JOURNAL OF

Algebra

Available online at www.sciencedirect.com

Journal of Algebra 318 (2007) 918-932

www.elsevier.com/locate/jalgebra

Parabolic and quasiparabolic subgroups of free partially commutative groups $\stackrel{\approx}{}$

Andrew J. Duncan^{a,*}, Ilya V. Kazachkov^b, Vladimir N. Remeslennikov^c

^a School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom ^b Department of Mathematics and Statistics, University of McGill, 805 Sherbrooke West, Montreal,

Quebec, Canada, H3A 2K6

^c Institute of Mathematics, (Siberian Branch of Russian Academy of Science) Pevtsova st. 13, 644099, Omsk, Russia

Received 16 February 2007

Available online 24 October 2007

Communicated by E.I. Khukhro

Abstract

Let Γ be a finite graph and G be the corresponding free partially commutative group. In this paper we study subgroups generated by vertices of the graph Γ , which we call canonical parabolic subgroups. A natural extension of the definition leads to canonical quasiparabolic subgroups. It is shown that the centralisers of subsets of G are the conjugates of canonical quasiparabolic centralisers satisfying certain graph theoretic conditions.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Partially commutative groups; Right-angled Artin groups; Centraliser lattice

1. Preliminaries

Free partially commutative groups arise naturally in many branches of mathematics and computer science and consequently have many aliases: they are known as semifree groups [1,2], graph groups [14,22,24,26,31,33], right-angled Artin groups [4–6,8,10,23,30,35], trace groups

⁶ Corresponding author.

0021-8693/\$ – see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2007.08.032

^{*} Research carried out while the second and third named authors were visiting Newcastle University with the support of EPSRC grants EP/D065275/1 and GR/S61900/01.

E-mail addresses: a.duncan@ncl.ac.uk (A.J. Duncan), kazachkov@math.mcgill.ca (I.V. Kazachkov), remesl@pochta.ru (V.N. Remeslennikov).

[13,29], locally free groups [9,28,34] and of course (free) partially commutative groups [3,7,11, 12,15,17,18,21,25,27,32]. We refer the reader to [5,13,21,22] for further references, more comprehensive surveys, introductory material and discussion of the various manifestations of these groups.

In this section we give a brief overview of some definitions and results from [20,21]. We begin with the basic notions of the theory of free partially commutative groups: which, for the sake of brevity we refer to simply as partially commutative groups. Let Γ be a finite, undirected, simple graph. Let $X = V(\Gamma) = \{x_1, \ldots, x_n\}$ be the set of vertices of Γ and let F(X) be the free group on X. Let

 $R = \{ [x_i, x_j] \in F(X) \mid x_i, x_j \in X \text{ and there is an edge of } \Gamma \text{ joining } x_i \text{ to } x_j \}.$

We define the *partially commutative group* with (*commutation*) graph Γ to be the group $G(\Gamma)$ with presentation $\langle X | R \rangle$. When the underlying graph is clear from the context we write simply G.

Denote by l(g) the minimum of the lengths words that represent the element g. If w is a word representing g and w has length l(g) we call w a minimal form for g. When the meaning is clear we shall say that w is a minimal element of G when we mean that w is a minimal form of an element of G. We say that $w \in G$ is cyclically minimal if and only if

$$l(g^{-1}wg) \geqslant l(w)$$

for every $g \in G$. We write $u \circ w$ to express the fact that l(uw) = l(u) + l(w), where $u, w \in G$. We will need the notions of a divisor and the greatest divisor of a word w with respect to a subset $Y \subseteq X$, defined in [21]. Let u and w be elements of G. We say that u is a *left (right) divisor* of w if there exists $v \in G$ such that $w = u \circ v$ ($w = v \circ u$). We order the set of all left (right) divisors of a word w as follows. We say that u_2 is greater than u_1 if and only if u_1 left (right) divides u_2 . It is shown in [21] that, for any $w \in G$ and $Y \subseteq X$, there exists a unique maximal left divisor of w which belongs to the subgroup $\langle Y \rangle < G$ which is called the *greatest left divisor* $gd_Y^l(w)$ of w in Y. The *greatest right divisor* of w in Y is defined analogously. We omit the indices when no ambiguity occurs.

The non-commutation graph of the partially commutative group $G(\Gamma)$ is the graph Δ , dual to Γ , with vertex set $V(\Delta) = X$ and an edge connecting x_i and x_j if and only if $[x_i, x_j] \neq 1$. The graph Δ is a union of its connected components $\Delta_1, \ldots, \Delta_k$ and words that depend on letters from distinct components commute. For any graph Γ , if S is a subset of $V(\Gamma)$ we shall write $\Gamma(S)$ for the full subgraph of Γ with vertices S. Now, if the vertex set of Δ_k is I_k and $\Gamma_k = \Gamma(I_k)$ then $G = G(\Gamma_1) \times \cdots \times G(\Gamma_k)$. For $g \in G$ let $\alpha(g)$ be the set of elements x of X such that $x^{\pm 1}$ occurs in a minimal word w representing g. It is shown in [21] that $\alpha(g)$ is well defined. Now suppose that the full subgraph $\Delta(\alpha(w))$ of Δ with vertices $\alpha(w)$ has connected components $\Delta_1, \ldots, \Delta_l$ and let the vertex set of Δ_j be I_j . Then, since $[I_j, I_k] = 1$, we can split w into the product of commuting words, $w = w_1 \circ \cdots \circ w_l$, where $w_j \in G(\Gamma(I_j))$, so $[w_j, w_k] = 1$ for all j, k. If w is cyclically minimal then we call this expression for w a block-decomposition of wand say w_j is a block of w, for $j = 1, \ldots, l$. Thus w itself is a block if and only if $\Delta(\alpha(w))$ is connected. In general let v be an element of G which is not necessarily cyclically minimal. We may write $v = u^{-1} \circ w \circ u$, where w is cyclically minimal and then w has a block-decomposition $w = w_1 \cdots w_l$, say. Then $w_i^u = u^{-1} \circ w_j \circ u$ and we call the expression $v = w_1^u \cdots w_l^u$ the block*decomposition* of v and say that w_j^u is a *block* of v, for j = 1, ..., l. Note that this definition is slightly different from that given in [21].

Let Y and Z be subsets of X. As in [20] we define the *orthogonal complement* of Y in Z to be

$$\mathcal{O}^{Z}(Y) = \{ u \in Z \mid d(u, y) \leq 1, \text{ for all } y \in Y \}.$$

By convention we set $\mathcal{O}^Z(\emptyset) = Z$. If Z = X we call $\mathcal{O}^X(Y)$ the orthogonal complement of Y, and if no ambiguity arises then we write Y^{\perp} instead of $\mathcal{O}^X(Y)$ and x^{\perp} for $\{x\}^{\perp}$. Let $CS(\Gamma)$ be the set of all subsets Z of X of the form Y^{\perp} for some $Y \subseteq X$. The set $CS(\Gamma)$ is shown in [20] to be a lattice, the *lattice of closed sets* of Γ .

