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ABSTRACT 

A dictionary between operator-based and matrix-based languages in multivariate sta- 
tistical analysis is proposed. Then this formulary is applied to asymptotic factorial anal- 
yses, especially for giving asymptotic covariance matrices and operators in an explicit 
form. Finally, we present the mathematical foundations on which are based.the functional 
tools, i.e. tensor products of linear spaces, of vectors, and of operators. 

1. INTRODUCTION 

In the multivariate statistics literature, we may find two distinct approaches. 
The first one uses essentially the matrix calculus and language, and the second one 
tends to exploit at best the possibilities of the functional tools. 

In numerous papers, the matrix-based approach is preferred for historical rea- 
sons and also for computing convenience. Nevertheless, this point of view has 
several disadvantages. First of all, the notions considered are not coordinate-free; 
secondly, some of these notions are obscured by the language form; finally, as 
infinite dimension is a necessary assumption in the formalization and resolution 
of some problems, it is difficult and sometimes impossible to extend the results 
obtained in this form. 

The functional or operator-based language is less used by statisticians. How- 
ever, it gives an intrinsic form of the study to which it applies (that is, without basis 
choice constraint); it clarifies some notions that seem more complex in matrix form 
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(think, for example, of the commutation transformation), and finally, for the study 
of not necessarily finite dimensional cases it gives a natural mathematical back- 
ground. 

Contrarily to a widespread idea, using linear maps (or operators) instead of 
matrix language does not present any difficulty in finite dimensions: in fact, the 
definition spaces are better specified (think, for example, of the adjoint and the 
transpose maps, which have the same matrix representations). Moreover, a com- 
putation may be more efficient than in matrix form, and the eventual extension 
to infinite dimension needs, at least at the first stage, minimal knowledge and 
care. For these reasons, we present our functional results in finite dimensional real 
pre-Hilbert spaces, that is, in Euclidean spaces. 

The fundamental argument for the choice of the matrix calculus may be its 
convenience in a computational environment. The fast evolution of programming 
languages and of computers suggests that this reason will soon be less impor- 
tant and will perhaps disappear. Nevertheless, the statistical software packages 
extensively use the matrix calculus, and even in a functional context we need a 
translation from operator into matrix language. This translation must be in both 
directions and will give supplementary and new results for each approach. 

Thus, starting from a functional point of view, the main goal of this work is to 
give a matrix-operator dictionary in finite dimension: that is the scope of Section 3. 
Before that, in Section 2, we present functional tools which are useful for the 
matrix-operator translation: whenever multiindices are used (as, for example, for 
the formulation of a matrix of matrices), we show that classical matrix calculus 
implicitly needs a predetermined convention for the basis enumeration. 

Although applications of the dictionary are not restricted to factorial analyses 
(see Section 6 for this topic), we give in Section 4 two examples chosen in this area, 
namely principal component analysis and the canonical analysis. Finally, in the 
Section 5, we present the mathematical background on which the functional tools 

are based, such as tensor products of linear spaces, of vectors, and of operators. 

2. TENSOR PRODUCTS AND MATRIX EXPRESSIONS 

For each Euclidean space (that is, a finite dimensional pre-Hilbert 
space), the inner product is denoted by (., .); for simplicity of notation, with one 
exception, no subscript will be added to the inner product, since it operates on a 
space which is easily identified from its variables. Let X and Y be two Euclidean 
spaces, and Ic(X, Y) denote the space of the linear maps from X into Y. The 
Hilbert-Schmidt inner product on L(X, Y) is defined as follows: 

(a, b) E [13(X, Y)12 w- (a, b)2 = trab’ = trbu*, 
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where tr stands for the linear trace map and a* for the adjoint of a [as usual, 
a* is the unique operator of L(Y, X) defined by (a(x), y) = (x, a*(y)) for each 
(x, y) of X x Y]. Let 02(X, Y) [ez(X)] denote the Euclidean space obtained 
when L(X, Y) [l(X, X)] is equipped with the Hilbert-Schmidt inner product. This 
product is systematically indexed by 2, the context allowing one to identify without 
ambiguity the space on which it operates. 

In this whole section, X, Y, Z, and T are Euclidean spaces, and in the whole 

paper, X and Y will denote crz(X, Y) and a2(Z, T) respectively. 

2. I. Functional Tools and Products 

DEFINITION 2.1. For each (x, y) in X x Y, the tensor product of x and y is 
the rank one operator in X defined by 

This product clearly distributes over addition. It is also easily verified that the 

adjoint of x @ y is 

(x @ y>* = y 63 x 

and, using the elementary properties 

tr(x C3 y) = (Y, x), (x9 Y) E x2, 
e(x 63 y> = x 63 e(y), x E x, y E y, e E 02(Y, Z), 

(2.la) 

that we have 

(u @ z>(x 63 y) = (y, u)x 8 z, x E X, (y, u) E Y2, z E Z, (2.lb) 

(x ~3 y)d* = d(x) c3 y, 

and then 

x E x, Y E Y, d E 022(X, Z), (2.2) 

(a, x c3 Y)Z = (4x1, Y) [=tr y @J +>I, a E X, x E x, y E Y. 

So we have the equality 

(u~u,x~Y)z=(~,~)~Y,~), b, u) E x2, (Y, u) E y2, (2.3) 
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which can also be written 

tr[(u 63 u>(y 63 x)1 = tr(u 8x1 NV @ Y). 

In the same way, we may consider the tensor product of an element of X and 
an element of Y. In order to distinguish it from the previous one, it is denoted by 

%. 
Thus, this product is the element of QX, Y) defined by 

a G b : d E X H (d, a)zb = [tr(ad*)]b E y, a E X, b E Y. 

2.1.1. Tensor Product of Linear Maps 

DEFINITION 2.2. For a E X and b E Y, the tensor product of the linear maps 

a and b is the element a 6 b of Qaz(X, Z), az(Y, T)) defined by 

a 6 b : d E az(X, Z) H bda’ E az(Y, T). 

