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Abstract

Let Γ be a finite graph and G be the corresponding free partially commutative group. In this paper we
study subgroups generated by vertices of the graph Γ , which we call canonical parabolic subgroups. A nat-
ural extension of the definition leads to canonical quasiparabolic subgroups. It is shown that the centralisers
of subsets of G are the conjugates of canonical quasiparabolic centralisers satisfying certain graph theoretic
conditions.
© 2007 Elsevier Inc. All rights reserved.
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1. Preliminaries

Free partially commutative groups arise naturally in many branches of mathematics and com-
puter science and consequently have many aliases: they are known as semifree groups [1,2],
graph groups [14,22,24,26,31,33], right-angled Artin groups [4–6,8,10,23,30,35], trace groups
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[13,29], locally free groups [9,28,34] and of course (free) partially commutative groups [3,7,11,
12,15,17,18,21,25,27,32]. We refer the reader to [5,13,21,22] for further references, more com-
prehensive surveys, introductory material and discussion of the various manifestations of these
groups.

In this section we give a brief overview of some definitions and results from [20,21]. We begin
with the basic notions of the theory of free partially commutative groups: which, for the sake of
brevity we refer to simply as partially commutative groups. Let Γ be a finite, undirected, simple
graph. Let X = V (Γ ) = {x1, . . . , xn} be the set of vertices of Γ and let F(X) be the free group
on X. Let

R = {[xi, xj ] ∈ F(X)
∣∣ xi, xj ∈ X and there is an edge of Γ joining xi to xj

}
.

We define the partially commutative group with (commutation) graph Γ to be the group G(Γ )

with presentation 〈X | R〉. When the underlying graph is clear from the context we write sim-
ply G.

Denote by l(g) the minimum of the lengths words that represent the element g. If w is a word
representing g and w has length l(g) we call w a minimal form for g. When the meaning is clear
we shall say that w is a minimal element of G when we mean that w is a minimal form of an
element of G. We say that w ∈ G is cyclically minimal if and only if

l
(
g−1wg

)
� l(w)

for every g ∈ G. We write u ◦ w to express the fact that l(uw) = l(u) + l(w), where u,w ∈ G.
We will need the notions of a divisor and the greatest divisor of a word w with respect to a subset
Y ⊆ X, defined in [21]. Let u and w be elements of G. We say that u is a left (right) divisor of w

if there exists v ∈ G such that w = u ◦ v (w = v ◦ u). We order the set of all left (right) divisors
of a word w as follows. We say that u2 is greater than u1 if and only if u1 left (right) divides u2.
It is shown in [21] that, for any w ∈ G and Y ⊆ X, there exists a unique maximal left divisor
of w which belongs to the subgroup 〈Y 〉 < G which is called the greatest left divisor gdl

Y (w) of
w in Y . The greatest right divisor of w in Y is defined analogously. We omit the indices when
no ambiguity occurs.

The non-commutation graph of the partially commutative group G(Γ ) is the graph Δ, dual
to Γ , with vertex set V (Δ) = X and an edge connecting xi and xj if and only if [xi, xj ] �= 1. The
graph Δ is a union of its connected components Δ1, . . . ,Δk and words that depend on letters
from distinct components commute. For any graph Γ , if S is a subset of V (Γ ) we shall write
Γ (S) for the full subgraph of Γ with vertices S. Now, if the vertex set of Δk is Ik and Γk = Γ (Ik)

then G = G(Γ1) × · · · × G(Γk). For g ∈ G let α(g) be the set of elements x of X such that x±1

occurs in a minimal word w representing g. It is shown in [21] that α(g) is well defined. Now
suppose that the full subgraph Δ(α(w)) of Δ with vertices α(w) has connected components
Δ1, . . . ,Δl and let the vertex set of Δj be Ij . Then, since [Ij , Ik] = 1, we can split w into the
product of commuting words, w = w1 ◦ · · · ◦ wl , where wj ∈ G(Γ (Ij )), so [wj ,wk] = 1 for all
j, k. If w is cyclically minimal then we call this expression for w a block-decomposition of w

and say wj is a block of w, for j = 1, . . . , l. Thus w itself is a block if and only if Δ(α(w)) is
connected. In general let v be an element of G which is not necessarily cyclically minimal. We
may write v = u−1 ◦w ◦u, where w is cyclically minimal and then w has a block-decomposition
w = w1 · · ·wl , say. Then wu = u−1 ◦ wj ◦ u and we call the expression v = wu · · ·wu the block-
j 1 l
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decomposition of v and say that wu
j is a block of v, for j = 1, . . . , l. Note that this definition is

slightly different from that given in [21].
Let Y and Z be subsets of X. As in [20] we define the orthogonal complement of Y in Z to

be

OZ(Y ) = {
u ∈ Z

∣∣ d(u, y) � 1, for all y ∈ Y
}
.

By convention we set OZ(∅) = Z. If Z = X we call OX(Y ) the orthogonal complement of Y ,
and if no ambiguity arises then we write Y⊥ instead of OX(Y ) and x⊥ for {x}⊥. Let CS(Γ ) be
the set of all subsets Z of X of the form Y⊥ for some Y ⊆ X. The set CS(Γ ) is shown in [20] to
be a lattice, the lattice of closed sets of Γ .