The *centraliser* of a subset S of G is

$$C(S) = C_G(S) = \{g \in G : gs = sg, \text{ for all } s \in S\}.$$

The set $\mathfrak{C}(G)$ of centralisers of a group is a lattice. An element $g \in G$ is called a *root element* if *g* is not a proper power of any element of *G*. If $h = g^n$, where *g* is a root element and $n \ge 1$, then *g* is said to be a *root* of *h*. As shown in [16] every element of the partially commutative group *G* has a unique root, which we denote r(g). If $w \in G$ define $A(w) = \langle Y \rangle = G(Y)$, where $Y = \alpha(w)^{\perp} \setminus \alpha(w)$. Let *w* be a cyclically minimal element of *G* with block-decomposition $w = w_1 \cdots w_k$ and let $v_i = r(w_i)$. Then, from [16, Theorem 3.10],

$$C(w) = \langle v_1 \rangle \times \dots \times \langle v_k \rangle \times A(w).$$
(1.1)

We shall use [19, Corollary 2.4] several times in what follows, so for ease of reference we state it here: first recalling the necessary notation. It follows from [19, Lemma 2.2] that if g is a cyclically minimal element of G and $g = u \circ v$ then vu is cyclically minimal. For a cyclically minimal element $g \in G$ we define $\tilde{g} = \{h \in G \mid h = vu, \text{ for some } u, v \text{ such that } g = u \circ v\}$. (We allow u = 1, v = g so that $g \in \tilde{g}$.)

Lemma 1.1. (See [19, Corollary 2.4].) Let w, g be (minimal forms of) elements of G and $w = u^{-1} \circ v \circ u$, where v is cyclically minimal. Then there exist minimal forms a, b, c, d_1 , d_2 and e such that $g = a \circ b \circ c \circ d_2$, $u = d_1 \circ a^{-1}$, $d = d_1 \circ d_2$, $w^g = d^{-1} \circ e \circ d$, $\tilde{e} = \tilde{v}$, $e = v^b$, $\alpha(b) \subseteq \alpha(v)$ and $[\alpha(b \circ c), \alpha(d_1)] = [\alpha(c), \alpha(v)] = 1$.

Figure 1 expresses the conclusion of Lemma 1.1 as a Van Kampen diagram. In this diagram we have assumed that $v = b \circ f$ and so $e = f \circ b$. The regions labelled *B* are tessellated using relators corresponding to the relation $[\alpha(b \circ c), \alpha(d_1)] = 1$ and the region labelled *A* with relators corresponding to $[\alpha(c), \alpha(v)] = 1$. Reading anticlockwise from the vertex labelled 0 the boundary label of the exterior region is $g^{-1}wg$ and the label of the interior region (not labelled *A* or *B*) is e^d .

2. Parabolic subgroups

2.1. Parabolic and block-homogeneous subgroups

As usual let Γ be a graph with vertices X and $G = G(\Gamma)$. If Y is a subset of X denote by $\Gamma(Y)$ the full subgraph of Γ with vertices Y. Then $G(\Gamma(Y))$ is the free partially commutative

Fig. 1. A Van Kampen diagram for Lemma 1.1.

group with graph $\Gamma(Y)$. As Baudisch [1] observed $G(\Gamma(Y))$ is the subgroup $\langle Y \rangle$ of $G(\Gamma)$ generated by Y. We call $G(\Gamma(Y))$ a *canonical parabolic* subgroup of $G(\Gamma)$ (in keeping with the terminology for analogous subgroups of Coxeter groups) and, when no ambiguity arises, denote it G(Y). Note that such subgroups are called *graphical* in [31], *full* in [23] and *special* in [5]. The elements of Y are termed the *canonical* generators of G(Y).

Definition 2.1. A subgroup *P* of *G* is called *parabolic* if it is conjugate to a canonical parabolic subgroup G(Y) for some $Y \subseteq X$. The *rank* of *P* is the cardinality |Y| and *Y* is called a set of *canonical generators* for *P*.

To see that the definition of rank of a parabolic subgroup is well-defined note that if $Y, Z \subseteq X$ and $G(Y) = G(Z)^g$, for some $g \in G$, then we have $y = g^{-1}w_yg$, for some $w_y \in G(Z)$, for all $y \in Y$. It follows, from [21, Lemma 2.5], by counting the exponent sums of letters in a geodesic word representing $g^{-1}wg$, that $y \in \alpha(w_y)$, so $y \in Z$. Hence $Y \subseteq Z$ and similarly $Z \subseteq Y$ so Y = Z.

Definition 2.2. A subgroup *H* is called *block-homogeneous* if, for all $h \in H$, if *h* has block-decomposition $h = w_1 w_2 \cdots w_k$ then $w_i \in H$, for $i = 1, \dots, k$.

Lemma 2.3. An intersection of block-homogeneous subgroups is again a block-homogeneous subgroup. If H is block-homogeneous and $g \in G$ then H^g is block-homogeneous. In particular parabolic subgroups are block-homogeneous.

Proof. The first statement follows directly from the definition. Let *H* be block-homogeneous and $g \in G$ and let $w^g \in H^g$, where $w \in H$. Write $w = u^{-1} \circ v \circ u$, where *v* is cyclically reduced and has block-decomposition $v = v_1 \cdots v_k$. Then the blocks of *w* are v_j^u , so $v_j^u \in H$, for $j = 1, \dots, k$. From Lemma 1.1 there exist *a*, *b*, *c*, *d*₁, *d*₂, *e* such that $g = a \circ b \circ c \circ d_2$, $u = d_1 \circ a^{-1}$, $d = d_1 \circ d_2$, $w^g = d^{-1} \circ e \circ d$, $\tilde{e} = \tilde{v}$, $e = v^b$, $\alpha(b) \subseteq \alpha(v)$ and $[\alpha(b \circ c), \alpha(d_1)] = [\alpha(c), \alpha(v)] = 1$. As $\tilde{e} = \tilde{v}$

it follows that $\Delta(\alpha(e)) = \Delta(\alpha(v))$ so *e* has block-decomposition $e = e_1 \cdots e_k$, where $\tilde{e_j} = \tilde{v_j}$. Therefore w^g has block-decomposition $w^g = e^d = e_1^d \cdots e_k^d$. Moreover $e = v^b$ so $e_j = v_j^b$. Thus

$$e_{j}^{d} = e_{j}^{cd} = v_{j}^{bcd} = v_{j}^{d_{1}bcd_{2}} = v_{j}^{ug} \in H^{g},$$

which implies that H^g is block-homogeneous. It follows from [21, Lemma 2.5] that any canonical parabolic subgroup is block-homogeneous and this gives the final statement. \Box

2.2. Intersections of parabolic subgroups

In this section we show that an intersection of parabolic subgroups is again a parabolic subgroup. To begin with we establish some preliminary results.

Lemma 2.4. Let $Y, Z \subseteq X$, let $w \in G(Y)$ and let $g \in G(X)$ be such that

$$\operatorname{gd}_Y^l(g) = \operatorname{gd}_Z^r(g) = 1.$$

- 1. If $w^g \in G(Z)$ then $g \in A(w)$ and $w \in G(Y) \cap G(Z) = G(Y \cap Z)$.
- 2. If Y = Z and $g \in C(w)$ then $g \in A(w)$.