Ford E crz(X, Z) and e E CJ~(Y, T), we have 

((a6b)0,e)2 = tr(bda*e*) = tr(da*e*b) 

= tr(d(b*ea)*) = (d, a* 6 b*(e))2 

and so 
* 

=a*&b* (2.4) 

The map & is called the tensor product of linear maps, with reference to the 
corresponding notion in the general theory of tensor products (see Section 5.3). In 
fact, for any (x, z) E X x Z, using (2.la) and (2.2) we have 

( > a 6 b (x @ z) = u(x) ~3 b(z), a E X, b E y. (2.5) 

This definition is directly connected with the general notion of tensor product, and 
in this respect it seems more appropriate than the slightly different one used by 

Eaton [8, p. 341. 
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Finally, note that we have the equality 

(x63.Y) 6 (z@tt) = (x@z)~w8tt), (x, y, z, t) E X x Y x Z x T. (2.6) 

Indeed, for each d E ez(X, Z), 

(x 8 y) 61 (z 8 t)(d) = (z QD t)d(y CQ x> = y @ [z @ t(dx)l 

= y 63 ((2, d(x))t) = (d, x 8 z)2y 8 t 

= (X 63 z) % (y 63 t)(d). 

2.1.2. Permutation Operator The linear map defined by 

n 

cy,x:aEX-+a*Eaz(Y,X) 

is called the permutation (or commutation) operator on X. 
The permutation operator on az(X) is denoted by cx (instead of CX, x). It is 

immediately verified that cx, ycy, x is the identity on X and that cx, y is the adjoint 
of CY, X, that is, 

CX,Y CY,X = ix and c~~=cx,Y. (2.7) 

In particular, cx is involutive and self-adjoint: 

4 = i,(x) and c$=cx. 

The following final property justifies the name of the c-type operators: 

c,y[(a&b)(d)] = (bda*)* =ad*b* = (h&a)cz,x(d). d E cq(X, Z), 

that is, for all a E X and b E y, 

w,y(a&b) = (b6a)cz.x. (2.8) 

2.1.3. ktorization Operator: Consider the Euclidean space E. The Riesz 
isomorphism, denoted by XE, leads us to identify E with its dual space E* = 
L( E, R); it is the application 

XE : X E E H XE(X) = (X, .) E E*. 

The map XE is an isomorphism from E onto E*, so the inner product (. , .), defined 
on E* by 

(m, n) = (xi’(m), xii(n)) = ix, Y) for m = (x, .) andn = (y, .) E E*, 
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may be considered. 
The adjoint of XE is then xi’. For all linear form m = (x, .) on E, all y in E, 

and all real cz, we have 

(m(y), a) = ah, y) = (y, ax) = (y, m*(a)); 

som*isthemapaEIWH~xEE. 
According to the previous notation, nm* is the map 

a E R H n (m*(a)) = (y, ax) = a(y, x). 

So we have tr nm* = (y, x), which shows that the induced inner product is the 
Hilbert-Schmidt inner product on the space E*. 

For the sake of simplicity, let F denote the space 02(E), and x the isomorphism 
XF. We have 

x(a) = (a, .)2 = tr(. a*), a E F. 

Following the definition, we may note that 

a G b(.) = x (a)(.)b, (a, b) E F2, 

and, from what precedes, 

lx (*>I* :a!~lR~czra~F. 

Denoting by c the permutation operator CE, we have, for (a, b) E F2, 

x@)(b) = (a, b)2 = tr [a c(b)1 = tr [c(b)(a*)*] = (a*, C(b))& 

that is, 

x(a) = x(a*)c. 

Furthermore, for all a, b, d, and e E F, we obtain 

(2.9) 

x(abd)(e) = tr(abde*) =tr[b(a*ed*)*] 

= (b, ated*) = x(b)[(d&a*)(e)], 

and then 

x(ubd) = x(b)(d&u*), (a, b, d) E F3. (2.10) 

In a more general way, let XX, r be the Riesz isomorphism defined on X. For 
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a and d in X and b in y, we have 

( > a % b (4 = (a, dhb = kz, r@)l*((a, 42) = [xz, dbN*xx. u@)(d). 

Then it follows that 

a % b = [XZ, r(bIl*xx, Y(U). 

Ford E crz(R Y), 

(2.11a) 

[xz. r(b)l* g xx. r(a)(d) = (d, [xz. T@)l*hxx, r(a) 
= Wxz, r@)l*d*)xx, Y (a> 
= &txz, db)ld)xx, u(a) 
= XZ, GWxx, y (4 

so it can be deduced that 

[xz,r(b)l*%xx,r(4 = [~x,~@)l*~xz.~@). (2.11b) 

2.2. Matrix Representation 

2.2.1. Usual Notation. The R-linear space of the n x p matrices (n rows 

and p columns) is denoted by M ,,, p. For each element A of this space, t A stands 

for its transpose matrix. 
Let (Xr)i [(yj)j, (zk)k, (te)e] be an orthonormal basis of the m [n, p, q] dimen- 

sional Euclidean space X [Y, Z, T]. Using (2.3), we easily verify that (xi @ yj)i, j 
is an orthonormal basis of X and that ((xi @ yj) @ (zk @ t/))i, j, k, l (or equivalently 

((Xi @ zk) 6 (yj @ tl))i, i, k, I) is an orthonormal basis of az(X, Y). 
In order to establish the link with classical matrix calculus notions, the follow- 

ing conventions will be adopted: 

(1) If possible, a linear map is denoted by lowercase letter; the associated 

matrix, with reference to the chosen bases, is then denoted by the corresponding 
capital letter. When that is not done, M(a) denotes the matrix of the linear map a; 
conversely, each matrix A can be associated with a convenient linear map denoted 

by m(A). 

