
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
International Journal of Solids and Structures 43 (2006) 5501–5524

www.elsevier.com/locate/ijsolstr
Postcritical imperfection sensitivity of sandwich
or homogenized orthotropic columns soft in shear

and in transverse deformation

Alessandro Beghini a, Zdeněk P. Bažant b,*,
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Abstract

The previous energetic variational analysis of critical loads and of the choice of finite strain measure for structures
very weak in shear, remaining in a state of small strain, is extended to the initial postcritical behavior. For this purpose,
consideration of the transverse deformation is found to be essential. It is shown that imperfection sensitivity of such
structures, particularly laminate-foam sandwich plates, can arise for a certain range of stiffness and geometric param-
eters, depending on the proper value of parameter m of the Doyle–Ericksen finite strain tensor, as determined in the
previous analysis. The bifurcation is symmetric and Koiter�s 2/3-power law is followed. The analytical predictions of
maximum load reductions due to imperfection sensitivity are verified by finite element simulations. The possibility
of interaction between different instability modes, particularly lateral deflection and bulging, is also explored, with
the conclusion that lateral deflection dominates in common practical situations.
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1. Introduction

The problem of critical loads in buckling of columns deflecting with significant shear deformation, such
as sandwich columns, composite columns, lattice columns, helical springs and elastomeric bearings, has
been the subject of extensive polemics for several decades. These discussions revolved around the correct
choice among various stability theories, each associated with a different finite strain measure.

The best examples of the disputed theories are the formulas of Engesser and Haringx (see details in
Bažant, 2003; Bažant and Beghini, 2004, 2005a,b). The polemics were settled in Bažant (1971) by the
demonstration that these two formulas are equivalent if the shear modulus is properly transformed as a
function of the axial stress. In recent papers (Bažant, 2003; Bažant and Beghini, 2004, 2005a), the energetic
variational analysis from Bažant (1971) and Bažant and Cedolin (1991) was extended to light-core sand-
wich beams buckling in the range of linear material behavior. It was found that a constant tangent (or
incremental) shear modulus (as measured, for example, in small-strain torsional tests of a circular tube)
can be used only in the Engesser-type theory (associated to the Green�s Lagrangian strain, corresponding
to the Doyle–Ericksen finite-strain tensor with parameter m = 2), and that the Haringx-type theory (asso-
ciated to the Almansi�s Lagrangian strain, corresponding to the Doyle–Ericksen finite-strain tensor with
parameter m = �2) is usable only if the shear modulus of the core is considered to be a certain linear func-
tion of the axial stress in the skins.

The analysis was later extended (Bažant and Beghini, 2005b) to general homogenized orthotropic
structures very soft in shear, including layered structures such as elastomeric bearings, which are loaded
tranversely to the direction of stiffening plates, and structures loaded in both directions of orthotropy.
On one side, the analysis confirmed the applicability of Haringx theory for elastomeric rubber bearings.
On the other, it showed that for homogenized biaxially stressed structures the incremental or critical load
analysis can utilize a constant small-strain shear modulus if, and only if, one adopts a formulation associ-
ated with a general Doyle–Ericksen finite-strain tensor of stress-dependent parameter m.

The analysis of the correct stability theory to be applied for the critical load of structures conducted in
these previous papers has been essential to clarify the instability characteristics of several different types of
structures. However, it is now crucial to understand whether the critical load will actually be reached by the
structure or if there is imperfection sensitivity, which could cause the column to reach a maximum load
lower than the critical load.

Therefore, the objective of this paper is to extend the energetic variational analysis conducted in Bažant
(2003), Bažant and Beghini (2004, 2005a,b) to the initial postbuckling behavior of homogenized columns
accounting for the effect of shear and transverse deformation, explore the consequences for common geom-
etries and material properties, and compare the analytical results to finite element simulations conducted
using the commercial software ABAQUS.

Some aspects of the problem addressed in this paper were presented in 1992 by Waas in the context of
laminated columns. Here, a similar approach to the one described in Waas (1990, 1992) in the spirit of
Koiter (1945) is adopted. Other interesting contributions to the problem for laminated composite beams
are presented in the work of Stein (1985, 1989) and Stein and Jegley (1987). Recently, the problem was
addressed by Huang and Kardomateas (2000) with reference to sandwich columns.
2. Background on buckling of structures weak in shear

The energetic variational analysis conducted in previous papers (Bažant, 2003; Bažant and Beghini,
2004, 2005a,b) for structures very weak in shear lead to the conclusion that the differences between various
stability theories for buckling with shear arise from different choices of the associated finite strain measure.
The different measures used in the literature can be represented by using the Doyle–Ericksen finite strain



A. Beghini et al. / International Journal of Solids and Structures 43 (2006) 5501–5524 5503
tensors �(m) = (Um � I)/m where m = real parameter, I = unit tensor, and U = right-stretch tensor. In par-
ticular, m = 2 gives Green�s Lagrangian strain tensor, and m = �2 Almansi�s Lagrangian strain tensor.