Proof. For 1, in the notation of Lemma 1.1 we have $w = u^{-1} \circ v \circ u$, $w^g = d_2^{-1} \circ d_1^{-1} \circ e \circ d_1 \circ d_2$ and $g = a \circ b \circ c \circ d_2$. Applying the conditions of this lemma we obtain $a = b = d_2 = 1$, $u = d_1$ and e = v so $w^g = w$ and g = c. Moreover, from Lemma 1.1 again we obtain $[\alpha(g), \alpha(w)] = 1$. If $x \in \alpha(w) \cap \alpha(g)$ this means that $g = x \circ g'$, with $x \in Y$, contradicting the hypothesis on g. Hence $\alpha(w) \cap \alpha(g) = \emptyset$ and $g \in A(w)$. Statement 2 follows from 1. \Box

Corollary 2.5. Let $Y, Z \subseteq X$ and $g \in G$. If $G(Y)^g \subseteq G(Z)$ and $gd_{Y^{\perp}}^l(g) = 1$ then $Y \subseteq Z$ and $\alpha(g) \subseteq Z$.

Proof. Assume first that $gd_Y^l(g) = gd_Z^r(g) = 1$. Let $y \in Y$ and w = y in Lemma 2.4; so $y^g \in G(Z)$ implies that $g \in A(y)$ and $y \in Z$. This holds for all $y \in Y$ so we have $Y \subseteq Z$ and $g \in A(Y)$. Hence, in this case, g = 1. Now suppose that $g = g_1 \circ d$, where $g_1 = gd_Y^l(g)$. Then $gd_{Y^{\perp}}^l(g) = 1$ implies that $gd_{Y^{\perp}}^l(d) = 1$. Now write $d = e \circ g_2$, where $g_2 = gd_Z^r(d)$. Then $G(Y)^g = G(Y)^d$ and $G(Y)^d \subseteq G(Z)$ implies $G(Y)^e \subseteq G(Z)$. As $gd_{Y^{\perp}}^l(d) = 1$ the same is true of e and from the above we conclude that e = 1 and that $Y \subseteq Z$. Now $g = g_1 \circ g_2$, where $\alpha(g_1) \subseteq Y \subseteq Z$ and $\alpha(g_2) \subseteq Z$. Thus $\alpha(g) \subseteq Z$, as required. \Box

Proposition 2.6. Let P_1 and P_2 be parabolic subgroups. Then $P = P_1 \cap P_2$ is a parabolic subgroup. If $P_1 \nsubseteq P_2$ then the rank of P is strictly smaller than the rank of P_1 .

This lemma follows easily from the next more technical result.

Lemma 2.7. Let $Y, Z \subset X$ and $g \in G$. Then

$$G(Y) \cap G(Z)^g = G(Y \cap Z \cap T)^{g_2},$$

where $g = g_1 \circ d \circ g_2$, $gd_Z^l(d) = gd_Y^r(d) = 1$, $g_1 \in G(Z)$, $g_2 \in G(Y)$ and $T = \alpha(d)^{\perp}$.

Derivation of Proposition 2.6 from Lemma 2.7. Let $P_1 = G(Y)^a$ and $P_2 = G(Z)^b$, for some $a, b \in G$. Then $P = (G(Y) \cap G(Z)^{ba^{-1}})^a$, which is parabolic since Lemma 2.7 implies that $G(Y) \cap G(Z)^{ba^{-1}}$ is parabolic. Assume that the rank of P is greater than or equal to the rank of P_1 . Let $g = ba^{-1}$. The rank of P is equal to the rank of $G(Y) \cap G(Z)^g$ and, in the notation of Lemma 2.7, $G(Y) \cap G(Z)^g = G(Y \cap Z \cap T)^{g_2}$, where $g = g_1 \circ d \circ g_2$, with $T = \alpha(d)^{\perp}$, $g_2 \in G(Y)$ and $g_1 \in G(Z)$. Therefore $Y \subseteq Y \cap Z \cap T$ which implies $Y \subseteq Z \cap T$. Thus $G(Y) \subseteq G(Z \cap T) = G(Z \cap T)^d$ so $G(Y) = G(Y)^{g_2} \subseteq G(Z \cap T)^{dg_2} \subseteq G(Z)^{dg_2} = G(Z)^g$. Hence $P_1 \subseteq P_2$. \Box

Proof of Lemma 2.7. Let $g_1 = gd_Z^l(g)$ and write $g = g_1 \circ g'$. Let $g_2 = gd_Y^r(g')$ and write $g' = d \circ g_2$. Then g_1, g_2 and d satisfy the conditions of the lemma. Set $T = \alpha(d)^{\perp}$. As $G(Y) \cap G(Z)^g = G(Y) \cap G(Z)^{dg_2} = G(Y)^{g_2} \cap G(Z)^{dg_2} = (G(Y) \cap G(Z)^d)^{g_2}$ it suffices to show that $G(Y) \cap G(Z)^d = G(Y \cap Z \cap T)$. If d = 1 then T = X and $G(Y) \cap G(Z) = G(Y \cap Z)$, so the result holds. Assume then that $d \neq 1$. Let $p = w^d \in G(Y) \cap G(Z)^d$, with $w \in G(Z)$. Applying Lemma 2.4 to $w^d \in G(Y)$ we have $d \in A(w)$ and $w \in G(Z) \cap G(Y) = G(Y \cap Z)$. Thus $w \in \alpha(d)^{\perp} = T$ and so $w \in G(Y \cap Z \cap T)$. This shows that $G(Y) \cap G(Z)^d \subseteq G(Y \cap Z \cap T)$ and as the reverse inclusion follows easily the proof is complete. \Box

Proposition 2.8. The intersection of parabolic subgroups is a parabolic subgroup and can be obtained as an intersection of a finite number of subgroups from the initial set.

Proof. In the case of two parabolic subgroups the result follows from Proposition 2.6. Consequently, the statement also holds for a finite family of parabolic subgroups. For the general case we use Proposition 2.6 again, noting that a proper intersection of two parabolic subgroups is a parabolic subgroup of lower rank, and the result follows. \Box

As a consequence of this proposition we obtain: given two parabolic subgroups P and Q the intersection R of all parabolic subgroups containing P and Q is the unique minimal parabolic subgroup containing both P and Q. Define $P \lor Q = R$ and $P \land Q = P \cap Q$.

Corollary 2.9. The parabolic subgroups of G with the operations \lor and \land above form a lattice.

2.3. The lattice of parabolic centralisers

Let $Z \subseteq X$. Then the subgroup $C_G(Z)^g$ is called a parabolic centraliser. As shown in [20, Lemma 2.3] every parabolic centraliser is a parabolic subgroup: in fact $C_G(Z)^g = G(Z^{\perp})^g$. The converse also holds as the following proposition shows.

Proposition 2.10. A parabolic subgroup $G(Y)^g$, $Y \subseteq X$ is a centraliser if and only if there exists $Z \subseteq X$ so that $Z^{\perp} = Y$. In this case $G(Y)^g = C_G(Z^g)$.