(2) A linear map a from X into Y is denoted by 

a = CCZjiXi 8 Yj. 

i. j 

Its matrix A is then (aij), where, as usual, the first index stands for the row number. 
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(3) The enumeration of the basis (xi @ yj)i, j will use the lexicographic order: 

~l@Yl7...,~l@Yj, . . . . x1@yy,,x2C9y1,..., x2@yy, )...( xi@Jyy1,_.., 

Xi~Yyj,...,Xi~yy,,...,X,~,Yl,...,X,~y~,; 

that is, the index i first equals 1, j varying from 1 to n; then i equals 2, j varying 
from 1 to n, and so on until i equals m. 

2.2.2. Tensor Products of Vectors and Linear Maps. The bases 
(xi)i= I,.,,,,, and (Yj)j=l,,,,,n are respectively defined on the Euclidean spaces 
X and Y. By an easy verification we prove that, for u E X and u E Y, 

M(u @I u) = v ‘u. (2.12) 

where U represents the column matrix of the u components, for all u of a linear 

space. 
Fromthedefinitionofxx,y,forall(i, j)in{1,2 ,..., n} x {1,2 ,..., m}and 

all a = Ck, c aekxk 8 ye, we have 

XX, r(a>h @ Yj> = (a, xi @ Yj)Z = (Yj, a(Xi)) = aji. 

Taking into account the enumeration order for the basis (xi @ yj)i , j of X, we have 

M(xx. y(a)) = (all,. . . ,a,i, a12,. . . , an2,. . . , 

ali ,..., LZji ,..., ani ,..., al, ,..., anm). 

The classical matrix operation vet (see, for example, Henderson and Searle 
[ 111) stacks the columns of a matrix one underneath the other to form a single 
vector. More generally, we can prove that 

PROPOSITION 2.1. For all a in X. we have 

M(xx. y(a)) = ‘vec4 MUxx. y@>l*) = vet A. 

Of course, a specific vet application corresponds to each space M,, ,,, , so it 
can be denoted by vet,, ,,, , for more precision. 

Let a and b be two elements of X and Y respectively. It follows from (2.1 la) 
that 

hence 

M(a %b) = M(]xz, db)l*M(xx, da)>; 

M(a G b) = vet B r (vet A), a E X, b E Y. (2.13) 
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For a = cj,i ajixi @ yj and b = 1 e, k biW& @ Q of X and Y respectively, it 
follows from (2.5) that 

(Xi C3 Zk) = a(&) 8 b(Zk) = CajibekYj 8 tl; 
j, e 

this result shows that, with the previous enumeration convention for the bases, we 
have 

M a&b =(ajiB)=A&B, 
( > 

a E X, b E Y, (2.14) 

where & is the usual Kronecker product of two matrices (see also Henderson and 

Searle [ 111). 
Considering the same elements a and b and denoting by d an element of 

az(X, Z), we can deduce from (a &b)(d) = b d a* that 

M[(a&b)(d)] = BD*A. 

Consequently, a tensor product on a matrix space may be considered as follows: 

for A in M,, ,,, and B in M,, p, A & B denotes the map from M,, ,,, into M,,, 
defined by 

A&B:DcM p,,,, H BD’A EM,_,,. 

So we can write, for a E X, b E y, and d E q(X, Z), 

M[(a&b)(d)] = (A&B)(D), (2.15) 

and, using (2.la), we have 

a&b(d) =bb( ZajiYj @xi)] =b[ ZajiYj Jdh)]. 

By the linearity of the tensor product, (2.6) implies 

a&b= c ajibek(xi @Zk)%((Yj@‘d. 

i, j, k e 
(2.16) 
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We may also note that, for the same maps a and 6, we have 

By (2.11b), (2.13), and (2.14), and recalling that M([xx, y(a)]*) = vet A, we 
have 

vet A ‘vet B = M([xz, T(b)]* % XX, Y (a)> 

= M(Ixx. v(a)]* hxz, T(b)) = vet A& tvec B, 

that is, 

K 
vecA@‘vecB =vecA’vecB, A E J%,~, B E M,,,. (2.17) 

2.2.3. Permutation Matrix. For every a = xi, j ajixi 8 YJ, of X, we have 

cy, x(a) = CajiYj @Xi = C(a(Xi), Yj)Yj @Xi. 

i, j i, j 

It can be deduced from (2. la) and (2.1 b) that 

cy,x(a) = C(Yj Bxi)[Yj @ a(x C(Yj @Xi)U(yj ~xi) 

=g 

i. i 

(Xi 8 Yj) 6 (Yj 8 Xi)(U), 
4 j 

and then 

CY,X = c (Xi @ Yj) 6 (Xi 8 Yj)'. (2.18a) 

i, j 

Let Eji = (eke) denote the matrix of xi @ yj whose single nonnull element is 
eji = 1. From (2.14) and (2.18a), the matrix of CY, x is 

C -c m,n - Eji gtEji. 

i, j 

(2.18b) 
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Therefore, the matrix of the permutation operator cy, x is the classical per- 
mutation (or commutation) matrix (Magnus and Neudecker [ 121). From a matrix 
point of view, the relations (2.7) and (2.8) give 

where A and B are matrices of elements of X and Y respectively. 

3. MATRIX OPERATOR TRANSLATION FORMULARY 

3.1. Usual Framework in Statistics 

Most of the applications in statistics consider the case X = Y = Z = T = E, 

where E is a q-dimensional Euclidean space; let F denote the associated q2- 
dimensional space 02(E). The orthonormal bases E = (ei)i = I,,,,,~ and 3 = 
(eij)i, j = (ei @ ej)i, j are defined on the spaces E and F respectively. The 
elements of 3 are enumerated according to the convention given in Section 2.2.1. 
Foreachmin{1,2,..., q’), the m* element .sm of the basis F is then the element 
ei @ ej, where m = (i - 1)q + j. Denoting by [x] the integer part of a positive 
real number x, we have, for all m strictly positive integer 

m-l m-l 
i(m) = 

[ I - +1, j(m)=m-q - ; 
4 [ I 4 

this is equivalent to 

&I = ei(,) @ ej(m) for mE{1,2 ,..., q’}. 

