}$ (Fig. 10, pseudo code line 1 to 3). For example, state 2 with $\hat{C}_{\varepsilon}(2)=\{\lceil 105,106,102\rceil\}$ is assigned $L(2)="(\mathrm{~s}(\mathrm{tv}) * \operatorname{tr}) * "$.

Fig. 10. Transducer $T^{\prime \prime}$ with boundaries, auxiliary symbols, ε-cycle information, and complex labels (Example 2).

A label $L(q)$ begins with "(" (line 8), ends with ")*" (line 8), and contains the labels of all paths $\pi \in \hat{C}_{\varepsilon}(q)$ separated by "|" (line 7). (Note, the "|" after the last path label is first appended and then removed (line 7,8)). The label of a path π is created form the output symbols $o(e)$ of its transitions $e \bar{\in} \pi$ (line 12) and from the labels of embedded ε-cycles encountered along π.

```
\(\mathbf{T}^{\prime} \rightarrow \mathbf{T}^{\prime \prime}:\)
    for \(\forall q \in Q\) do
        if \(\hat{C}_{\varepsilon}(q) \neq\{ \}\)
        then \(L(q) \leftarrow \operatorname{LabelOfCycles}\left(\hat{C}_{\varepsilon}(q), q\right)\)
LabelOfCycles \((C, q)\) :
\(4 \quad L_{c} \leftarrow\) "("
5 for \(\forall \pi \in C\) do
\(6 \quad L_{c} \leftarrow L_{c} \cdot \operatorname{LabelOfPath}(\pi, q)\)
    \(L_{c} \leftarrow L_{c}\). "|"
    \(L_{c} \leftarrow L_{c} \cdot " \mid "-1\). ")*"
    return \(L_{c}\)
LabelOfPath \((\pi, q)\) :
\(10 \quad L_{\pi} \leftarrow \varepsilon\)
11 for \(\forall e \bar{\in} \pi\) do
\(12 \quad L_{\pi} \leftarrow L_{\pi} \cdot o(e)\)
\(13 \quad C_{\varepsilon}^{\prime} \leftarrow\left\{\pi^{\prime} \in \hat{C}_{\varepsilon}(n(e)) \mid\right.\) rotate \(^{R L}\left(\pi^{\prime}\right) \notin \hat{C}_{\varepsilon}(p(e))\)
                                    \(\left.\wedge \forall e^{\prime} \bar{\in} \pi^{\prime}, n\left(e^{\prime}\right) \neq q\right\}\)
14 if \(C_{\varepsilon}^{\prime} \neq\{ \}\)
    then \(L_{\pi} \leftarrow L_{\pi} \cdot \operatorname{LabelOfCycles}\left(C_{\varepsilon}^{\prime}, q\right)\)
    return \(L_{\pi}\)
```


Fig. 11. Representation of ε-cycles by complex labels (Example 2).

To account for those cycles, we create for each $e \bar{\epsilon} \pi$ a set C_{ε}^{\prime} of embedded ε-cycles that immediately follow e (line 13). This set C_{ε}^{\prime} contains all those paths $\pi^{\prime} \in C_{\varepsilon}(n(e))$ assigned to the transition's destination state $n(e)$ that meet the following two constrains: First, π^{\prime} must not be a repetition (obtained by rotation) of any of the paths in the transition's source state $p(e)$ because then π^{\prime} has already been taken into account with $p(e)$ or earlier. Second, π^{\prime} must not traverse the state q for which we are creating the label $L(q)$ because then it is taken into account as an ordinary ε-cycle of q rather than as an embedded one. The label of the set of embedded ε-cycles C_{ε}^{\prime} encountered after a transition $e \bar{\in} \pi$ is included (if not empty) into the label of the path π after the output symbol of e (line 15). Note that the paths of embedded cycles can as well contain embedded cycles.