Proof. It suffices to prove the proposition for g = 1 only. Suppose that there exists such a Z. It is then clear that $G(Y) \subseteq C_G(Z)$. If $w \in G$, w is a reduced word and $\alpha(w) \nsubseteq Y$ then there exists $x \in \alpha(w)$ and $z \in Z$ so that $[x, z] \neq 1$ and consequently, by [21, Lemma 2.4], $[w, z] \neq 1$. Assume further that G(Y) is a centraliser of a set of elements w_1, \ldots, w_k written in reduced form. Since $[y, w_i] = 1$, for any $y \in Y$, then by [21, Lemma 2.4] again, $[y, \alpha(w_i)] = 1$. Denote $Z = \bigcup_{i=1}^k \alpha(w_i)$. We have [y, z] = 1 for all $z \in Z$ and consequently $Y \subseteq Z^{\perp}$. Conversely if $x \in Z^{\perp}$ then $x \in C_G(w_1, \ldots, w_k)$ so $x \in Y$. \Box

We now introduce the structure of a lattice on the set of all parabolic centralisers. As we have shown above the intersection of two parabolic subgroups is a parabolic subgroup. So, we set $P_1 \wedge P_2 = P_1 \cap P_2$. The most obvious way to define $P_1 \vee P_2$ would be as in Section 2.2 above. However, in this case $P_1 \vee P_2$ is not necessarily a centraliser, though it is a parabolic subgroup. For any $S \subseteq G$ we define $\overline{S} = \bigcap \{P: P \text{ is a parabolic centraliser and } S \subseteq P \}$. Then \overline{S} is the minimal parabolic centraliser containing S; since intersections of centralisers are centralisers and intersections of parabolic subgroups are parabolic subgroups. We now define $P_1 \vee P_2 = \overline{P_1 \cup P_2}$.

3. Quasiparabolic subgroups

3.1. Preliminaries

As before let Γ be a finite graph with vertex set X and $G = G(\Gamma)$ be the corresponding partially commutative group.

Definition 3.1. Let w be a cyclically minimal root element of G with block-decomposition $w = w_1 \cdots w_k$ and let Z be a subset of X such that $Z \subseteq \alpha(w)^{\perp}$. Then the subgroup $Q = Q(w, Z) = \langle w_1 \rangle \times \cdots \times \langle w_k \rangle \times G(Z)$ is called a *canonical quasiparabolic subgroup* of G.

Note that we may choose w = 1 so that canonical parabolic subgroups are canonical quasiparabolic subgroups. Given a canonical quasiparabolic subgroup Q(w, Z), with w and Z as above, we may reorder the w_i so that $l(w_i) \ge 2$, for i = 1, ..., s and $l(w_i) = 1$, for i = s + 1, ..., k. Then setting $w' = w_1 \cdots w_s$ and $Z' = Z \cup \{w_{s+1}, ..., w_k\}$ we have $Z' \subseteq \alpha(w)^{\perp}$ and Q(w, Z) = Q(w', Z'). This prompts the following definition.

Definition 3.2. We say that a canonical quasiparabolic subgroup $Q = \langle w_1 \rangle \times \cdots \times \langle w_k \rangle \times G(Z)$ is written in standard form if $|\alpha(w_i)| \ge 2$, i = 1, ..., k, or w = 1.

There are two obvious advantages to the standard form which we record in the following lemma.

Lemma 3.3. The standard form of a canonical quasiparabolic subgroup Q is unique, up to reordering of blocks of w. If Q(w, Z) is the standard form of Q then $Z \subseteq \alpha(w)^{\perp} \setminus \alpha(w)$.

Proof. That the standard form is unique follows from uniqueness of roots of elements in partially commutative groups. The second statement follows directly from the definitions. \Box

Definition 3.4. A subgroup H of G is called quasiparabolic if it is conjugate to a canonical quasiparabolic subgroup.

Let $H = Q^g$ be a quasiparabolic subgroup of G, where Q is the canonical quasiparabolic subgroup of G in standard form

$$Q = \langle w_1 \rangle \times \cdots \times \langle w_k \rangle \times G(Z).$$

We call (|Z|, k) the *rank* of *H*. We use the left lexicographical order on ranks of quasiparabolic subgroups: if *H* and *K* are quasiparabolic subgroups of ranks $(|Z_H|, k_H)$ and $(|Z_K|, k_K)$, respectively, then rank $(H) < \operatorname{rank}(K)$ if $(|Z_H|, k_H)$ precedes $(|Z_K|, k_K)$ in left lexicographical order.

The centraliser $C_G(g)$ of an element $g \in G$ is a typical example of a quasiparabolic subgroup [16]. We shall see below (Theorem 3.12) that the centraliser of any set of elements of the group G is a quasiparabolic subgroup.

Lemma 3.5. A quasiparabolic subgroup is a block-homogeneous subgroup and consequently any intersection of quasiparabolic subgroups is again block-homogeneous.

Proof. Let Q(w, Z) be a canonical quasiparabolic subgroup. Since w is a cyclically minimal root element it follows that Q(w, Z) is block-homogeneous. An application of Lemma 2.3 then implies $Q(w, Z)^g$ is also block-homogeneous. \Box

We shall need the following lemma in Section 4.

Lemma 3.6. Let $Q_1 = Q(u, Y)$ and $Q_2 = Q(v, Z)$ be canonical quasiparabolic subgroups in standard form and let $g \in G$. If $Q_2^g \subseteq Q_1$, $g \in G(Z^{\perp})$ and $gd_Y^r(g) = 1$ then Q_2^g is a canonical quasiparabolic subgroup.

Proof. Let *u* and *v* have block-decompositions $u = u_1 \cdots u_k$ and $v = v_1 \cdots v_l$, respectively. As $g \in G(Z^{\perp})$ we have

$$Q_2^g = \langle v_1^g \rangle \times \cdots \times \langle v_l^g \rangle \times G(Z).$$

Therefore, for j = 1, ..., l, either $v_j^g = u_i$ for some i = 1, ..., k, or $v_j^g \in G(Y)$. If $v_j^g = u_i$ then v_j^g is a cyclically minimal root element. If, on the other hand, $v_j^g \in G(Y)$ then, from Lemma 1.1, there exist elements b, c, d and e such that $g = b \circ c \circ d$, $v_j^g = d^{-1} \circ e \circ d$ and $e = v_j^b$ is a cyclically minimal root element. As $v_j^g \in G(Y)$ and $gd_Y^r(g) = 1$ we have d = 1 and so $v_j^g = e$ and is a cyclically minimal root element. Therefore Q_2^g is a canonical quasiparabolic subgroup. \Box

3.2. Intersections of quasiparabolic subgroups

The main result of this section is the following

Theorem 3.7. An intersection of quasiparabolic subgroups is a quasiparabolic subgroup.

We shall make use of the following results.

Lemma 3.8. Let $A = A_1 \times \cdots \times A_l$ and $B = B_1 \times \cdots \times B_k$, A_i , B_j , i = 1, ..., l, j = 1, ..., k be block-homogeneous subgroups of G and $C = A \cap B$. Then

$$C = \prod_{\substack{i=1,\dots,l;\\j=1,\dots,k}} (A_i \cap B_j).$$

Proof. If C = 1 then the result is straightforward. Assume then that $C \neq 1$, $w \in C$ and $w \neq 1$ and let $w = w_1 \cdots w_t$ be the block-decomposition of w. Since C is a block-homogeneous subgroup, $w_i \in C$, i = 1, ..., t. As w_i is a block element we have $w_i \in A_r$ and $w_i \in B_s$ and consequently w_i lies in $\prod_{i,i} (A_i \cap B_j)$. As it is clear that $C \ge \prod_{i,i} (A_i \cap B_j)$ this proves the lemma. \Box

Lemma 3.9. Let $Z \subseteq X$, $w \in G(Z)$, $g \in G$. Suppose that $u = g^{-1}wg$ is cyclically minimal and $gd^l_{\alpha(w)}(g) = 1$, then g and w commute.