The stability criteria obtained from any of these strain measures have been shown in Bažant (1971) and
Bažant and Cedolin (1991) to be mutually equivalent if the tangent moduli CðmÞijkl associated with different m-
values satisfy the relation:
CðmÞijkl ¼ Cð2Þijkl þ
2� m

4
ðSikdjl þ Sjkdil þ Sildjk þ SjldikÞ ð1Þ
where the subscript indeces i, j,k, l = 1,2,3 refer to the components of the tensor in a Cartesian coordinate
system, Cð2Þijkl are the components of tangent moduli tensor C(m) associated with Green�s Lagrangian strain
(m = 2) and Sij are the components of the current stress tensor S (Cauchy stress). It is of particular interest
for later use in this paper to note the expression of the shear modulus C1313:
CðmÞ1313 ¼ Cð2Þ1313 þ
2� m

4
ðS11 þ S33Þ ð2Þ
By applying this general framework to the problem of buckling of structures weak in shear and analyzing
the experimental data available in the literature, it was shown in Bažant (2003), Bažant and Beghini (2004,
2005a,b) that:

• The stability theory based on Green�s Lagrangian strain (m = 2) is associated with Engesser�s formula
while Almansi�s Lagrangian strain (m = �2) is associated with Haringx�s formula.

• The two formulas are related according to Eq. (2), i.e., one follows from the other.
• Engesser�s formula can be used (with constant C1313) for structures reinforced in the direction of the

applied load (e.g., sandwich structures) while Haringx�s can be used for structures reinforced transversely
to the load direction (e.g., elastomeric rubber bearings).

• Commercial finite element software, which is based on an updated Lagrangian formulation, can cor-
rectly capture the Engesser load if the shear modulus is kept constant. The Haringx load (or any other
load associated with a certain value of the parameter m) of homogenized structures is obtained if, at each
step of the computation, the shear modulus of the core is properly updated according to the current axial
stress in the skins, or if the finite element program is generalized to a variational principle corresponding
to the correct value of parameter m.

In relation to these previous studies, a further step is now taken to investigate the imperfection sensitivity
by extending the analysis to the initial postcritical behavior of the structure.
3. Variational analysis of the initial postcritical behavior of homogenized orthotropic columns

Let us consider a homogenized orthotropic column of length L under the assumptions of plane cross
section and inextensibility of the centroidal line (see Fig. 1). The overall thickness of the column is h,
and the width b = 1. In line with the assumptions in Waas (1990, 1992), rigorously justified in Stoker
(1968) and Novozhilov (1953), the kinematic model used to describe the column in large deformation is
given by
UðX ; ZÞ ¼ U 0ðX Þ � Z
dW0

dX
; W ðX ; ZÞ ¼ W 0ðX Þ þ Z

dU 0

dX
ð3Þ
where X and Z are Lagrangian coordinates (see Fig. 1a), U(X,Z), W(X,Z) are the displacement of a point
in X and Z direction, respectively, U0(X) and W0(X) are the displacements of the centroidal line in



Fig. 1. (a) Column in the initial state; (b) displacement field after buckling; (c) shear deformation in the cross section.
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directions X and Z, respectively (see Fig. 1b), and dW0/dX is the rotation of the cross section (see Fig. 1c).
Consequently, the shear angle C is given by dW0/dX � dW0/dX, and the inextensibility condition for the
centroidal line of the beam can be written as
dU 0

dX
þ 1

� �2

þ dW 0

dX

� �2

� 1 ¼ 0 ð4Þ
The kinematic model in Eq. (3) is very similar to that considered in traditional small-strain beam theory,
the only difference being the term ZdU0/dX in the expression for W(X,Z). This is related to the deforma-
tion in transverse direction Z, typically neglected in small-strain analysis but important for the postcritical
behavior of the structure.