Let M, (Mqz) be the R-linear space of the square order q (order q2) matrices. 
The space M, LS equipped with the basis G = (Eij)i, j = (Ej ’ Ei)i, j, where Ei 
is the q x 1 vector of the ei components. In order to display clearly the matrix 
formats used in the expressions, the following notation will be used: 

(1) M4 is the map which associates with each element a of F its matrix A 

in M,; conversely, mq is the map which associates with each matrix of M, the 
corresponding linear map with respect to the basis & defined on E. 

(2) ibfq2 [Mqz] is the map from 02(F) [az(M,)] into Mq2 which associates 
with each element of 02(F) [oz(M,)] its matrix according to the basis 3 of F [G 
of M,]; m,z [mc12] is the inverse map of ZVZ~~ [Mq2]. 

(3) iq(igz) is the identity map of E (F), and Z4 (Zq2) is the unit matrix of 
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M, (M,z). We may write 

i,=&eii, 2 c 
iq2 = f?ijG’eij =i,@ii,, 

i=l i,j=l 

m,U,) = i,, Mq2(iq2) = Zq 15 Zq = Zq2. 

(4) c is the permutation operator of F, and C its associated matrix. 
Then we have [see (2.18 a) and (2.18 b)] 

m,z(C) = c, with c = 2 eij Geji and C = 2 Eij$‘Eij. 
i, j=l i, j=l 

By (2.6), we also have c = Cy j = 1 eij I& eji. 

(5) The Riesz isomorphism on F is denoted by x . 

(6) Let p be the map defined by a E F H p(a) = a + a* E F. Then 

du) = (ig2 + c)(u). (3.1) 

Following this notation, the equalities (2.12), (2.13) and (2.17), (2.14) may be 
written 

i&(u @ u) = U’V, (u, u) E E2, 

Mq2(u Gjb) = vet M,(b) $‘[vec Mq(u)l 

= vet Mq (b) ’ [vet Mq (a)], GA b) E F2, 

Mqz(u&) = M,(u)&Mq(b), (a,!~) E F2. 

It is also to be noted that 

+(A&B)=A$B, (A, B) E WQ2. 

Recall that for each a of F, the matrix of x(u) is rvec A [with A = M,(u)]. 
Since c is self-adjoint, the relation (2.9) may also be written 

ix @)I* = c[X(a*)l*, 

that is, from a matrix-based approach (see Proposition 2.1), 

vet A = Cvec’A. (3.2) 
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For a in F, we have 

Lx (cp(a>>l* = [x @>I* + Ix @*)I*; 

this can be rewritten [see (3.2)] 

vet I’$ ((p(a)) = vet A + vet ‘A = vet A + C(vec A) = ($2 + C> vet A. 

Then we get 
vet Mq(p(a)) = (Zq2 + C) vet A. 

By (2.4), Equation (2.10) can be expressed as 

(3.3) 

ix @WI* = (d 6 a*)*[x @)I* = (d* 6 a)[x (b)]‘, (a, b, d) E F3, 

which gives in matrix form 

vecABD = (‘D&A)vecB, (A, B, D) E WQ3. (3.4) 

Let a and b be two elements of F, and u an element of az(F). From the 

equalities 

x(u(a))@) = (da>, bh = (a, u*(b))2 = x(a)[u*(b>l, 

we obtain 

x(u@>> = x(a>u*. 

In another form, 

[x(@))l* = dx(a)l*, 

and the matrix transcription is 

vecM,(u(a)) = Mqz(u)vecMq(a). 

The equality (3.3) may of course be derived from this result. Clearly, preceding 
matrix and functional equalities characterize u = m,2(V) or V = Mq2(u). As F 

and M, play analogous roles, we have 

PROPOSITION 3. I. 

(1) Let u be an element of a2( F). Then 

u = m,2(V) -3 V=Mg2(u) 

* vet Mq(u(a)) = VvecM,(a), a E F. 
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(2) Let u be an element of a~(&). Then 

u=m&V) e V=M,2(u) * vecu(A) = VvecA, AEM~. 

Let D be the subspace of the “diagonal” operators (always with reference to 
F) in F, and let is be the orthogonal projector from F into D. Then we have 

4 

D=span(eii; i=l,...,q) and ia= c eii G eii. 
i=l 

The map from M, into M, which associates with each matrix A = (aij) its 
diagonal matrix diag(ar 1, . . . , aii, . . . , a,,) is denoted by diag. From Proposition 
3.1, we have 

vecMq(is(a)) = Mg(is) vet A, a E F, 

that is, 
vet diag A = Mq2 (is) vet A, AEM~. 

ikf~ (is) is then the matrix Is that transforms vecA into vet diag A, so 

COROLLARY 3. I. The matrix ZJ of the map is = ~~=, eii g eii is the matrix 
that transforms the matrix vet A into vet diag A by premultiplication. 

3.2. Basic Dictionary 

The matrix-operator (or operator-matrix) dictionary may now be established. 
The most useful results are presented in Table 1. 

The following diagram illustrates the direct links between the various products: 

The property Pr is a particular case of (2.15) P6 and Pi rewrite (3.3) and (3.2) 
respectively, and Ps is an immediate consequence of (2.16). The relation P2 is 
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TABLE 1 

Pl 

4 

p3 

p4 

p5 

p6 

p6’ 

For (A, E, D) E (M,)3, 

(Ah B)(D) = Mq[(a &WI. 

For (A, B, D) E (M,J~, 

vet [(A & B)(D)] = (A &B) vet D. 