Proof. Let $g = d \circ g_1$, where $d = gd_{\alpha(w)^{\perp}}^l(g)$. If $g_1 = 1$ then $g \in C(w)$. Suppose $g_1 \neq 1$. Then $gd_{\alpha(w)}^l(g_1) = 1$ so we write $g_1 = x \circ g_2$, where $x \in (X \cup X^{-1}) \setminus (\alpha(w) \cup \alpha(w)^{\perp})$ and thus $u = g_2^{-1}x^{-1}wxg_2$ is written in geodesic form. This is a contradiction for l(w) < l(u). \Box

Lemma 3.10. Let

$$Q_1 = \langle u_1 \rangle \times \cdots \times \langle u_l \rangle \times G(Y)$$
 and $Q_2 = \langle v_1 \rangle \times \cdots \times \langle v_k \rangle \times G(Z)$

be canonical quasiparabolic subgroups in standard form and let $g \in G$ such that $gd_Z^l(g) = 1$. Write $g = d \circ h$, where $h = gd_Y^r(g)$ and set $T = \alpha(d)^{\perp}$. Then, after reordering the u_i and v_j if necessary, there exist m, s, t such that

$$Q_1 \cap Q_2^g = \left(\prod_{i=1}^s \langle v_i \rangle \times \prod_{i=s+1}^t \langle v_i \rangle \times \prod_{j=s+1}^m \langle u_i \rangle \times G(Y \cap Z \cap T)\right)^g$$
(3.1)

and

(i) $\langle u_i \rangle = \langle v_i \rangle^g$, for $i = 1, \ldots, s$;

(ii) $\langle v_i \rangle^g \subseteq G(Y)$, for $i = s + 1, \dots, t$; and

(iii) $\langle u_i \rangle \subseteq G(Z)$, for $i = s + 1, \dots, m$.

Proof. As $Q_1 \cap Q_2^g = (Q_1 \cap Q_2^d)^h$ we may assume that h = 1 and d = g, so $gd_Y^r(g) = 1$. As Q_1 and Q_2^g are block-homogeneous we may apply Lemma 3.8 to compute their intersection. Therefore we consider the various possible intersections of factors of Q_1 and Q_2^g .

- (i) If $\langle u_i \rangle \cap \langle v_j \rangle^g \neq 1$ then, as u_i and v_j are root elements, $\langle u_i \rangle = \langle v_j \rangle^g$. Suppose that this is the case for u_1, \ldots, u_s and v_1, \ldots, v_s and that $\langle u_i \rangle \cap \langle v_j \rangle^g = 1$, if i > s or j > s.
- (ii) If $\langle v_j \rangle^g \cap G(Y) \neq 1$ then, since v_j is cyclically minimal, $\langle v_j \rangle^g \subset G(Y)$. This cannot happen if $j \leq s$ so suppose it is the case for v_{s+1}, \ldots, v_t , and that $\langle v_j \rangle^g \cap G(Y) = 1$, for j > t.
- (iii) If $\langle u_i \rangle \cap G(Z)^g \neq 1$ then $u_i = w^g$, $w \in G(Z)$ and by Lemma 3.9, w and g commute so does $u_i = w = u_i^g$. This cannot happen if $i \leq s$ so suppose that it is the case for u_{s+1}, \ldots, u_m , and not for i > m.
- (iv) Finally, using Lemma 2.7 and the assumption that $gd_Y^r(g) = gd_Z^l(g) = 1$, we have $G(Y) \cap G(Z)^g = G(Y \cap Z \cap T) = G(Y \cap Z \cap T)^g$, where $T = \alpha(g)^{\perp}$.

Combining these intersections (3.1) follows from Lemma 3.8. \Box

Corollary 3.11. Let H_1 and H_2 be quasiparabolic subgroups of G. Then $H_1 \cap H_2$ is quasiparabolic. If $H_1 \nsubseteq H_2$ then rank $(H_1 \cap H_2) < \operatorname{rank}(H_1)$.

Proof. Let $H_1 = Q_1^f$ and $H_2 = Q_2^g$, where $Q_1 = Q(u, Y)$ and $Q_2 = Q(v, Z)$ are quasiparabolic subgroups in standard form, as in Lemma 3.10. As in the proof of Proposition 2.6 we may assume that f = 1 and $gd_Z^l(g) = 1$ and so Lemma 3.10 implies $H_1 \cap H_2$ is quasiparabolic. If $\operatorname{rank}(H_1 \cap H_2) \ge \operatorname{rank}(H_1)$ then $|Y| \le |Y \cap Z \cap T|$ so $Y \subseteq Z \cap T$. In this case (ii) of Lemma 3.10 cannot occur. Therefore, in the notation of Lemma 3.10, $\operatorname{rank}(H_1 \cap H_2) = s + m$. If $\operatorname{rank}(H_1 \cap H_2) \ge \operatorname{rank}(H_1)$ then $s + m \ge l$ which implies m = l - s and so $u_i \in G(Z)^g$, for $i = s + 1, \ldots, l$. As $u_i = v_i^g$, for $i = 1, \ldots, s$ it follows that $H_1 \subseteq H_2$. \Box

Proof of Theorem 3.7. Given Corollary 3.11 the intersection of an infinite collection of quasiparabolic subgroups is equal to the intersection of a finite sub-collection. From Corollary 3.11 again such an intersection is quasiparabolic and the result follows. \Box

3.3. A criterion for a subgroup to be a centraliser

Theorem 3.12. A subgroup H of G is a centraliser if and only if the two following conditions hold.

- 1. *H* is conjugate to some canonical quasiparabolic subgroup Q.
- 2. If Q is written in standard form

$$Q = \langle w_1 \rangle \times \cdots \times \langle w_k \rangle \times G(Y),$$

where $w = w_1 \cdots w_k$ is the block-decomposition of a cyclically minimal element w, w_i is a root element and $|\alpha(w_i)| \ge 2, i = 1, ..., k$, then

$$Y \in \mathbf{CS}(\Gamma)$$
 and $Y \in \mathbf{CS}(\Gamma_w)$ where $\Gamma_w = \Gamma(\alpha(w)^{\perp} \setminus \alpha(w))$.

Proof. Let $H = C(u_1, ..., u_l)$. Then $H = \bigcap_{i=1}^k C(u_i)$ and we may assume that each u_i is a block root element. Since $C(u_i)$ is a quasiparabolic subgroup, then by Theorem 3.7, H is also a quasiparabolic subgroup and is conjugate to a canonical quasiparabolic subgroup $Q = \langle w_1 \rangle \times \cdots \times \langle w_k \rangle \times G(Y)$ written in standard form. Thus condition 1 is satisfied.