The centraliser of a subset S of G is

C(S) = CG(S) = {g ∈ G: gs = sg, for all s ∈ S}.
The set C(G) of centralisers of a group is a lattice. An element g ∈ G is called a root element
if g is not a proper power of any element of G. If h = gn, where g is a root element and n � 1,
then g is said to be a root of h. As shown in [16] every element of the partially commutative
group G has a unique root, which we denote r(g). If w ∈ G define A(w) = 〈Y 〉 = G(Y), where
Y = α(w)⊥ \ α(w). Let w be a cyclically minimal element of G with block-decomposition
w = w1 · · ·wk and let vi = r(wi). Then, from [16, Theorem 3.10],

C(w) = 〈v1〉 × · · · × 〈vk〉 × A(w). (1.1)

We shall use [19, Corollary 2.4] several times in what follows, so for ease of reference we
state it here: first recalling the necessary notation. It follows from [19, Lemma 2.2] that if g is
a cyclically minimal element of G and g = u ◦ v then vu is cyclically minimal. For a cyclically
minimal element g ∈ G we define g̃ = {h ∈ G | h = vu, for some u,v such that g = u ◦ v}. (We
allow u = 1, v = g so that g ∈ g̃.)

Lemma 1.1. (See [19, Corollary 2.4].) Let w,g be (minimal forms of ) elements of G and w =
u−1 ◦ v ◦ u, where v is cyclically minimal. Then there exist minimal forms a, b, c, d1, d2 and
e such that g = a ◦ b ◦ c ◦ d2, u = d1 ◦ a−1, d = d1 ◦ d2, wg = d−1 ◦ e ◦ d , ẽ = ṽ, e = vb,
α(b) ⊆ α(v) and [α(b ◦ c),α(d1)] = [α(c),α(v)] = 1.

Figure 1 expresses the conclusion of Lemma 1.1 as a Van Kampen diagram. In this diagram
we have assumed that v = b ◦ f and so e = f ◦ b. The regions labelled B are tessellated using
relators corresponding to the relation [α(b ◦ c),α(d1)] = 1 and the region labelled A with re-
lators corresponding to [α(c),α(v)] = 1. Reading anticlockwise from the vertex labelled 0 the
boundary label of the exterior region is g−1wg and the label of the interior region (not labelled
A or B) is ed .

2. Parabolic subgroups

2.1. Parabolic and block-homogeneous subgroups

As usual let Γ be a graph with vertices X and G = G(Γ ). If Y is a subset of X denote by
Γ (Y ) the full subgraph of Γ with vertices Y . Then G(Γ (Y )) is the free partially commutative
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Fig. 1. A Van Kampen diagram for Lemma 1.1.

group with graph Γ (Y ). As Baudisch [1] observed G(Γ (Y )) is the subgroup 〈Y 〉 of G(Γ ) gen-
erated by Y . We call G(Γ (Y )) a canonical parabolic subgroup of G(Γ ) (in keeping with the
terminology for analogous subgroups of Coxeter groups) and, when no ambiguity arises, denote
it G(Y). Note that such subgroups are called graphical in [31], full in [23] and special in [5].
The elements of Y are termed the canonical generators of G(Y).

Definition 2.1. A subgroup P of G is called parabolic if it is conjugate to a canonical parabolic
subgroup G(Y) for some Y ⊆ X. The rank of P is the cardinality |Y | and Y is called a set of
canonical generators for P .

To see that the definition of rank of a parabolic subgroup is well-defined note that if Y,Z ⊆ X

and G(Y) = G(Z)g , for some g ∈ G, then we have y = g−1wyg, for some wy ∈ G(Z), for all
y ∈ Y . It follows, from [21, Lemma 2.5], by counting the exponent sums of letters in a geodesic
word representing g−1wg, that y ∈ α(wy), so y ∈ Z. Hence Y ⊆ Z and similarly Z ⊆ Y so
Y = Z.

Definition 2.2. A subgroup H is called block-homogeneous if, for all h ∈ H , if h has block-
decomposition h = w1w2 · · ·wk then wi ∈ H , for i = 1, . . . , k.

Lemma 2.3. An intersection of block-homogeneous subgroups is again a block-homogeneous
subgroup. If H is block-homogeneous and g ∈ G then Hg is block-homogeneous. In particular
parabolic subgroups are block-homogeneous.

Proof. The first statement follows directly from the definition. Let H be block-homogeneous and
g ∈ G and let wg ∈ Hg , where w ∈ H . Write w = u−1 ◦ v ◦ u, where v is cyclically reduced and
has block-decomposition v = v1 · · ·vk . Then the blocks of w are vu

j , so vu
j ∈ H , for j = 1, . . . , k.

From Lemma 1.1 there exist a, b, c, d1, d2, e such that g = a ◦b◦c◦d2, u = d1 ◦a−1, d = d1 ◦d2,
wg = d−1 ◦ e ◦ d , ẽ = ṽ, e = vb , α(b) ⊆ α(v) and [α(b ◦ c),α(d1)] = [α(c),α(v)] = 1. As ẽ = ṽ
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it follows that Δ(α(e)) = Δ(α(v)) so e has block-decomposition e = e1 · · · ek , where ẽj = ṽj .
Therefore wg has block-decomposition wg = ed = ed

1 · · · ed
k . Moreover e = vb so ej = vb

j . Thus

ed
j = ecd

j = vbcd
j = v

d1bcd2
j = v

ug
j ∈ Hg,

which implies that Hg is block-homogeneous. It follows from [21, Lemma 2.5] that any canoni-
cal parabolic subgroup is block-homogeneous and this gives the final statement. �
2.2. Intersections of parabolic subgroups

In this section we show that an intersection of parabolic subgroups is again a parabolic sub-
group. To begin with we establish some preliminary results.