For u = xi (Yiai Q Ui E F, b = Cj pjbj @ bj E F, 

(akb)=CijaiBj(ai @bj)G(ni 8bj). 

For (x, y, z, I) ‘_E4, d E F, 
vet Mq[(x 8 y) 8 (z 63 t)(d)1 = C vet &1(x B y) G (t @ z)(d)l. 

For (a, b, d) E F3, 

vet Mq[(a z b)(d)] = [(vet B)s’(vec A)] vet D 
= [vet B’vec A)] vet D. 

Fora E F, 
vet Mq (p(a)) = (I42 + C) vet A. 

For A E M,, 
vecA=Cvec’A. 

73 

another form of (3.4). Apply (3.2) to the matrix of (x 8 y>&z @ t)(d) and remark 

that 

Lb 8 Y> G (z 8 w)l* = [(d, x 8 y)2z @ t1* = (d, x 8 y)2t 8 z; 

then P4 follows. Finally, setting v = a 6$ b in Proposition 3.1, Ps is obtained by 
remarking [see (2.13) and (2.17)] that MG2(a G b) = vet B’(vec A). 

4. APPLICATION TO THE ASYMPTOTIC THEORY OF FACTORIAL ANAL- 
YSES 

4.1. Covariance Operators and Matrices 

The first given result concerns the covariance operators. In the sequel, (a, A, 
P) is a probability space; a Bore1 o-field is associated with each Euclidean space. 
As E is a Euclidean space, each random variable (T.v.) u from (52, A, P) into 
F = a2 (E) is called a random operator. 

Let X : (S2, A, P) + E be a centered r.v. with a P-integrable square norm. 
The random operator X @I X : w E s2 H X(o) @ X(w) E F is P-integrable; its 
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expectation lE(X @ X) is the covariance operator of X and is denoted by cov X. 
With respect to the basis E, the matrix COV X of this operator is the covariance 
matrix of the random vector (also denoted by X) of the components of X with 
respect to the basis E, and we have COV X = lE(X ‘X). For a random operator 
u : S2 H F, cov u denotes the covariance operator when it exists. 

PROPOSITION 4. I. Let u be an F-valued random operator, let U be its matrix, 

and suppose that it admits a covariance operator: Let a be an element of F, with 

matrix A. Then we have 

4 [COV(vec U)]vec A = vet M,[(cov u)(a)], 

which also means Mq2 (cov u) = COV (vet U). 

Prooj 

vet Mq[(cov u)(a)] = vet iQ[IE(u 6Z u)(a)] = IE(vec Mq[(u 65 u)(a)]) 

= lE[(vec U)‘(vec U)vec A] (=Ps) 

= [COV (vet U)]vec A. W 

4.2. Principal Component Analysis 

The asymptotic theory of factorial analyses was first developed under a normal- 
ity assumption (see Anderson [l] for a basic paper), and then with only hypotheses 
of the existence of moments. In the latter case, the asymptotic covariances of the 
sample elements can be given in an explicit form only under elliptical distribution 
assumptions. Depending on the authors’ approaches, the results are obtained and 
presented in either a matrix or an operator language form. The above dictionary 
permits comparison of the two points of view. It will be applied here to two 
classical multivariate methods: principal component analysis (PCA) and canoni- 
cal analysis (CA). Here, the results obtained for the operator-based approach are 
exploited only in finite dimension. 

Let X be a r.v. with values in the q-dimensional Euclidean space E; X is 
supposed to be centered, and its norm admits a fourth order moment. Consider an 
independent identically distributed (i.i.d.) sample (X,)i = I,...,~ of X. 

In the operator-based context (see Dauxois and Pousse [5], Dauxois, Pousse, 
and Romain [6]), the population PCA [respectively the sample PCA] of X is 
obtained by the diagonalization of the covariance operator u = lE(X @J X) [ u, = 

(l/n) x1=1 Xi @ Xi]. Th e centered asymptotic normality of ,/ii(u, - u) in F 
follows from the application of the central limit theorem to the sequence (Xi @3 

Xi)i = l,...,n. 

When X admits an elliptical distribution, the results can be given in an explicit 
form (see Arconte [2]; Pousse [15]). Recall that the distribution of X is elliptical 
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with mean zero and covariance y when its characteristic function is of the form 

@x : t E E I+ h((t, r(t))>, 

where h : IL3 + IR is a specific function with at least two derivatives at the origin. 
The real coefficient K = 4h”(O) - 1 is called the kurtosis of the elliptical distri- 
bution. The centered elliptical family includes the centered normal distributions 
(when K is null) and spherical distributions (y = iy). 

So under the elliptical assumption, we have 

(4.1) 

where q is the asymptotic covariance operator of fi(u, - u) under the normal 
assumption and { is the operator u % v. 

Let Cy= 1 hieii be a Schmidt decomposition of v in F (i.e. the functional 
version of the singular value decomposition of V). Then n may be written 

C lihj~(eij)G~(eij)+ 2xA?eii 5eii 
i-cj i 

(where p is defined as in Section 3. l), or more simply, 

c Aihjeij Gp(eij). 

i. j 

In a matrix-based approach, the population PCA of X (the sample PCA of 
X) is derived by diagonalization of the covariance matrix V (V,). Still under the 
centered elliptical assumption, Tyler [ 171 has shown that 

With this last result, and denoting by U the limit of fi( V, - V) as n increases 
infinitely, we have 

COV(vec V) = (1 + K)(Z~ + C)(V & V) + K(vec V)‘(vec V). 

For all A in M,, we can write 

[COV(vec V)] vet A = (1 + K)(Z~ + C)( V 6 V)vec A 

+K[(vec V)‘(vec V)]vec A. 
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Applying P2, PI, and 4, we have 

K 

( > V@V vecA =vec[(V&V)(A)] =vecMq[(,&u)(a)] 

= veci$ 
c 
A.ihjC?ij 65 f?ij(U) , i, j 1 

and using P6 and P4, 

Cbil.jeij %eij(a> 
i. j 

hiAjf?ij 5Z Co(eij)(a) . 1 
Furthermore, we know from Ps that 

[(vecV)‘(vecV)]vec A = vecMq[(u%u)(a)]. 