Let us now consider the Green�s Lagrangian strain, which corresponds to the Doyle–Ericksen finite
strain tensor of order m = 2 and whose component form reads:
�
ð2Þ
ij ¼

1

2

oU i

oX j
þ oUj

oX i
þ oU k

oX i

oUk

oX j

� �
ð5Þ
Here, summation over the repeated index k is implied and U1 = U0, U2 = W0, X1 = X, X2 = Z. If the
kinematic model in Eq. (3) is substituted in Eq. (5) and the inextensibility condition (4) is considered,
the expression for the strain becomes as follows:
�
ð2Þ
XX ¼ �Z

WXX þ W 2
X ðW XX �WXX Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� W 2

X

q
2
64

3
75þ Z2

2

WXX þ W 2
X ðW 2

XX �W2
XX Þ

1� W 2
X

� �

�
ð2Þ
ZZ ¼

1

2
W2

X � W 2
X

� �
�
ð2Þ
XZ ¼

1

2
ðW X �WX Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� W 2

X

q
þ Z

4

d

dX
ðW2

X � W 2
X Þ

ð6Þ
In the above expressions and in what follows, the subscript 0 referring to the centroidal line is dropped for
convenience and the notations df/dX = fX, d2f/dX2 = fXX, etc. are introduced for any function f. Note that,
if the cross section stays perpendicular to the centroidal line (i.e., WX = WX), Eq. (6) reduces to the classical
Euler–Bernoulli formulation since �ð2ÞZZ ¼ 0 and �

ð2Þ
XZ ¼ 0.

The elastic constitutive model for the two-dimensional problem of buckling and postbuckling can now
be written using the second Piola–Kirchhoff stress Rð2Þij (energetically conjugate to the Green�s Lagrangian
strain) and neglecting the Poisson effect as suggested in Waas (1992) (and references therein):
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Rð2ÞXX ¼ Eð2ÞXX �
ð2Þ
XX Rð2ÞZZ ¼ Eð2ÞZZ �

ð2Þ
ZZ Rð2ÞXZ ¼ Gð2ÞXZ �

ð2Þ
XZ ð7Þ
where Eð2ÞXX ; Eð2ÞZZ ; Gð2ÞXZ are, respectively, the longitudinal, transverse and shear stiffness of the homogenized
column considered with respect to the Green�s Lagrangian strain measure.

Coherently with the conclusions in Bažant (2003), Bažant and Beghini (2004, 2005a,b), which are sum-
marized in the previous paragraph, the expression for the potential energy corresponding to a general value
of the parameter m in the Doyle–Ericksen formula can be written considering the Green�s Lagrangian strain
(5) and using Eq. (2) for the shear modulus;
P ¼ 1

2

Z L

0

Z
A

CðmÞ1111ð�
ðmÞ
XX Þ

2 þ CðmÞ3333ð�
ðmÞ
ZZ Þ

2 þ 2CðmÞ1313ð�
ðmÞ
XZ Þ

2
h i

dAdX þ P
Z L

0

dU 0

dX
dX

¼ 1

2

Z L

0

Z
A

Eð2ÞXX ð�
ð2Þ
XX Þ

2 þ Eð2ÞZZ ð�
ð2Þ
ZZ Þ

2 þ 2 Gð2ÞXZ þ
2� m

4
S11

� �
ð�ð2ÞXZ Þ

2

	 

dAdX þ P

Z L

0

dU 0

dX
dX ð8Þ
where it is assumed that CðmÞ1111 ¼ EðmÞXX ¼ Cð2Þ1111 þ ð2� mÞS11 � Eð2ÞXX because usually Cð2Þ1111 � S11, while

CðmÞ3333 ¼ EðmÞZZ ¼ Cð2Þ3333 þ ð2� mÞS33 � Eð2ÞZZ and CðmÞ1313 ¼ GðmÞXZ ¼ Cð2Þ1313 þ 2�m
4
ðS11 þ S33Þ � Gð2ÞXZ þ 2�m

4
S11 because

Cð2Þ3333 � S33 and Cð2Þ1313 � S33 for the problem of column buckling under consideration.

Eq. (6) can now be substituted in expression (8) for the potential energy;
P ¼ EXX I
2

Z L

0

W2
XX 1� W 2

X

� �
þ 2WXX W XX W 2

X

� �
dX þ EZZh

8

Z L

0

W2
X � W 2

X

� �2
dX

þ jGðmÞXZ I
2

Z L

0

W X W XX �WX WXXð Þ2dX þ jGðmÞXZ h
2

Z L

0

W X �WXð Þ2 1� W 2
X

� �
dX

� P
2

Z L

0

W 2
X þ

1

4
W 4

X

� �
dX ð9Þ
In the foregoing expression, j is related to the reduced cross section (j = 5/6 for rectangular cross section),

the series expansion for the square root is introduced for Eq. (4) as dU 0=dX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� W 2

X

q
�

1 � � 1
2
½W 2

X þ W 4
X=4�, the notation

R h=2

�h=2
Z2 dZ ¼ I is considered for the inertia of the cross section, and

superscript (2) is dropped from the stiffness moduli for convenience. In Eq. (9) only terms up to the
fourth-order are included and some of these fourth-order terms are neglected because of no influence on
the results.