Lemma 2.4. Let Y,Z ⊆ X, let w ∈ G(Y) and let g ∈ G(X) be such that

gd l
Y (g) = gd r

Z(g) = 1.

1. If wg ∈ G(Z) then g ∈ A(w) and w ∈ G(Y) ∩ G(Z) = G(Y ∩ Z).
2. If Y = Z and g ∈ C(w) then g ∈ A(w).

Proof. For 1, in the notation of Lemma 1.1 we have w = u−1 ◦v ◦u, wg = d−1
2 ◦d−1

1 ◦e◦d1 ◦d2
and g = a ◦ b ◦ c ◦ d2. Applying the conditions of this lemma we obtain a = b = d2 = 1, u = d1
and e = v so wg = w and g = c. Moreover, from Lemma 1.1 again we obtain [α(g),α(w)] = 1.
If x ∈ α(w) ∩ α(g) this means that g = x ◦ g′, with x ∈ Y , contradicting the hypothesis on g.
Hence α(w) ∩ α(g) = ∅ and g ∈ A(w). Statement 2 follows from 1. �
Corollary 2.5. Let Y,Z ⊆ X and g ∈ G. If G(Y)g ⊆ G(Z) and gdl

Y⊥(g) = 1 then Y ⊆ Z and
α(g) ⊆ Z.

Proof. Assume first that gdl
Y (g) = gdr

Z(g) = 1. Let y ∈ Y and w = y in Lemma 2.4; so yg ∈
G(Z) implies that g ∈ A(y) and y ∈ Z. This holds for all y ∈ Y so we have Y ⊆ Z and g ∈ A(Y).
Hence, in this case, g = 1. Now suppose that g = g1 ◦ d , where g1 = gdl

Y (g). Then gdl
Y⊥(g) = 1

implies that gdl
Y⊥(d) = 1. Now write d = e ◦ g2, where g2 = gdr

Z(d). Then G(Y)g = G(Y)d

and G(Y)d ⊆ G(Z) implies G(Y)e ⊆ G(Z). As gdl
Y⊥(d) = 1 the same is true of e and from

the above we conclude that e = 1 and that Y ⊆ Z. Now g = g1 ◦ g2, where α(g1) ⊆ Y ⊆ Z and
α(g2) ⊆ Z. Thus α(g) ⊆ Z, as required. �
Proposition 2.6. Let P1 and P2 be parabolic subgroups. Then P = P1 ∩ P2 is a parabolic sub-
group. If P1 � P2 then the rank of P is strictly smaller than the rank of P1.

This lemma follows easily from the next more technical result.

Lemma 2.7. Let Y,Z ⊂ X and g ∈ G. Then

G(Y) ∩ G(Z)g = G(Y ∩ Z ∩ T )g2 ,

where g = g1 ◦ d ◦ g2, gdl (d) = gdr
Y (d) = 1, g1 ∈ G(Z), g2 ∈ G(Y) and T = α(d)⊥.
Z
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Derivation of Proposition 2.6 from Lemma 2.7. Let P1 = G(Y)a and P2 = G(Z)b , for some
a, b ∈ G. Then P = (G(Y ) ∩ G(Z)ba−1

)a , which is parabolic since Lemma 2.7 implies that
G(Y) ∩ G(Z)ba−1

is parabolic. Assume that the rank of P is greater than or equal to the rank
of P1. Let g = ba−1. The rank of P is equal to the rank of G(Y) ∩ G(Z)g and, in the notation
of Lemma 2.7, G(Y) ∩ G(Z)g = G(Y ∩ Z ∩ T )g2 , where g = g1 ◦ d ◦ g2, with T = α(d)⊥, g2 ∈
G(Y) and g1 ∈ G(Z). Therefore Y ⊆ Y ∩Z ∩T which implies Y ⊆ Z ∩T . Thus G(Y) ⊆ G(Z ∩
T ) = G(Z ∩ T )d so G(Y) = G(Y)g2 ⊆ G(Z ∩ T )dg2 ⊆ G(Z)dg2 = G(Z)g . Hence P1 ⊆ P2. �
Proof of Lemma 2.7. Let g1 = gdl

Z(g) and write g = g1 ◦ g′. Let g2 = gdr
Y (g′) and write g′ =

d ◦ g2. Then g1, g2 and d satisfy the conditions of the lemma. Set T = α(d)⊥. As G(Y) ∩
G(Z)g = G(Y) ∩ G(Z)dg2 = G(Y)g2 ∩ G(Z)dg2 = (G(Y ) ∩ G(Z)d)g2 it suffices to show that
G(Y) ∩ G(Z)d = G(Y ∩ Z ∩ T ). If d = 1 then T = X and G(Y) ∩ G(Z) = G(Y ∩ Z), so the
result holds. Assume then that d �= 1. Let p = wd ∈ G(Y) ∩ G(Z)d , with w ∈ G(Z). Applying
Lemma 2.4 to wd ∈ G(Y) we have d ∈ A(w) and w ∈ G(Z) ∩ G(Y) = G(Y ∩ Z). Thus w ∈
α(d)⊥ = T and so w ∈ G(Y ∩ Z ∩ T ). This shows that G(Y) ∩ G(Z)d ⊆ G(Y ∩ Z ∩ T ) and as
the reverse inclusion follows easily the proof is complete. �
Proposition 2.8. The intersection of parabolic subgroups is a parabolic subgroup and can be
obtained as an intersection of a finite number of subgroups from the initial set.