SO 

[COV (vet U)] vet A = vet M4 
K 

(I+K)C~i?jeij~~(eij)+KU~V (U) , 
6 j )I 

which is, with 4, the same result as (4.1). 

4.3. Canonical Analysis 

This example is more informative. In fact, the asymptotic studies that can be 
found in the literature, either with a functional or with a matrix method, have not the 
same background (i.e., they are based on the diagonalization of different matrices 
or operators). The operator-based approach is given in Arconte [2] and Pousse 
[IS], and the matrix-based approach may be found in Tyler [ 171. For a general 
presentation of canonical analysis in Hilbert spaces, see Dauxois and Pousse [5]. 

4.3.1. Asymptotic Study of CA. Let X = (Xl, X2) be a r.v. with values in 
the q = q1 + q2 dimensional Euclidean space E = El x E2 (where q1 < q2, for 
instance) and whose norm admits a fourth order moment. The CA of Xi and X2 
is given by the spectral analysis of l-l2 Hi Hz, for example, where Hk, k = 1,2, 
is the orthogonal projector on the subspace generated by the components of Xk. 
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As we know that the CA is invariant under one-to-one bimeasurable mappings, 
the covariance matrix of X may be written 

where Zk is the identity matrix on Ek, and Vke (k # C) is the matrix of the cross 
COvarianCe Operator Vke = IE(Xe @ Xk), 1 5 k, L 5 2. The CA is obtained by 
the spectral analysis of r = vt2 v21 or of equivalent operators. 

A self-adjoint estimator of r based on a n-i.i.d. sample Xi = (Xi, Xi), 
f = 1,2,,.., it, of X is the operator defined by 

r, = (L$)-‘/~ v~2(u~)-1 ugl (u;)-‘/~, 

where v; , vz, vy2, and vzl are the operators whose respective matrices constitute 
the sample covariance matrix 

of the operator (l/n) x1= l IE(X’ @ Xi>. 
Under the Gaussian (the elliptical) assumption, the asymptotic covariance op- 

erator of r, may be found in Arconte [2] (in Pousse [El). Let pi2 be the ith 
canonical coefficient, and ei be an associated canonical factor (i.e. an eigenvector 
of r which is associated with the possibly nonsimple eigenvalue p,‘). 

If K is the X distribution kurtosis, the asymptotic distribution of s,, = fi(r, - 
r) is Gaussian with mean zero and covariance operator given by 

covs=(l+K) ~~ijW(eii)~(p(eij)+~~ieii~eii , 
icj i=l 1 

with 

W = -i(PF + pj”)’ + (pi2 + p,‘)(pfpT + 1) - p?pf 

for each (i, j) E {l, . . . , q1}2, i < j, 

pi = 4pf(l - pf)2, 

and 
eij =f?i @ej, 

as defined in Section 3.1. This expression may be simplified by remarking that, for 
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each i, 2pii = pi; thus 

COVS=(~+K) 2 ~ijeij~(P(eij)=(lfK)(iq:+C) 2 pijf?ij%eij. 

i. i=l i, j=l 

(4.2) 
Under the same hypotheses on X, but without assuming the Xk are standard- 

ized, Tyler [17] presents an asymptotic study of the CA, giving the asymptotic 
behavior of the nonsymmetric matrix T, of the operator tn = (UT)-’ t~~~(u~)-‘u&. 

Setting U,, = ,,h(m - T), where T is the matrix of VT’ ~12 VT’ ~1, the author 
shows that the asymptotic covariance matrix of vet U, is 

COv(vecU)=(l+~) [V~Z&Vl~l’T+V~TZ&V~l(‘Z- ‘T) 

+c(Z&‘(TZ) + TZ&‘Z)], (4.3) 

where Z is defined by Z = Zl - T. 
So the two given results are not directly comparable, but using the dictionary, 

the corresponding version of each case can be given. This is the object of the two 
following sub-subsections. 

4.3.2. Canonical Analysis Based on Self-Adjoint Operators. This 
part is devoted to the corresponding matrix-based version of (4.2). We have 

zql = il = $J eii, r = 2 p?eii, and r2 = 2 pfeii 
i=l i=l i=l 

and, for all (i, j) in {l, . . . , q1}2, 

so 

C pijeij 6% (eij) = -z C pF$eij G eij - t C pff?ij G eij 
i. j ‘3 I 1. j 

-2 P;eij G f?ij + C pFf?ij G eij + C Pfeij 5 E?ij 
‘3 J i, j 

+  C PfP_feij G eij +  pFp;eij &ij . 
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Using P3, it follows that 

c PijeijGeij = -ir&r- ar’&i, - iil&r2+r&il 

i. j 

So, from (2.4), (3.1), and then (2.8), we may write 

C /Lijeij G eij = (ig; + C) ( 
e e e e 2 -~r@r-$r2@i~+r@i~+r@r 

> 
4 .i 

= ( - ir&r - $r2&il +r&il +rC$r2 
> 

(ig; +c). 

Then we get 

Under the previous assumptions for X = (Xl, X2) and with the same notation, 
the CA of X1 and X2 may be obtained from (the diagonalization of) the matrix 
R = V12V21. From a n-kid. sample of X denoted by (X’) = (Xf, Xi)i = I,,,,, n, 
an estimator of R is 

R, = (Vl”l)-“2V;2(V;2)-‘V;I(V;1)-“2, 

where, for all k, e, we have Vk; = (l/n) x1= 1 lE(Xi ‘Xi). Consequently we 
obtain 

PROPOSITION 4.2. Let R, be the sample symmetric matrix involving the CA 

of X1 and X2. When X1 and X2 are standardized and admit a joint elliptical 
distribution, the asymptotic covariance matrix of the Gaussian limit distribution 

of S,, = fi(R, - R) is given by 

COV( vet S) = (1 + K)[i( R& R - R2 6 II> + R & (R - ZI)~]($; + C). 