The following dimensionless variables are now introduced:
x ¼ X
L
; w ¼ W

L
; w ¼ W

L
; b ¼ L2EZZh

4EXX I
; dðmÞ ¼ jL2GðmÞXZ h

EXX I
;

g ¼ L
h
; cðmÞ ¼ jGðmÞXZ

EXX
; r ¼ PL2

4EXX I
; P� ¼ 2PL

EXX I
Note that
dW
dX
¼ dw

dx
;

d2W

dX 2
¼ 1

L
d2w
dx2

;
dW
dX
¼ dw

dx
;

d2W

dX 2
¼ 1

L
d2w
dx2

;

dðmÞ ¼ dð2Þ þ ð2� mÞr; cðmÞ ¼ cð2Þ þ 2� m
12

r
g2
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Therefore, Eq. (9) becomes:
P� ¼
Z 1

0

w2
xx 1� w2

x

� �
þ 2wxxwxxw2

x

� �
dxþ b

Z 1

0

w2
x � w2

x

� �2
dx

þ cðmÞ
Z 1

0

wxwxx � wxwxxð Þ2dxþ dðmÞ
Z 1

0

wx � wxð Þ2 1� w2
x

� �
dx� 4r

Z 1

0

w2
x þ

1

4
w4

x

� �
dx ð10Þ
The governing equations of the problem of buckling and initial postbuckling are now obtained by imposing
the condition that the first variation of the potential energy is zero for any kinematically admissible vari-
ation dw and dw (Trefftz condition, Bažant and Cedolin, 1991):
dP� ¼
Z 1

0

F ðw;wÞdwþ Hðw;wÞdw½ �dxþ boundary conditions ¼ 0 ð11Þ
Because this must be satisfied for any variations dw and dw, we obtain two coupled equations describing the
problem:
F ðw;wÞ ¼ 2ðw2
xxwxÞx þ 2ðwxxw

2
xÞxx � 4ðwxwxxwxxÞx � 4b½wxðw2

x � w2
xÞ�x

� 2dðmÞ �wxðwx � wxÞ
2 þ ð1� w2

xÞðwx � wxÞ
h i

x
þ 2cðmÞ½wxðwxwxx � wxwxxÞ�xx

þ 2cðmÞðwxwxxwxx � wxw2
xxÞx þ 4rð2wx þ w3

xÞx ¼ 0 ð12Þ
Hðw;wÞ ¼ 2½wxxð1� w2

xÞ�xx þ 2ðw2
xwxxÞxx � 4b½wxðw2

x � w2
xÞ�x þ 2dðmÞ½ðwx � wxÞð1� w2

xÞ�x
þ 2cðmÞðw2

xwxx � wxwxxwxÞxx � 2cðmÞðwxw
2
xx � wxwxxwxxÞx ¼ 0 ð13Þ
Eqs. (12) and (13) must be solved considering the proper boundary conditions for the unknown functions w

and w. These equations involve only linear terms and third-order terms, due to the fact that only terms up
to the fourth-order have been considered in Eq. (10). If the equations are truncated after the linear terms,
we obtain Eqs. (22), (23) in Bažant (2003), which were used to compute the critical load for a general m.
Therefore, the higher order terms included here are specifically related to the initial postcritical behavior
of the structure.

Note that the trivial solution w(x) = 0 and w(x) = 0 satisfies Eqs. (12) and (13) for any value of the load
r. However, we are interested in the non-trivial solution (i.e., the eigenfunctions) corresponding to the
buckling load of the structure rcr. Let us now perturb the governing equations near this non-trivial buckling
solution according to the general approach introduced by Koiter (1945):
r ¼
X1
n¼0

�nrn ¼ r0 þ �r1 þ �2r2 þ � � �

wðxÞ ¼
X1
n¼1

�nwn ¼ �w1ðxÞ þ �2w2ðxÞ þ � � �

wðxÞ ¼
X1
n¼1

�nwn ¼ �w1ðxÞ þ �2w2ðxÞ þ � � �

ð14Þ
where r0 = rcr is the first critical load of the structure, and � is a perturbation parameter such that �n ampli-
fies the buckling mode (wn,wn) corresponding to the load rn (n = 1,2,3, . . .). If expressions (14) are substi-
tuted in Eqs. (12) and (13) and the terms are conveniently grouped, we obtain:
1