Then $H = Q^g$ and, after conjugating all the u_i 's by g^{-1} we have a centraliser $H^{g^{-1}} = Q$. Thus we may assume that H = Q. Let $w = w_1 \cdots w_k$, set $Z = \alpha(w)^{\perp} \setminus \alpha(w)$ and $T = \bigcup_{i=1}^{l} \alpha(u_i)$. As w has block-decomposition $w = w_1 \cdots w_k$ we have $C(w) = \langle w_1 \rangle \times \cdots \times \langle w_k \rangle \times G(Z)$. For all $y \in Y$ we have $y \in C(u_i)$ so $y \in C(\alpha(u_i))$ and thus $y \in C(\alpha(u_i))$ and $Y \subseteq T^{\perp}$. Conversely if $y \in T^{\perp}$ then $y \in C(u_i)$ so $y \in Q$ and, by definition of standard form, $y \in Y$. Therefore $Y = T^{\perp}$. It follows that $Y \in CS(\Gamma)$ and since by Lemma 3.3 we have $Y \cap \alpha(w) = \emptyset$ we also have $Y \subseteq Z$.

It remains to prove that $Y \in CS(\Gamma_w) = CS(\Gamma(Z))$. Set $W = \alpha(w)$. We show that $T \cup Z \subseteq W \cup Z$. Take $t \in T = \bigcup_{i=1}^{l} \alpha(u_i)$, $t \notin W$, and suppose that $t \in \alpha(u_m)$. Since $w \in C(u_i)$, we have $u_m \in C(w) = \langle w_1 \rangle \times \cdots \times \langle w_k \rangle \times G(Z)$. Now u_m is a root block element and C(w) is a block-homogeneous subgroup so if $u_m = w_j^{\pm 1}$ for some *j* then $t \in W = \alpha(w)$, contrary to the choice of *t*. Therefore $u_m \in G(Z)$, so $t \in Z$ and $T \cup Z \subseteq W \cup Z$, as claimed.

Assume now that $Y \notin CS(\Gamma(Z))$. In this case there exists an element $z \in Z \setminus Y$ such that $z \in cl_Z(Y)$. Since $z \notin Y = T^{\perp}$, there exists u_m such that $[u_m, z] \neq 1$ and so there exists $t \in \alpha(u_m)$

such that $[t, z] \neq 1$. As [z, W] = 1, we have $t \notin W$ and since $W \cup Z \supseteq T \cup Z$, we get $t \in Z$. This together with $t \in \alpha(u_m) \subseteq Y^{\perp}$ implies that $t \in \mathcal{O}^Z(Y)$. Since $[z, t] \neq 1$, we obtain $z \notin cl_Z(Y)$, in contradiction to the choice of z. Hence $cl_Z(Y) = Y$ and $Y \in CS(\Gamma(Z))$.

Conversely, let $Q = \langle w_1 \rangle \times \cdots \times \langle w_k \rangle \times G(Y)$ be a canonical quasiparabolic subgroup written in the standard form, $Y \in CS(X)$ and $Y \in CS(\Gamma(Z))$, where $Z = \alpha(w)^{\perp} \setminus \alpha(w)$. We shall prove that $Q = C(w, z_1, \dots, z_l)$, where z_1, \dots, z_l are some elements of Z. If Y = Z then Q = C(w). If $Y \subseteq Z$ then, since $Y = cl_Z(Y)$, there exist $z_1, u \in Z$ so that $z_1 \in \mathcal{O}^Z(Y)$ and $[z_1, u] \neq 1$. In which case $C(w, z_1) = \langle w_1 \rangle \times \cdots \times \langle w_k \rangle \times G(Y_1)$, $Y \subseteq Y_1 \subseteq Z$ (the latter inclusion is strict for $u \notin Y_1$). If $Y_1 = Y$ then $Q = C(w, z_1)$, otherwise iterating the procedure above, the statement follows. \Box

A centraliser which is equal to a canonical quasiparabolic subgroup is called a *canonical* quasiparabolic centraliser.

4. Height of the centraliser lattice

In this section we will give a new shorter proof of the main theorem of [19].

Theorem 4.1. Let $G = G(\Gamma)$ be a free partially commutative group, let $\mathfrak{C}(G)$ be its centraliser lattice and let $L = CS(\Gamma)$ be the lattice of closed sets of Γ . Then the height $h(\mathfrak{C}(G)) = m$ equals the height h(L) of the lattice of closed sets L.

In order to prove this theorem we introduce some notation for the various parts of canonical quasiparabolic subgroups.

Definition 4.2. Let $Q = \langle w_1 \rangle \times \cdots \times \langle w_k \rangle \times G(Z)$ be a quasiparabolic subgroup in standard form. Define the *block set* of Q to be $\mathcal{B}(Q) = \{w_1, \dots, w_k\}$ and the *parabolic part* of Q to be $\mathcal{P}(Q) = G(Z)$. Let Q' be a quasiparabolic subgroup with block set $\{v_1, \dots, v_l\}$ and parabolic part G(Y). Define the *block difference* of Q and Q' to be $b(Q, Q') = |\mathcal{B}(Q) \setminus \mathcal{B}(Q')|$, that is the number of blocks occurring in the block set of Q but not Q'. Define the *parabolic difference* of Q and Q' to be $p(Q, Q') = |Z \setminus Y|$.

The following lemma is the key to the proof of the theorem above.

Lemma 4.3. Let C and D be canonical quasiparabolic centralisers such that C > D and b = b(D, C) > 0. Then p(C, D) > 0 and there exists a strictly descending chain of canonical parabolic centralisers

$$\mathcal{P}(C) > C_h > \dots > C_1 > \mathcal{P}(D) \tag{4.1}$$

of length b + 1.

Proof. Let *C* and *D* have parabolic parts $\mathcal{P}(C) = G(Y)$ and $\mathcal{P}(D) = G(Z)$, for closed subsets *Y* and *Z* in CS(Γ). Let the block sets of *C* and *D* be $\mathcal{B}(C) = \{u_1, \ldots, u_k\}$ and $\mathcal{B}(D) = \{v_1, \ldots, v_l\}$. Let $i \in 1 \le i \le l$. As D < C, either $\langle v_i \rangle = \langle u_j \rangle$, for some *j*, or $\langle v_i \rangle \subseteq G(Y)$. As b(D, C) > 0 there exists *i* such that $\langle v_i \rangle \subseteq G(Y)$. Moreover, for such *i*, we have $\alpha(v_i) \subseteq Y \setminus Z$, so p(C, D) > 0.