Proof. In the case of two parabolic subgroups the result follows from Proposition 2.6. Conse-
quently, the statement also holds for a finite family of parabolic subgroups. For the general case
we use Proposition 2.6 again, noting that a proper intersection of two parabolic subgroups is a
parabolic subgroup of lower rank, and the result follows. �

As a consequence of this proposition we obtain: given two parabolic subgroups P and Q the
intersection R of all parabolic subgroups containing P and Q is the unique minimal parabolic
subgroup containing both P and Q. Define P ∨ Q = R and P ∧ Q = P ∩ Q.

Corollary 2.9. The parabolic subgroups of G with the operations ∨ and ∧ above form a lattice.

2.3. The lattice of parabolic centralisers

Let Z ⊆ X. Then the subgroup CG(Z)g is called a parabolic centraliser. As shown in [20,
Lemma 2.3] every parabolic centraliser is a parabolic subgroup: in fact CG(Z)g = G(Z⊥)g . The
converse also holds as the following proposition shows.

Proposition 2.10. A parabolic subgroup G(Y)g , Y ⊆ X is a centraliser if and only if there exists
Z ⊆ X so that Z⊥ = Y . In this case G(Y)g = CG(Zg).

Proof. It suffices to prove the proposition for g = 1 only. Suppose that there exists such a Z.
It is then clear that G(Y) ⊆ CG(Z). If w ∈ G, w is a reduced word and α(w) � Y then there
exists x ∈ α(w) and z ∈ Z so that [x, z] �= 1 and consequently, by [21, Lemma 2.4], [w,z] �= 1.
Assume further that G(Y) is a centraliser of a set of elements w1, . . . ,wk written in reduced
form. Since [y,wi] = 1, for any y ∈ Y , then by [21, Lemma 2.4] again, [y,α(wi)] = 1. Denote
Z = ⋃k

i=1 α(wi). We have [y, z] = 1 for all z ∈ Z and consequently Y ⊆ Z⊥. Conversely if
x ∈ Z⊥ then x ∈ CG(w1, . . . ,wk) so x ∈ Y . �
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We now introduce the structure of a lattice on the set of all parabolic centralisers. As we have
shown above the intersection of two parabolic subgroups is a parabolic subgroup. So, we set
P1 ∧ P2 = P1 ∩ P2. The most obvious way to define P1 ∨ P2 would be as in Section 2.2 above.
However, in this case P1 ∨ P2 is not necessarily a centraliser, though it is a parabolic subgroup.
For any S ⊆ G we define S = ⋂{P : P is a parabolic centraliser and S ⊆ P }. Then S is the
minimal parabolic centraliser containing S; since intersections of centralisers are centralisers
and intersections of parabolic subgroups are parabolic subgroups. We now define P1 ∨ P2 =
P1 ∪ P2.

3. Quasiparabolic subgroups

3.1. Preliminaries

As before let Γ be a finite graph with vertex set X and G = G(Γ ) be the corresponding
partially commutative group.

Definition 3.1. Let w be a cyclically minimal root element of G with block-decomposition w =
w1 · · ·wk and let Z be a subset of X such that Z ⊆ α(w)⊥. Then the subgroup Q = Q(w,Z) =
〈w1〉 × · · · × 〈wk〉 × G(Z) is called a canonical quasiparabolic subgroup of G.

Note that we may choose w = 1 so that canonical parabolic subgroups are canonical quasipar-
abolic subgroups. Given a canonical quasiparabolic subgroup Q(w,Z), with w and Z as above,
we may reorder the wi so that l(wi) � 2, for i = 1, . . . , s and l(wi) = 1, for i = s + 1, . . . , k.
Then setting w′ = w1 · · ·ws and Z′ = Z ∪ {ws+1, . . . ,wk} we have Z′ ⊆ α(w)⊥ and Q(w,Z) =
Q(w′,Z′). This prompts the following definition.

Definition 3.2. We say that a canonical quasiparabolic subgroup Q = 〈w1〉× · · ·× 〈wk〉×G(Z)

is written in standard form if |α(wi)| � 2, i = 1, . . . , k, or w = 1.

There are two obvious advantages to the standard form which we record in the following
lemma.

Lemma 3.3. The standard form of a canonical quasiparabolic subgroup Q is unique, up to
reordering of blocks of w. If Q(w,Z) is the standard form of Q then Z ⊆ α(w)⊥ \ α(w).

Proof. That the standard form is unique follows from uniqueness of roots of elements in partially
commutative groups. The second statement follows directly from the definitions. �
Definition 3.4. A subgroup H of G is called quasiparabolic if it is conjugate to a canonical
quasiparabolic subgroup.

Let H = Qg be a quasiparabolic subgroup of G, where Q is the canonical quasiparabolic
subgroup of G in standard form

Q = 〈w1〉 × · · · × 〈wk〉 × G(Z).
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We call (|Z|, k) the rank of H . We use the left lexicographical order on ranks of quasiparabolic
subgroups: if H and K are quasiparabolic subgroups of ranks (|ZH |, kH ) and (|ZK |, kK), re-
spectively, then rank(H) < rank(K) if (|ZH |, kH ) precedes (|ZK |, kK) in left lexicographical
order.

The centraliser CG(g) of an element g ∈ G is a typical example of a quasiparabolic subgroup
[16]. We shall see below (Theorem 3.12) that the centraliser of any set of elements of the group G

is a quasiparabolic subgroup.

