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Abstract

We provide a method for improving bounds for nonmaximal eigenvalues of positive matri-
ces. A numerical example indicates the improvements can be substantial.
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1. Introduction and preliminary results

Let A = [a; ;] € R™" be a positive matrix, that is a; ; > 0 for all i, j, with pos-
itive right and left eigenvectors u and v, with v'u = 1. Let p(A) denote the spectral
radius of A and denote the eigenvalues of A by A; (A) with

p(A) = An(A) > Re(hp—1(A)) > --- > Re(11(A)).
This paper is concerned with bounds for
T(A) =Re(h,—-1(A)) < p(4)
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and, in particular, provides a simple approach to improving current bounds for 7 (A).
Such bounds are important for determining the convergence of powers of the matrix;
see, for example, [4].

The idea is to consider the positive matrix

A=A —p(Auv'/(1+¢)
forany 1 4+ ¢ > ¢*(A) = p(A) max; j u;v;/a;;. It is easy to show that

p(A)maxu;v;/a;; > 1.
iJ

Assume the contrary, so that a;; > p(A)u;v; for all i, j. Then

n n
p(Aui =) aijuj > p(A) Y uivjuj = p(Au;
j=1 j=1
which is a clear contradiction.
The eigenvalues of A, are given by

cp(A)
Tre An—1(A), ..., A1(A).

So,if cp(A)/(1 +¢) > 1(A) and 1 + ¢ > ¢*(A), then we have
T(Ac) = (A)
which forms the basis of the paper. To ensure the former constraint we can take

cp(A)/(14+¢) > E(A) > t(A), where £(A) is an upper bound for t(A). Therefore,
we require ¢ > ¢, (A) where

cx(A) = max {¢*(A) — 1, £(A)/(p(A) — §(A))}.
So, we have denoted an upper bound for 7(A) as £(A), assumed to be applicable
when A is a positive matrix. For example, [1] has

E(A) = \/,02(14) — h2(A)/82,
where § = max; u;v;,

Dicu. jeur GijVillj + ajivju
2|U| '

h(A) = min
UeS

S={U:0+U, Ul < |n/2l},

U' =(n)—Uand (n) ={1...n}.
Our intention is to apply this bound &, and others, to the matrix A.. The main
result is as follows.

Lemma 1. Let £(A) be an upper bound for t(A). If ¢ > c«(A) satisfies E(A;) <
E(A) then £(A,) is an improved bound for t(A), in the sense that

T(A) <§(A0) < §(A).
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Proof. By virtue of the fact that t(A.) = 7(A), we know that 7(A) = t(A,) <
&E(A.) < &(A). Hence, we obtain an improved bound for t(A).

Clearly, this method will only be applicable if A, is a positive matrix and this can
only be the case if A is itself a positive matrix. If a; ; = 0 for some i, j then there is
clearly no finite ¢ for which A, > 0.

Applying the bound & to A, we obtain

E(A) =& (A—p(Auv'/(1+0)).

Consequently, we are then interested in the existence of a ¢ € (c4x(A), 00) for which
£(A—p(Auv'/(1+0)) < E(A).

The improved bound for 7(A) will then be

E(A — p(Auv'/(1+¢)).
In [2] a similar approach was described. Essentially [2] took the bound
T(A) < p(Ao).

Clearly, for non-trivial &, it will be that £(A.) < p(A.).

We must work on specific bounds and in the next section we consider bounds
recently obtained by [1] and also by [3] and show that we can obtain strict improve-
ments. That is, we can find a c,(A) < ¢ < 0o such that & (A — p(Auv'/(1 + c)) <
£(A). Note, however, that the bounds of [1] and [3] apply to non-negative matrices
whereas the improvements are only available for positive matrices. In Section 3 a
numerical example is presented which demonstrates significant improvements over
a bound obtained by [3].

2. Illustrations

We present two examples of bounds & and show that using A, it is possible to find
strict improvements when A > 0.

2.1. Berman/Zhang bound

We first work on the [1] bound for 7 (A) which was described in Section 1. Let us
define

co(A) = max

UeS

{ 2y(U) — 6 }
20 —y(U))

and

D icy Uivi (1 — v ”ivi)

U =
y(U) 0l
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Theorem 1. If

E(A) = \/p2(A) — 12(4)/8?
is an upper bound for t(A) and A > 0 then an improved upper bound for t(A) is
given by £E(A.) for any

¢ > max{c«(A), co(A)}.