Assume that, after relabelling if necessary, $\langle v_i \rangle = \langle u_i \rangle$, for i = 1, ..., s, and that $\langle v_{s+1} \rangle$, ..., $\langle v_l \rangle \subseteq G(Y)$, so b = l - s. Choose $t_i \in \alpha(v_{s+i})$ and let $Y_i = \text{cl}(Z \cup \{t_1, ..., t_i\})$, for i = 1, ..., l - s = b. Let $C_i = G(Y_i) = C_G(Y_i^{\perp})$, so C_i is a canonical parabolic centraliser. We claim that the chain (4.1) is strictly descending. To begin with, as $t_1 \in Y_1 \setminus Z$ we have $G(Z) < C_1$. Now fix *i* and *n* such that $1 \leq i < n \leq b$. If $a \in \alpha(v_{s+n})$ then $a \in Z^{\perp}$ and $a \in \alpha(v_{s+j})^{\perp} \subseteq t_j^{\perp}$,

for $1 \le j < n$, by definition of the standard form of quasiparabolic subgroups. Hence $a \in (Z \cup \{t_1, \ldots, t_i\})^{\perp}$. Thus [a, b] = 1, for all $b \in Y_i$. This holds for all $a \in \alpha(v_{s+n})$ so $Y_i \subseteq \alpha(v_{s+n})^{\perp}$. As v_{s+n} is a block of length at least 2 we have $\alpha(v_{s+n}) \cap \alpha(v_{s+n})^{\perp} = \emptyset$, so $Y_i \cap \alpha(v_{s+n}) = \emptyset$. Hence $t_n \notin Y_i$ and it follows that $C_i < C_{i+1}, i = 1, \ldots, b - 1$. Now choose $c \in \alpha(v_{s+1})$ such that $[c, t_1] \neq 1$. Then $c \in Y$, as $\alpha(v_{s+1}) \subseteq Y$, however $c \notin Y_b$, since $t_1 \in Z^{\perp} \cap t_1^{\perp} \cap \cdots \cap t_b^{\perp} = Y_b^{\perp}$ and $Y_b = Y_b^{\perp \perp}$. As D < C we have $Z \subseteq Y$ so $C_b = G(Y_b) < G(Y)$. \Box

We can use this lemma to prove the following about chains of canonical quasiparabolic subgroups.

Lemma 4.4. Let $C_0 > \cdots > C_d$ be a strictly descending chain of canonical quasiparabolic centralisers such that C_0 and C_d are canonical parabolic centralisers. Then there exists a strictly descending chain $C_0 > P_1 > \cdots > P_{d-1} > C_d$, of canonical parabolic centralisers.

Proof. First we divide the given centraliser chain into types depending on block differences. Then we replace the chain with a chain of canonical parabolic centralisers, using Lemma 4.3. A simple counting argument shows that the new chain has length at least as great as the old one. In detail let $I = \{0, ..., d - 1\}$ and

$$I_{+} = \{i \in I: b(C_{i+1}, C_{i}) > 0\},\$$

$$I_{0} = \{i \in I: b(C_{i+1}, C_{i}) = 0 \text{ and } p(C_{i}, C_{i+1}) > 0\}, \text{ and }\$$

$$I_{-} = \{i \in I: b(C_{i+1}, C_{i}) = p(C_{i}, C_{i+1}) = 0\}.$$

Then $I = I_+ \sqcup I_0 \sqcup I_-$. For $i \in I_+$ let Δ_i be the strictly descending chain of canonical parabolic centralisers of length $b(C_{i+1}, C_i) + 1$ from $\mathcal{P}(C_i)$ to $\mathcal{P}(C_{i+1})$, constructed in Lemma 4.3. For $i \in I_0$ let Δ_i be the length one chain $\mathcal{P}(C_i) > \mathcal{P}(C_{i+1})$ and for $i \in I_-$ let Δ_i be the length zero chain $\mathcal{P}(C_i) = \mathcal{P}(C_{i+1})$. This associates a chain Δ_i of canonical parabolic centralisers to each $i \in I$ and we write l_i for the length of Δ_i . If $\Delta_i = P_0 > \cdots > P_{l_i}$ and $\Delta_{i+1} = P'_0 > \cdots > P'_{l_{i+1}}$ then by definition $P_{l_i} = P'_0$, for $i = 1, \ldots, d-1$. We may therefore concatenate Δ_i and Δ_{i+1} to give a chain of canonical parabolic centralisers

$$P_0 > \cdots > P_{l_i} = P'_0 > \cdots > P'_{l_{i+1}}$$

of length $l_i + l_{i+1}$. Concatenating $\Delta_1, \ldots, \Delta_{d-1}$ in this way we obtain a strictly descending chain of canonical parabolic centralisers of length $l = \sum_{i=0}^{d-1} l_i$. Moreover

$$l = \sum_{i \in I_+} b(C_{i+1}, C_i) + |I_+| + |I_0|,$$

since $l_i = b(C_{i+1}, C_i) + 1$, for all $i \in I_+$, $l_i = 1$, for all $i \in I_0$ and $l_i = 0$, for all $l_i \in I_-$. As |I| = d we have now

$$l - d = \sum_{i \in I_+} b(C_{i+1}, C_i) - |I_-|.$$

To complete the argument we shall show that

$$\sum_{i \in I_+} b(C_{i+1}, C_i) = \left| \bigcup_{i=0}^d \mathcal{B}(C_i) \right| \ge |I_-|.$$

As $\mathcal{B}(C_0) = \emptyset$ we have $b(C_1, C_0) = |\mathcal{B}(C_0) \cup \mathcal{B}(C_1)|$. Assume inductively that

$$\sum_{i=0}^{k} b(C_{i+1}, C_i) = \left| \bigcup_{i=0}^{k+1} \mathcal{B}(C_i) \right|,$$

for some $k \ge 0$. Then

$$\sum_{i=0}^{k+1} b(C_{i+1}, C_i) = \left| \bigcup_{i=0}^{k+1} \mathcal{B}(C_i) \right| + \left| \mathcal{B}(C_{k+2}) \setminus \mathcal{B}(C_{k+1}) \right|.$$

Moreover, if $w \in \mathcal{B}(C_{k+2}) \setminus \mathcal{B}(C_{k+1})$ then $w \in \mathcal{P}(C_j)$, for all $j \leq k+1$, so $w \notin \mathcal{B}(C_j)$, for j = 0, ..., k+1. Hence

$$\mathcal{B}(C_{k+2}) \setminus \mathcal{B}(C_{k+1}) = \mathcal{B}(C_{k+2}) \setminus \bigcup_{i=0}^{k+1} \mathcal{B}(C_i)$$

and it follows that

$$\sum_{i=0}^{k+1} b(C_{i+1}, C_i) = \left| \bigcup_{i=0}^{k+2} \mathcal{B}(C_i) \right|.$$

As $b(C_{i+1}, C_i) = 0$ if $i \notin I_+$ it follows that

$$\sum_{i \in I_+} b(C_{i+1}, C_i) = \left| \bigcup_{i=0}^d \mathcal{B}(C_i) \right|,$$

as required. If $i \in I_-$ then $b(C_{i+1}, C_i) = p(C_i, C_{i+1}) = 0$, so $b(C_i, C_{i+1}) > 0$. Therefore there is at least one element $w \in \mathcal{B}(C_i) \setminus \mathcal{B}(C_{i+1})$. It follows that $w \notin \mathcal{B}(C_j)$, for all $j \ge i + 1$ and so $I_- \le |\bigcup_{i=0}^d \mathcal{B}(C_i)|$. Therefore $l - d \ge 0$ and the proof is complete. \Box

Proof of Theorem 4.1. Let

$$G = C_0 > \cdots > C_d = Z(G)$$

be a maximal descending chain of centralisers of G. By Theorem 3.12, each of the C_i 's is a quasiparabolic subgroup. If each C_i is canonical then, since G and Z(G) are both canonical parabolic centralisers the result follows from Lemma 4.4.