4.3.3. CanonicalAnalysis Based on Nonsymmetric Matrices. From Tyler’s 
result given in (4.3), we may obtain the corresponding operator-based version. As 
we have seen before, one can replace Vkk = vk, k = 1, 2, by zk without loss of 
generality. The limit of the nonsymmetric matrix is then the symmetric matrix 
T = V12 V21, and we are led to 

cov(vecu)=(i+K) [z~T+(T~)&(Z-T) 
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For all a in F, with matrix A, and by 4, we have 

vet Mq [ (cov u)(u)] 

= [COV( vet V)] vet A 

= (1 +K)[(Z&Z’) vecA 

+ [(TZ) 6 (Z - T)] vecA+C Z&(TZ)+(TZ)$Z ( 1 1 vecA 

= Cl+ K)=[ (Z & T) + (TZ) & (Z - T))(A)] 

+(l +K)Cvec [(Z&Z) + &Z)(A)], 

where the last equality comes from P2. Furthermore, using Pi, 

C vet [(TZ)AZ + ZA(ZT)J = vet (Z ‘A ZT + TZ ‘AZ) 

= vec[((TZ)&Z+Zk(TZ))(‘A)]. 

So applying PI leads to 

vet M,[(cov u>(a)] = vet Mq ( [ (1 + K) z & 1 + (t z> 6 (2 - t) 

+((tz)&z+z&z+]n); 

hence 

and finally, using (2.8), 

cOW=(1+K)[Z&+(tZ)&Z-tf)+C(Z&(tZ)+(tZ)&Z)], 

and we have established 

PROPOSITION 4.3. The CA of two standardized tx’s X1 and X2 with elliptical 
joint distribution may be approximated by the spectral analysis of the non-self- 
adjoint sample operator t,, = (v;)-’ v’fi (I$)-’ v!&. The asymptotic covariance 
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operator cov u of the Gaussian limit distribution of u,, = &(t,, - t) is given by 

5. MATHEMATICAL BACKGROUND 

5. I. Tensor Product of Linear Spaces 

The notion of the tensor product of linear spaces is a fundamental tool in linear 
algebra with many applications throughout mathematics. One of its interests is 
to replace the study of a bilinear map by the study of a linear map. The different 

products previously introduced (such as @, G,, 6, 6, 6) are connected with this 
notion, as we will see in this part, and we start by giving some elementary results 
(see Bourbaki [3] or Guichardet [lo]). 

The proposed definition is limited here to the finite dimensional case, and is a 
direct consequence of the following property: 

PROPOSITION 5. I. Let X and Y be two$nite dimensional linear spaces. There 
exists a pair (X ~3 Y, T), uniquely determined up to an isomorphism, of a linear 
space and a bilinear map T from X x Y into X @I Y satisfying: 

(i) T(X x Y) generates X 63 Y linearly, 

(ii) for each basis (xi)t of X and each basis (yj)j of Y, (T(xi, yj))i, j, is a 
basis of X @ Y. 

The space X @I Y is called tensor product of X and Y; its elements are called 
tensors. Each tensor of the form T(x, y) is said to be decomposable and denoted 

by 
x @ y. 

x. Y 

The uniqueness of the previous result is expressed in this way: if (A, P) is a pair 
consisting of a linear space and a bilinear map satisfying conditions (i) and (ii), 
there exists a unique isomorphism J from X @ Y into A such that P = JT. 
The dimension of X @I Y is clearly the product of the dimensions of X and Y. 
It may be noted that each tensor is, of course, sum of decomposable tensors, but 
this decomposition is not unique (for instance, the null element of X @ Y can be 
0 x@y y for all y in Y, or x x@y 0 for all x in X). 

z. 

The links between the bilinear and linear maps are then given by 

PROPOSITION 5.2. Let B be a bilinear map from X x Y into the linear space 
Then there exists a unique linear map L from X @ Y to Z satisfying 

L(x xay Y) = B(x, Y), (x. y) E x x Y. 
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For Euclidean spaces, X @I Y is also Euclidean with the following property: 

PROPOSITION 5.3. When X and Y are Euclidean spaces, there exists on X @ Y 
a unique inner product satisfying 

( . x _jBy Y, u x@y u) = (x9 U)(Yt u), (x9 a> E x2, (Y, u) E Y2. 

Although many results are valid in more general contexts, the presentation 
from now on is limited to Euclidean linear spaces. 

5.2. Tensor Product of Vectors 

52.1. In Section 2, we considered the product @ defined by 

x @ y : u E x H (u, x)y, (x, y) E x x Y. 

As the map 

is bilinear, then there exists a linear map L 1 (obviously injective) from X @ Y into 
X defined by 

L+,&Y)=x63Y. 

As X @ Y and X have the same finite dimension, L1 is an isomorphism from 
X @ Y onto X. In what follows, L1 is also denoted by Ll,x,y, or Ll,x when X 
and Y are the same space. By (2.3) and Proposition 5.3, for all (x, u) in X2 and 
all (y, u) in Y2, we have 

(qx~yy)Jl(u~yu))2 = (x 8 y,u @ u)2 = (x9 U)(Y, u) 

=x@y,uc3u. ( x, Y x, y ) 
This equality shows that L 1 is an isometric isomorphism from X @ Y onto X. 

With the same notation and hypotheses as in Proposition 5.2, the pair (X, L LF ‘) 
can be identified with (X @ Y, L), up to an isomorphism. The formulation has the 
advantage that Bi, also denoted by 8, is completely explicit, and the following 
diagram summarizes these facts: 
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Z 

5.2.2. In an analogous way, consider X instead of X, Y instead of Y, and 
the bilinear map 

B2 : (a, b) E X x y H a G,b E 02(X, y), 

where 
a$$~:ddX~tr(da*)b~Y. 