Lemma 3.5. A quasiparabolic subgroup is a block-homogeneous subgroup and consequently
any intersection of quasiparabolic subgroups is again block-homogeneous.

Proof. Let Q(w,Z) be a canonical quasiparabolic subgroup. Since w is a cyclically minimal
root element it follows that Q(w,Z) is block-homogeneous. An application of Lemma 2.3 then
implies Q(w,Z)g is also block-homogeneous. �

We shall need the following lemma in Section 4.

Lemma 3.6. Let Q1 = Q(u,Y ) and Q2 = Q(v,Z) be canonical quasiparabolic subgroups in
standard form and let g ∈ G. If Q

g

2 ⊆ Q1, g ∈ G(Z⊥) and gdr
Y (g) = 1 then Q

g

2 is a canonical
quasiparabolic subgroup.

Proof. Let u and v have block-decompositions u = u1 · · ·uk and v = v1 · · ·vl , respectively. As
g ∈ G(Z⊥) we have

Q
g

2 = 〈
v

g

1

〉 × · · · × 〈
v

g
l

〉 × G(Z).

Therefore, for j = 1, . . . , l, either v
g
j = ui for some i = 1, . . . , k, or v

g
j ∈ G(Y). If v

g
j = ui then

v
g
j is a cyclically minimal root element. If, on the other hand, v

g
j ∈ G(Y) then, from Lemma 1.1,

there exist elements b, c, d and e such that g = b◦c◦d , vg
j = d−1 ◦e◦d and e = vb

j is a cyclically

minimal root element. As v
g
j ∈ G(Y) and gdr

Y (g) = 1 we have d = 1 and so v
g
j = e and is a

cyclically minimal root element. Therefore Q
g

2 is a canonical quasiparabolic subgroup. �
3.2. Intersections of quasiparabolic subgroups

The main result of this section is the following

Theorem 3.7. An intersection of quasiparabolic subgroups is a quasiparabolic subgroup.

We shall make use of the following results.

Lemma 3.8. Let A = A1 × · · · × Al and B = B1 × · · · × Bk , Ai , Bj , i = 1, . . . , l, j = 1, . . . , k

be block-homogeneous subgroups of G and C = A ∩ B . Then

C =
∏

i=1,...,l;
j=1,...,k

(Ai ∩ Bj ).
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Proof. If C = 1 then the result is straightforward. Assume then that C �= 1, w ∈ C and w �= 1 and
let w = w1 · · ·wt be the block-decomposition of w. Since C is a block-homogeneous subgroup,
wi ∈ C, i = 1, . . . , t . As wi is a block element we have wi ∈ Ar and wi ∈ Bs and consequently
wi lies in

∏
i,j (Ai ∩ Bj ). As it is clear that C �

∏
i,j (Ai ∩ Bj ) this proves the lemma. �

Lemma 3.9. Let Z ⊆ X, w ∈ G(Z), g ∈ G. Suppose that u = g−1wg is cyclically minimal and
gdl

α(w)(g) = 1, then g and w commute.

Proof. Let g = d ◦ g1, where d = gdl
α(w)⊥(g). If g1 = 1 then g ∈ C(w). Suppose g1 �= 1. Then

gdl
α(w)(g1) = 1 so we write g1 = x ◦ g2, where x ∈ (X ∪ X−1) \ (α(w) ∪ α(w)⊥) and thus

u = g−1
2 x−1wxg2 is written in geodesic form. This is a contradiction for l(w) < l(u). �

Lemma 3.10. Let

Q1 = 〈u1〉 × · · · × 〈ul〉 × G(Y) and Q2 = 〈v1〉 × · · · × 〈vk〉 × G(Z)

be canonical quasiparabolic subgroups in standard form and let g ∈ G such that gdl
Z(g) = 1.

Write g = d ◦ h, where h = gdr
Y (g) and set T = α(d)⊥. Then, after reordering the ui and vj if

necessary, there exist m,s, t such that

Q1 ∩ Q
g

2 =
(

s∏
i=1

〈vi〉 ×
t∏

i=s+1

〈vi〉 ×
m∏

j=s+1

〈ui〉 × G(Y ∩ Z ∩ T )

)g

(3.1)

and

(i) 〈ui〉 = 〈vi〉g , for i = 1, . . . , s;
(ii) 〈vi〉g ⊆ G(Y), for i = s + 1, . . . , t ; and

(iii) 〈ui〉 ⊆ G(Z), for i = s + 1, . . . ,m.

Proof. As Q1 ∩ Q
g

2 = (Q1 ∩ Qd
2)h we may assume that h = 1 and d = g, so gdr

Y (g) = 1. As
Q1 and Q

g

2 are block-homogeneous we may apply Lemma 3.8 to compute their intersection.
Therefore we consider the various possible intersections of factors of Q1 and Q

g

2 .

(i) If 〈ui〉 ∩ 〈vj 〉g �= 1 then, as ui and vj are root elements, 〈ui〉 = 〈vj 〉g . Suppose that this is
the case for u1, . . . , us and v1, . . . , vs and that 〈ui〉 ∩ 〈vj 〉g = 1, if i > s or j > s.

(ii) If 〈vj 〉g ∩G(Y) �= 1 then, since vj is cyclically minimal, 〈vj 〉g ⊂ G(Y). This cannot happen
if j � s so suppose it is the case for vs+1, . . . , vt , and that 〈vj 〉g ∩ G(Y) = 1, for j > t .