For example, $L(2)$ of state 2 describes the only path $\pi=\lceil 105,106,102\rceil$ of $\hat{C}_{\varepsilon}(2)$ (Fig. 10). After the output symbol "s" of transition 105, we append the label "(tv)*" of the embedded ε-cycle $\pi_{1}^{\prime}=\lceil 106,103\rceil \in \hat{C}_{\varepsilon}(3)$. The other path $\pi_{2}^{\prime}=\lceil 106,102,105\rceil$ $\in \hat{C}_{\varepsilon}(3)$ is ignored because it is a rotation of $\pi . \pi_{1}^{\prime}$ has no embedded ε-cycles to be taken into account. The next symbol in $L(2)$ is " t ", the output of transition 106. The ε-cycles of $\hat{C}_{\varepsilon}(1)$ of the following state 1 are all ignored because they are rotations of cycles in $\hat{C}_{\varepsilon}(3)$.
\hat{T} is then built from $T^{\prime \prime}$ by the same algorithm as T_{1} was built from T^{\prime} (Section 3.2). Consequently, \hat{T} has the same structure as T_{1} (Figs. 9a, 11). However, instead of auxiliary symbols ξ that represent ε-cycles, \hat{T} has complex labels $L(q)$ that directly describe them.

5. Conclusion and final remarks

The article has shown that an arbitrary FST, T, containing ε-cycles can be decomposed into two FSTs, T_{1} and T_{2}, such that T_{1} contains no ε-cycles and T_{2} contains all ε-cycles of T. Jointly in a cascade, T_{1} and T_{2} describe the same relation (and perform

Fig. 12. (Almost) Real-time representation of ε-cycles (a) by auxiliary symbols and (b) by complex labels (Example 2).
the same mapping) as the original FST T (Fig. 9). When T_{1} and T_{2} are composed with each other, T is obtained. The size increase of T_{2}, compared to T, is not necessarily a concern. T_{2} could be an intermediate result that is further processed.

As an alternative to decomposition, T can be represented by a single FST, \hat{T}, that is similar to T_{1} but with complex output labels directly describing sets of ε-cycles. Every such set in T is reduced to a single transition in \hat{T} (Fig. 11). Both representations ($T_{1} \diamond T_{2}$ and \hat{T}) are equivalent and can be constructed by similar algorithms.

Both T_{1} and \hat{T} (in Example 2) cannot be converted into real-time FSTs because they accept ε as input. To make them almost real-time they can be split into the union of an FST that accepts only ε (Figs. 9a and 11: transitions $\{100,102\}$) and another FST that does not accept ε (transitions $\{100,101,103,104,105,106,107\}$). The second of these FSTs can be made real-time and then unioned again with the first (Fig. 12).

References

[1] A.V. Aho, R. Sethi, J.D. Ullman, Compilers—Principles, Techniques and Tools, Addison-Wesley, Reading, MA, USA, 1986.
[2] G. Birkhoff, T.C. Bartee, Modern Applied Algebra, McGraw-Hill, New York, USA, 1970.
[3] A. Kempe, Reduction of intermediate alphabets in finite-state transducer cascades, in: Proc. 7th Conf. on Automatic Natural Language Processing (TALN), Lausanne, Switzerland. ATALA, 2000, pp. 207-215.
[4] A. Kempe, Factorization of ambiguous finite-state transducers, in: S. Yu, A. Paun (Ed.), Proc. 5th Internat. Conf. on Implementation and Application of Automata (CIAA 2000), The University of Western Ontario, London, Ontario, Canada, July 24-25, 2000. Lecture Notes in Computer Science, Vol. 2088, Springer, Berlin, 2001, pp. 170-181.
[5] M. Mohri, Generic ε-removal algorithm for weighted automata, in: S. Yu, A. Paun (Eds.), Proc. 5th Internat. Conf. on Implementation and Application of Automata (CIAA 2000), The University of Western Ontario, London, Ontario, Canada, July 24-25, 2000. Lecture Notes in Computer Science, Vol. 2088 Springer, Berlin, 2001, pp. 230-242.
[6] G. van Noord, Treatment of ε-moves in subset construction, in: Proc. Internat. Workshop on Finite-State Methods in Natural Language Processing (FSMNLP), Bilkent University, Ankara, Turkey, June 29-July 1, 1998, pp. 1-12.
[7] J. Sakarovitch, A construction on finite automata that has remained hidden, Theoret. Comput. Sci. 204 (1998) 205-231.
[8] M.P. Schützenberger, Sur les relations rationnelles entre monoïdes libres, Theoret. Comput. Sci. 3 (1976) 243-259.

[^0]: E-mail address: andre.kempe@xrce.xerox.com (A. Kempe).
 URL: http://www.xrce.xerox.com/people/kempe/

[^1]: ${ }^{1}$ In all the following figures, thin arrows are used for ε-transitions and thick arrows for non- ε-transitions.