Then, an isomorphism L2 from X @ y onto 02(X, y) is defined by 

Lz(a @ b)=a&J, (a, b) E x x y. 
X.Y 

With the notation of Section 5.2.1 we have L2 = L1, X, y. The pair (az(X, Y), 

LL;l) may also be identified with the pair (X @ Y, L) (where L is the linear map 
associated with B). 

5.2.3. The map 

where a 6 b is defined by 

d E 02(X, Z) t-+ bdu* E q(Y, T), 

is bilinear. Thus, it corresponds to the isomorphism L3 from X @ Y onto 

M72(X, Z), az(Y, T)) defined by 

L3(uxyyb) =ukb. 

With the notation of Proposition 5.2, the pair (X @ Y, L) may be identified 
with (az(X, Y), LLT’).. 
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5.2.4. The Bilinear Map 

B4: (A, B) E M,,, x M,,, t-+ A t3 B E o2(M,,,m, Mq,,,) 

leads to the isomorphism L4 from M,,, @M,*, onto CQ(M,,,~, JW,,~) defined 

by 

L4A @ 
( 

B =A&B. 
M n.m3 M,$ P 

> 

5.3. Tensor Product of Operators 

Consider two linear maps a and b, respectively elements of C(X, Y) and 
C(Z, T), where X, Y, Z, and T are finite dimensional spaces. The map 

B5: (x,z)EXxZ++a(x)y@lTb(z)EY@T 

is bilinear. From Proposition 5.2, there exists a unique linear map L5 from X @ Z 
into Y @ T satisfying 

Ls(x Fzz) = a@> FTb(z), (x, Z) E x x z. 

This map is denoted by a y b and is called the tensor product of the linear maps 

a and b (see Bourbaki [3, p. 131). 
If (Xi)i, (yi)j, (zk)k, and (tl)e denote respective bases of X, Y, Z, and T, and 

a(&) = CajiYj and b(zk) = ~bxk 
j e 

it follows that 

this shows that the matrix of a @b is the Kronecker product of the matrix A 
e 

of a and the matrix B of b for the considered bases and for the assumed index 
order convention. 

The product y leads us to consider the bilinear mapping 

Then there exists a unique isomorphism L.5 from L(X, Y) @ Ic(Z, T) onto L(X 60 



TENSOR PRODUCTS AND STATISTICS 85 

Z, Y @ T) satisfying 

@J 
Lc(X, n. L:(Z, T) 

Let (D be an isomorphism from X onto Y, + an isomorphism from Z onto T. 
Then we may observe that q~ @ @ is an isomorphism from X 63 Z onto Y @3 T with 

inverse isomorphism pa-’ y G-l. When X, Y, Z, and T are Euclidean spaces, the 

following diagram obtains: 

*?Y 
xxy ’ *xsY 

and we have 

which shows that &J and @ are defined up to an isometry and justifies the notation 6. 
e 

For each a of X and each b of Y, an isomorphism between a 6 b and a 8 b 
e 

may also be built. Indeed, for all (x, z) in X x Z, we have 

(a hb)(x 63 z) = ah> @b(z) = Ll, Y, T(a(x) y@Tb(z)) 

so 

a E X, b E Y. 
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5.4. Summarizing Diagrams 

Consider the special case where X, Y, Z, and T are the same Euclidean space 
E (this is the usual framework in statistics). The spaces E @ E and F = a2(E) 

are isomorphic by L~,E. Then (E @ E) x (E @3 E) [(E 0 E) @ (E @ E)] 
and F x F [F @ F] are in correspondence by the isomorphism (L 1, E, Ll, E) 

[Ll, E y Ll, El. 

For each (a, b) in F2, the following diagram may be established: 

EXE 

\ @ yF:,i 
E@E 

t 

ayb F 

,// 
L 1.E 

E@E 

This last diagram gives finally the links between the different considered tensor 
products, as shown in Figure 1. 

(E@E)x(E@E) 
E% 

(E@E)@(E@E) 

o,(E @ 8) A-----g 

Fig. I 

6. CONCLUSIONS 

We conclude this paper with some extensions and remarks. 
Two examples of application of the dictionary have been given in Section 4. In 

the same area, we might have presented the PCA for a correlation matrix or opera- 
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tor (see Neudecker and Wesselman [ 131 for the matrix form, and Fine and Romain 
[9] for the functional form). Another example is the comparison of eigenspaces 
for two symmetric matrices or operators related to different populations (see Chen 
and Robinson [4] and Dauxois, Romain, and Viguier [7] for the respective cases). 
In fact for all factorial analyses, such as discriminant or correspondence analy- 
sis, complex PCA, and functional models, the asymptotic results presented in a 
functional context are available (the interested reader may obtain these references 
directly from the authors). 

The applications of the formulary are multipurpose and may be used in an 
environment that is not necessarily asymptotic or that is not necessarily Gaussian 
or elliptical. Moreover, note that other authors use the same tools in a very different 
context (see, for example the recent paper of Wong and Wang [ 181). 

Furthermore, other Kronecker-product-related tools may be considered in a 
functional form. We may particularly think of the Hadamard product, which has 
interesting properties in multivariate statistics (see Styan [ 161 on this topic). This 
will give further developments. 

Finally, we have chosen not to speak about the canonical isomorphism be- 
tween X* @ Y and L(X, Y). So we have avoided the use of the duality bracket 
( , )x*,Y even if the image of an element x x@r y is by definition the element of 

L(X, Y) which maps z of X into (x, z)x:, x > of Y, and so the identification of 
x xpy y, x x@r y, and then x @ y is immediate (see Bourbaki [3] and Pollock [ 141 

for further developments on that subject). 
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