(iii) If 〈ui〉∩G(Z)g �= 1 then ui = wg , w ∈ G(Z) and by Lemma 3.9, w and g commute so does
ui = w = u

g
i . This cannot happen if i � s so suppose that it is the case for us+1, . . . , um,

and not for i > m.
(iv) Finally, using Lemma 2.7 and the assumption that gdr

Y (g) = gdl
Z(g) = 1, we have G(Y) ∩

G(Z)g = G(Y ∩ Z ∩ T ) = G(Y ∩ Z ∩ T )g , where T = α(g)⊥.

Combining these intersections (3.1) follows from Lemma 3.8. �
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Corollary 3.11. Let H1 and H2 be quasiparabolic subgroups of G. Then H1 ∩ H2 is quasipar-
abolic. If H1 � H2 then rank(H1 ∩ H2) < rank(H1).

Proof. Let H1 = Q
f

1 and H2 = Q
g

2 , where Q1 = Q(u,Y ) and Q2 = Q(v,Z) are quasiparabolic
subgroups in standard form, as in Lemma 3.10. As in the proof of Proposition 2.6 we may
assume that f = 1 and gdl

Z(g) = 1 and so Lemma 3.10 implies H1 ∩ H2 is quasiparabolic. If
rank(H1 ∩H2) � rank(H1) then |Y | � |Y ∩Z ∩T | so Y ⊆ Z ∩T . In this case (ii) of Lemma 3.10
cannot occur. Therefore, in the notation of Lemma 3.10, rank(H1 ∩ H2) = s + m. If rank(H1 ∩
H2) � rank(H1) then s +m � l which implies m = l − s and so ui ∈ G(Z)g , for i = s + 1, . . . , l.
As ui = v

g
i , for i = 1, . . . , s it follows that H1 ⊆ H2. �

Proof of Theorem 3.7. Given Corollary 3.11 the intersection of an infinite collection of quasi-
parabolic subgroups is equal to the intersection of a finite sub-collection. From Corollary 3.11
again such an intersection is quasiparabolic and the result follows. �
3.3. A criterion for a subgroup to be a centraliser

Theorem 3.12. A subgroup H of G is a centraliser if and only if the two following conditions
hold.

1. H is conjugate to some canonical quasiparabolic subgroup Q.
2. If Q is written in standard form

Q = 〈w1〉 × · · · × 〈wk〉 × G(Y),

where w = w1 · · ·wk is the block-decomposition of a cyclically minimal element w, wi is a
root element and |α(wi)| � 2, i = 1, . . . , k, then

Y ∈ CS(Γ ) and Y ∈ CS(Γw) where Γw = Γ
(
α(w)⊥ \ α(w)

)
.

Proof. Let H = C(u1, . . . , ul). Then H = ⋂k
i=1 C(ui) and we may assume that each ui is a

block root element. Since C(ui) is a quasiparabolic subgroup, then by Theorem 3.7, H is also
a quasiparabolic subgroup and is conjugate to a canonical quasiparabolic subgroup Q = 〈w1〉 ×
· · · × 〈wk〉 × G(Y) written in standard form. Thus condition 1 is satisfied.

Then H = Qg and, after conjugating all the ui ’s by g−1 we have a centraliser Hg−1 = Q. Thus
we may assume that H = Q. Let w = w1 · · ·wk , set Z = α(w)⊥ \ α(w) and T = ⋃l

i=1 α(ui).
As w has block-decomposition w = w1 · · ·wk we have C(w) = 〈w1〉 × · · · × 〈wk〉 × G(Z). For
all y ∈ Y we have y ∈ C(ui) so y ∈ C(α(ui)) and thus y ∈ C(α(ui)) and Y ⊆ T ⊥. Conversely if
y ∈ T ⊥ then y ∈ C(ui) so y ∈ Q and, by definition of standard form, y ∈ Y . Therefore Y = T ⊥.
It follows that Y ∈ CS(Γ ) and since by Lemma 3.3 we have Y ∩ α(w) = ∅ we also have Y ⊆ Z.

It remains to prove that Y ∈ CS(Γw) = CS(Γ (Z)). Set W = α(w). We show that T ∪ Z ⊆
W ∪ Z. Take t ∈ T = ⋃l

i=1 α(ui), t /∈ W , and suppose that t ∈ α(um). Since w ∈ C(ui), we
have um ∈ C(w) = 〈w1〉 × · · · × 〈wk〉 × G(Z). Now um is a root block element and C(w) is a
block-homogeneous subgroup so if um = w±1

j for some j then t ∈ W = α(w), contrary to the
choice of t . Therefore um ∈ G(Z), so t ∈ Z and T ∪ Z ⊆ W ∪ Z, as claimed.

Assume now that Y /∈ CS(Γ (Z)). In this case there exists an element z ∈ Z \ Y such that
z ∈ clZ(Y ). Since z /∈ Y = T ⊥, there exists um such that [um, z] �= 1 and so there exists t ∈ α(um)
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such that [t, z] �= 1. As [z,W ] = 1, we have t /∈ W and since W ∪ Z ⊇ T ∪ Z, we get t ∈ Z. This
together with t ∈ α(um) ⊆ Y⊥ implies that t ∈ OZ(Y ). Since [z, t] �= 1, we obtain z /∈ clZ(Y ), in
contradiction to the choice of z. Hence clZ(Y ) = Y and Y ∈ CS(Γ (Z)).