Proof. It is convenient to also define
D e, jeu GijvVittj +ajivju;

h(A,U) = U

and

ZieU,jeU/ aijvikj +ajivju; — 2p(A)(1 + C)_1 UjViUjV;j
21U |

=h(A,U) — p(A)yU)/(1 +0).

h(Ac,U) =

For reasons explained in Section 1, we are looking for a finite ¢ for which £(A.) <
&(A); that is, for which

cpP(A) _ (h(A,U) — p(A)y(U)/( +0)) h2(A)

(1+¢)? 82 82
forall U € S. This is equivalent to showing there is a finite ¢ for which

20(A)y (U)h(A, U)(1 +¢) — y*(U) < (1 +2¢)p*(A)8*

forallU € S.
Now

Z ajju; < p(Au;

jeu’

< p*(A) —

and
Z ajivi < p(A)v;
jeu’
SO
2p(A) Y ey Uivi _ p(A)ZieU Ujv;
21U | |U|
and hence (A, U) < p(A)s forall U € S.
Hence, removing the y2(U ) term, we wish to show that there exists a finite ¢ for
which
2y (U)S(1 +¢) < (14 ¢)8° + ¢8>

for all U € S. This follows since y (U) < § and so we can find a finite ¢ for which

h(A,U) < < p(A)S



S.G. Walker / Linear Algebra and its Applications 397 (2005) 133—139 137

2y(U) <b6+c¢5/(1 +¢)
forall U € S. We would take such a ¢ from the set

(rex |2y =)
ce\maxXy\———(,X|,
ves | 2(6 — y(U))

completing the proof, since we also need ¢ > c,(A). U

2.2. Nabben bound

Next we work on one of the bounds provided by [3]. Let us first define

. @iV aiivil;
Z(A):mm ZIEU,]EU [V Rg e JrE]T
UeS 2p(A) ZieU Ui v;

’

where

S:{U:@#U#(n),Zuivig }
ieU

and also define

| =

c1(A) = max
UeS

{ 21(A, Uy (U) — 1 }
21 -1(A, Uy W) )’

U ey WiViljU;j
y(U) = 2icy.jeu Vit Vs =1—Zuivi

P u;v;
ZIGU [ iceU

and
Dicu, jeur GijVillj + ajivjl;

a4, 1) = 20(A) D iy Uivi

Theorem 2. If

£(A) = p(A)V1 —12(A)
is an upper bound for t(A), then an improved upper bound for t(A) is given by
§(Ac) for any

¢ > max{cs(A), c1(A)}.
Proof. Following reasons outlined in Section 1, we are interested to show that there

exists a finite ¢ for which £(A.) < £(A), that is for which

2 2 2
c 5 I+ |, 2y (U)I(A,U) y=(U)
1+02” (4) [1_ 2 {l 4,0 - l+c¢ (1+c)2”

< P2 (A1 —1%(A, U))
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for all U € S. This reduces to finding a finite ¢ for which
2A, U)y(U) < 14+c/(1+0)
forall U € S. Now
yU)=1-=> v,
ieU
which is strictly less than 1 for all U € S and I[(A, U) < 1 for all U € S and hence
such a ¢ can be found. In fact, we can take

< { 20(A, U)y(U) — 1 } )
¢ € | max , 0],
ves | 2001 —I(A, U)y (U))

completing the proof. [J

3. Numerical example

We consider the improvement over the Nabben bound with

A:G ;)

Then p(A) =4 and (A) = 1. We take

T —

The U € S minimising [(A, U) is U = {2} and [(A) = % giving £(A) = 3.46.
Now ¢ (A) = 1/3 and c1(A) < c«(A) and for illustrative purposes we take ¢ = 1.
Then it is easy to show that

1/5 2
A1=§<1 4)

which gives (as we know) p(A;) =2 and 7(A) = 1. In this case we obtain [(A}) =
1/3 and hence £(A1) = 1.89, which is a substantial improvement over 3.46.
In fact it is clear that as ¢ | 1/3 we have p(A.) | 1, [(A:) | O and hence

§(A0) | 1.

4. Discussion

Applying bounds £ to A, has shown to lead to improvements in bounds for the real
part of nonmaximal eigenvalues of positive matrices. If ¢ > c,(A) and §(A.) < §(A)
then £(A.) is an improved bound for t(A). Applying & to A, should be no more
difficult than applying it to A. The additional piece of information is c,(A) which
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can be computed using the same pieces of knowledge required to compute &, namely
p(A), u and v.
Walker [5] used a similar technique when A is a positive stochastic matrix to
provide improved bounds. In this case A, needs to be a stochastic matrix and so
/
A — (I+c)A—uv
c
was selected for large enough ¢ to ensure A, is nonnegative. Here u is a column
vector of 1s and v is the invariant probability vector associated with the stochastic
matrix A.
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