Suppose that now C_1, \ldots, C_s are canonical quasiparabolic and C_{s+1} is not: say $C_{s+1} = Q^g$, where Q is a canonical quasiparabolic subgroup. Let $C_s = Q(u, Y)$ and Q = Q(v, Z) both in standard form. Write $g = f \circ h$, where $f = gd_{Z^{\perp}}^{I}(g)$ and let $f = e \circ d$, where $d = gd_{Y}^{r}(f)$, so $d \in G(Y \cap Z^{\perp})$. Then $G(Z)^h = G(Z)^{dh} = G(Z)^g \subseteq G(Y)$ and $\alpha(h) \subseteq Y$, from Corollary 2.5. Hence $\alpha(d \circ h) \subseteq Y$ which implies that $\alpha(d \circ h) \subseteq \mathcal{P}(C_s) \subseteq \cdots \subseteq \mathcal{P}(C_0)$. It follows that $C_r^{dh} = C_r$, for $r = 0, \ldots, s$. Therefore conjugating $C_0 > C_1 > \cdots > C_d$ by $(dh)^{-1}$ we obtain a chain in which C_0, \ldots, C_s are unchanged and $C_{s+1} = Q^e = \langle v_1 \rangle^e \times \langle v_l \rangle^e \times G(Z)$, with $gd_Y^r(e) = 1$, $e \in G(Z^{\perp})$. As Lemma 3.6 implies that Q^e is a canonical quasiparabolic subgroup we now have a chain in which C_0, \ldots, C_{s+1} are canonical quasiparabolic. Continuing this way we eventually obtain a chain, of length d, of canonical quasiparabolic centralisers to which the first part of the proof may be applied. \Box

References

- [1] A. Baudisch, Kommutationsgleichungen in semifreien Gruppen, Acta Math. Acad. Sci. Hungar. 29 (1977) 235-249.
- [2] A. Baudisch, Subgroups of semifree groups, Acta Math. Acad. Sci. Hungar. 38 (1981) 19-28.
- [3] R.V. Book, H.-N. Liu, Rewriting systems and word problems in a free partially commutative monoid, Inform. Process. Lett. 26 (1) (1987) 29–32.
- [4] N. Brady, J. Meier, Connectivity at infinity for right-angled Artin groups, Trans. Amer. Math. Soc. 353 (1) (2001) 117–132.
- [5] R. Charney, An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007) 141-158.
- [6] R. Charney, J. Crisp, K. Vogtmann, Automorphisms of two-dimensional right-angled Artin groups, arXiv: math/ 0610980.
- [7] R. Cori, Y. Metivier, Recognizable subsets of some partially abelian monoids, Theoret. Comput. Sci. 35 (1985) 179–189.
- [8] J. Crisp, B. Wiest, Embeddings of graph braid groups and surface groups in right-angled Artin groups and braid groups, Algebr. Geom. Topol. 4 (2004) 439–472.
- [9] J. Debois, S. Nechaev, Statistics of reduced words in locally free and braid groups, J. Stat. Phys. 88 (1997) 2767– 2789.
- [10] G. Denham, Homology of subgroups of right-angled Artin groups, arXiv: math/0612748.
- [11] V. Diekert, Y. Matiyasevich, A. Muscholl, Solving word equations modulo partial commutations, Theoret. Comput. Sci. 224 (1999) 215–235.
- [12] V. Diekert, A. Muscholl, Solvability of equations in free partially commutative groups is decidable, in: Proceedings of the 28th International Colloquium on Automata, Languages and Programming, ICALP '01, in: Lecture Notes in Comput. Sci., vol. 2076, Springer, 2001, pp. 543–554.
- [13] V. Diekert, G. Rosenberger (Eds.), The Book of Traces, World Scientific, Singapore, 1995.
- [14] C. Droms, Isomorphisms of graph groups, Proc. Amer. Math. Soc. 100 (1987) 407-408.
- [15] G. Duchamp, D. Krob, Free partially commutative structures, J. Algebra 156 (2) (1993) 318–361.
- [16] G. Duchamp, D. Krob, Partially commutative Magnus transformations, Internat. J. Algebra Comput. 3 (1) (1993) 15–41.
- [17] G. Duchamp, J.-G. Luque, Transitive factorizations of free partially commutative monoids and Lie algebras, in: Formal Power Series and Algebraic Combinatorics, Barcelona, 1999, Discrete Math. 246 (1–3) (2002) 83–97.
- [18] G. Duchamp, J.-Y. Thibon, Simple orderings for free partially commutative groups, Internat. J. Algebra Comput. 2 (1992) 351–355.
- [19] A.J. Duncan, I.V. Kazachkov, V.N. Remeslennikov, Centraliser dimension of partially commutative groups, Geom. Dedicata 120 (2006) 73–97.
- [20] A.J. Duncan, I.V Kazachkov, V.N. Remeslennikov, Orthogonal systems in finite graphs, submitted for publication, http://www.arxiv.org.
- [21] E.S. Esyp, I.V. Kazachkov, V.N. Remeslennikov, Divisibility theory and complexity of algorithms for free partially commutative groups, in: Contemp. Math., Amer. Math. Soc., 2004, pp. 317–346, arXiv: math/0512401.

- [22] E.R. Green, Graph products of groups, PhD thesis, University of Leeds, 1990.
- [23] T. Hsu, D. Wise, Separating quasiconvex subgroups of right-angled Artin groups, Math. Z. 240 (3) (2002) 521-548.
- [24] M. Kambites, On commuting elements and embeddings of graph groups and monoids, Proc. Edinb. Math. Soc., in press.
- [25] D. Krob, P. Lalonde, Partially commutative Lyndon words, in: STACS '93, Würzburg, 1993, in: Lecture Notes in Comput. Sci., vol. 665, Springer, Berlin, 1993, pp. 237–246.
- [26] Michael R. Laurence, A generating set for the automorphism group of a graph group, J. London Math. Soc. 52 (1995) 318–334.
- [27] H.-N. Liu, C. Wrathall, K. Zeger, Efficient solution of some problems in free partially commutative monoids, Inform. and Comput. 89 (1990) 180–198.
- [28] A.V. Malyutin, The Poisson–Furstenberg boundary of the locally free group, J. Math. Sci. 129 (2) (2005) 3787–3795 (in Russian).
- [29] Yu. Matiyasevich, Some decision problems for traces, in: S. Adian, A. Nerode (Eds.), Proceedings of the 4th International Symposium on Logical Foundations of Computer Science, LFCS '97, Yaroslavl, Russia, July 6–12, 1997, in: Lecture Notes in Comput. Sci., vol. 1234, 1997, pp. 248–257.
- [30] V. Metaftsis, E. Raptis, On the profinite topology of right-angled Artin groups, arXiv: math/0608190.
- [31] H. Servatius, Automorphisms of graph groups, J. Algebra 126 (1989) 34-60.
- [32] S.L. Shestakov, The equation [x, y] = g in partially commutative groups, Siberian Math. J. 46 (2) (2006) 364–372.
- [33] L. Van Wyk, Graph groups are biautomatic, J. Pure Appl. Algebra 94 (3) (1994) 341-352.
- [34] A. Vershik, S. Nechaev, R. Bikbov, Statistical properties of braid groups in locally free approximation, Comm. Math. Phys. 212 (2000) 469–501.
- [35] S. Wang, Representations of surface groups and right-angled Artin groups in higher rank, arXiv: math/0701493.