Conversely, let Q = 〈w1〉×· · ·×〈wk〉×G(Y) be a canonical quasiparabolic subgroup written
in the standard form, Y ∈ CS(X) and Y ∈ CS(Γ (Z)), where Z = α(w)⊥ \ α(w). We shall prove
that Q = C(w,z1, . . . , zl), where z1, . . . , zl are some elements of Z. If Y = Z then Q = C(w).
If Y � Z then, since Y = clZ(Y ), there exist z1, u ∈ Z so that z1 ∈ OZ(Y ) and [z1, u] �= 1. In
which case C(w,z1) = 〈w1〉 × · · · × 〈wk〉 × G(Y1), Y ⊆ Y1 � Z (the latter inclusion is strict for
u /∈ Y1). If Y1 = Y then Q = C(w,z1), otherwise iterating the procedure above, the statement
follows. �

A centraliser which is equal to a canonical quasiparabolic subgroup is called a canonical
quasiparabolic centraliser.

4. Height of the centraliser lattice

In this section we will give a new shorter proof of the main theorem of [19].

Theorem 4.1. Let G = G(Γ ) be a free partially commutative group, let C(G) be its centraliser
lattice and let L = CS(Γ ) be the lattice of closed sets of Γ . Then the height h(C(G)) = m equals
the height h(L) of the lattice of closed sets L.

In order to prove this theorem we introduce some notation for the various parts of canonical
quasiparabolic subgroups.

Definition 4.2. Let Q = 〈w1〉 × · · · × 〈wk〉 × G(Z) be a quasiparabolic subgroup in standard
form. Define the block set of Q to be B(Q) = {w1, . . . ,wk} and the parabolic part of Q to be
P(Q) = G(Z). Let Q′ be a quasiparabolic subgroup with block set {v1, . . . , vl} and parabolic
part G(Y). Define the block difference of Q and Q′ to be b(Q,Q′) = |B(Q) \B(Q′)|, that is the
number of blocks occurring in the block set of Q but not Q′. Define the parabolic difference of
Q and Q′ to be p(Q,Q′) = |Z \ Y |.

The following lemma is the key to the proof of the theorem above.

Lemma 4.3. Let C and D be canonical quasiparabolic centralisers such that C > D and
b = b(D,C) > 0. Then p(C,D) > 0 and there exists a strictly descending chain of canonical
parabolic centralisers

P(C) > Cb > · · · > C1 > P(D) (4.1)

of length b + 1.

Proof. Let C and D have parabolic parts P(C) = G(Y) and P(D) = G(Z), for closed sub-
sets Y and Z in CS(Γ ). Let the block sets of C and D be B(C) = {u1, . . . , uk} and B(D) =
{v1, . . . , vl}. Let i ∈ 1 � i � l. As D < C, either 〈vi〉 = 〈uj 〉, for some j , or 〈vi〉 ⊆ G(Y). As
b(D,C) > 0 there exists i such that 〈vi〉 ⊆ G(Y). Moreover, for such i, we have α(vi) ⊆ Y \ Z,
so p(C,D) > 0.
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Assume that, after relabelling if necessary, 〈vi〉 = 〈ui〉, for i = 1, . . . , s, and that 〈vs+1〉, . . . ,
〈vl〉 ⊆ G(Y), so b = l − s. Choose ti ∈ α(vs+i ) and let Yi = cl(Z ∪ {t1, . . . , ti}), for i =
1, . . . , l − s = b. Let Ci = G(Yi) = CG(Y⊥

i ), so Ci is a canonical parabolic centraliser. We claim
that the chain (4.1) is strictly descending. To begin with, as t1 ∈ Y1 \ Z we have G(Z) < C1.
Now fix i and n such that 1 � i < n � b. If a ∈ α(vs+n) then a ∈ Z⊥ and a ∈ α(vs+j )

⊥ ⊆ t⊥j ,
for 1 � j < n, by definition of the standard form of quasiparabolic subgroups. Hence a ∈ (Z ∪
{t1, . . . , ti})⊥. Thus [a, b] = 1, for all b ∈ Yi . This holds for all a ∈ α(vs+n) so Yi ⊆ α(vs+n)

⊥.
As vs+n is a block of length at least 2 we have α(vs+n) ∩ α(vs+n)

⊥ = ∅, so Yi ∩ α(vs+n) = ∅.
Hence tn /∈ Yi and it follows that Ci < Ci+1, i = 1, . . . , b − 1. Now choose c ∈ α(vs+1) such that
[c, t1] �= 1. Then c ∈ Y , as α(vs+1) ⊆ Y , however c /∈ Yb , since t1 ∈ Z⊥ ∩ t⊥1 ∩ · · ·∩ t⊥b = Y⊥

b and
Yb = Y⊥⊥

b . As D < C we have Z ⊆ Y so Cb = G(Yb) < G(Y ). �
We can use this lemma to prove the following about chains of canonical quasiparabolic sub-

groups.

Lemma 4.4. Let C0 > · · · > Cd be a strictly descending chain of canonical quasiparabolic cen-
tralisers such that C0 and Cd are canonical parabolic centralisers. Then there exists a strictly
descending chain C0 > P1 > · · · > Pd−1 > Cd , of canonical parabolic centralisers.

Proof. First we divide the given centraliser chain into types depending on block differences.
Then we replace the chain with a chain of canonical parabolic centralisers, using Lemma 4.3.
A simple counting argument shows that the new chain has length at least as great as the old one.
In detail let I = {0, . . . , d − 1} and

I+ = {
i ∈ I : b(Ci+1,Ci) > 0

}
,

I0 = {
i ∈ I : b(Ci+1,Ci) = 0 and p(Ci,Ci+1) > 0

}
, and

I− = {
i ∈ I : b(Ci+1,Ci) = p(Ci,Ci+1) = 0

}
.

Then I = I+ � I0 � I−. For i ∈ I+ let Δi be the strictly descending chain of canonical parabolic
centralisers of length b(Ci+1,Ci) + 1 from P(Ci) to P(Ci+1), constructed in Lemma 4.3. For
i ∈ I0 let Δi be the length one chain P(Ci) > P(Ci+1) and for i ∈ I− let Δi be the length zero
chain P(Ci) = P(Ci+1). This associates a chain Δi of canonical parabolic centralisers to each
i ∈ I and we write li for the length of Δi . If Δi = P0 > · · · > Pli and Δi+1 = P ′

0 > · · · > P ′
li+1

then by definition Pli = P ′
0, for i = 1, . . . , d − 1. We may therefore concatenate Δi and Δi+1 to

give a chain of canonical parabolic centralisers

P0 > · · · > Pli = P ′
0 > · · · > P ′

li+1

of length li + li+1. Concatenating Δ1, . . . ,Δd−1 in this way we obtain a strictly descending chain
of canonical parabolic centralisers of length l = ∑d−1

i=0 li . Moreover

l =
∑

b(Ci+1,Ci) + |I+| + |I0|,

i∈I+
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since li = b(Ci+1,Ci) + 1, for all i ∈ I+, li = 1, for all i ∈ I0 and li = 0, for all li ∈ I−. As
|I | = d we have now

l − d =
∑
i∈I+

b(Ci+1,Ci) − |I−|.

To complete the argument we shall show that

∑
i∈I+

b(Ci+1,Ci) =
∣∣∣∣∣

d⋃
i=0

B(Ci)

∣∣∣∣∣ � |I−|.

As B(C0) = ∅ we have b(C1,C0) = |B(C0) ∪B(C1)|. Assume inductively that

k∑
i=0

b(Ci+1,Ci) =
∣∣∣∣∣
k+1⋃
i=0

B(Ci)

∣∣∣∣∣,
for some k � 0. Then

k+1∑
i=0

b(Ci+1,Ci) =
∣∣∣∣∣
k+1⋃
i=0

B(Ci)

∣∣∣∣∣ + ∣∣B(Ck+2) \B(Ck+1)
∣∣.

Moreover, if w ∈ B(Ck+2) \ B(Ck+1) then w ∈ P(Cj ), for all j � k + 1, so w /∈ B(Cj ), for
j = 0, . . . , k + 1. Hence

B(Ck+2) \B(Ck+1) = B(Ck+2)
∖ k+1⋃

i=0

B(Ci)

and it follows that

k+1∑
i=0

b(Ci+1,Ci) =
∣∣∣∣∣
k+2⋃
i=0

B(Ci)

∣∣∣∣∣.
As b(Ci+1,Ci) = 0 if i /∈ I+ it follows that

∑
i∈I+

b(Ci+1,Ci) =
∣∣∣∣∣

d⋃
i=0

B(Ci)

∣∣∣∣∣,
as required. If i ∈ I− then b(Ci+1,Ci) = p(Ci,Ci+1) = 0, so b(Ci,Ci+1) > 0. Therefore there
is at least one element w ∈ B(Ci) \ B(Ci+1). It follows that w /∈ B(Cj ), for all j � i + 1 and so
I− � |⋃d

i=0 B(Ci)|. Therefore l − d � 0 and the proof is complete. �
Proof of Theorem 4.1. Let

G = C0 > · · · > Cd = Z(G)
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be a maximal descending chain of centralisers of G. By Theorem 3.12, each of the Ci ’s is a
quasiparabolic subgroup. If each Ci is canonical then, since G and Z(G) are both canonical
parabolic centralisers the result follows from Lemma 4.4.

Suppose that now C1, . . . ,Cs are canonical quasiparabolic and Cs+1 is not: say Cs+1 = Qg ,
where Q is a canonical quasiparabolic subgroup. Let Cs = Q(u,Y ) and Q = Q(v,Z) both in
standard form. Write g = f ◦ h, where f = gdl

Z⊥(g) and let f = e ◦ d , where d = gdr
Y (f ), so

d ∈ G(Y ∩ Z⊥). Then G(Z)h = G(Z)dh = G(Z)g ⊆ G(Y) and α(h) ⊆ Y , from Corollary 2.5.
Hence α(d ◦ h) ⊆ Y which implies that α(d ◦ h) ⊆ P(Cs) ⊆ · · · ⊆ P(C0). It follows that Cdh

r =
Cr , for r = 0, . . . , s. Therefore conjugating C0 > C1 > · · · > Cd by (dh)−1 we obtain a chain
in which C0, . . . ,Cs are unchanged and Cs+1 = Qe = 〈v1〉e × 〈vl〉e × G(Z), with gdr

Y (e) = 1,
e ∈ G(Z⊥). As Lemma 3.6 implies that Qe is a canonical quasiparabolic subgroup we now have
a chain in which C0, . . . ,Cs+1 are canonical quasiparabolic. Continuing this way we eventually
obtain a chain, of length d , of canonical quasiparabolic centralisers to which the first part of the
proof may be applied. �
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