2
F ðw;wÞ ¼

X1
n¼1

½L1ðwn;wnÞ � Rn��n ¼ 0

1

2
Hðw;wÞ ¼

X1
n¼1

½L2ðwn;wnÞ � Qn��n ¼ 0

ð15Þ
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where
L1ðwn;wnÞ ¼ ð4rcr � dðmÞ0 Þwnxx þ dðmÞ0 wnxx

L2ðwn;wnÞ ¼ dðmÞ0 wnxx þ wnxxxx
� dðmÞ0 wnxx

n ¼ 1; 2; 3; . . .

dðmÞ0 ¼ dð2Þ þ ð2� mÞrcr
and
R1 ¼ 0 Q1 ¼ 0

R2 ¼ �4r1w1xx þ r1ð2� mÞðw1xx � w1xx
Þ

Q2 ¼ �r1ð2� mÞðw1xx � w1xx
Þ

R3 ¼ �ðw2
1xx

w1xÞx � ðw1xx
w2

1x
Þxx þ 2ðw1x w1xxw1xx

Þx þ 2b½w1xðw2
1x
� w2

1x
Þ�x

þ dðmÞ0 �2w3
1x
þ ð3w1x � w1x

Þw1xw1x

� �
x
� cðmÞ0 ½w1xðw1x w1xx � w1x

w1xx
Þ�xx

� cðmÞ0 ðw1x
w1xx

w1xx � w1x w
2
1xx
Þx � 2rcrðw3

1x
Þx � 4r1w2xx

� 4r2w1xx þ r2ð2� mÞðw1xx � w1xx
Þ þ r1ð2� mÞðw2xx � w2xx

Þ
Q3 ¼ ðw1xx

w2
1x
Þxx � ðw2

1x
w1xxÞxx þ 2b½w1x

ðw2
1x
� w2

1x
Þ�x � dðmÞ0 ½�w2

1x
ðw1x � w1x

Þ�x
� cðmÞ0 ðw

2
1x
w1xx
� w1x w1xxw1x

Þxx þ cðmÞ0 ðw1x
w2

1xx
� w1x w1xxw1xx

Þx
� r2ð2� mÞðw1xx � w1xx

Þ

In the foregoing expressions cðmÞ0 ¼ cð2Þ þ ð2� mÞrcr and wnx ¼ dwn=dx;wnxx ¼ d2wn=dx2, etc. The coupled
set of equations in Eq. (15) for each power n = 1,2,3, . . . of the perturbation parameter � can be simplified
by eliminating one of the two functions. In particular, if we eliminate w, we obtain:
L3ðwnÞ ¼ dðRn þ QnÞ � Rnxx ð16Þ

where
L3ðwnÞ ¼ ðdðmÞ � 4rcrÞwnxxxx þ 4rcrd
ðmÞwnxx ð17Þ
Eq. (16) must be solved for the proper boundary conditions on function wn. The solutions of (16) for
increasing values of the power n are associated with different aspects of the buckling and postbuckling
of the column. In particular, for n = 1 we obtain the buckling characteristics of the structure, n = 2 does
not give any contribution and n = 3 describes the initial postbuckling.
4. Solution of the governing equation for various boundary conditions

4.1. Buckling load (n = 1)

For the case n = 1, Eq. (16) reduces to the problem of buckling of structures weak in shear analyzed in
Bažant (2003), Bažant and Beghini (2004, 2005a,b). The general solution of the governing equations (15)
associated with the first power of � reads:
w1ðxÞ ¼ A sin xþ B cos xþ Cxþ D

w1ðxÞ ¼ Â sin xþ B̂ cos xþ Ĉxþ D̂
ð18Þ
To relate the constants in Eq. (18), we define the parameter:
sðmÞ ¼ dð2Þ � ð2þ mÞrðmÞcr

dð2Þ þ ð2� mÞrðmÞcr

ð19Þ



Table 1
Eigenfunctions for different boundary conditions

Name Conditions w1(x)/q a q

Pinned–pinned w(0) = w(1) = 0 sin px 1 �

wxx(0) = wxx(1) = 0

Clamped–clamped w(0) = w(1) = 0 1 � cos 2px 0.5 �/2
wx(0) = wx(1) = 0

Clamped–free w(0) = 0, swx(1) = wx(1) 1� cos
px
2

2 �

wx(0) = wxx(1) = 0

Sliding–clamped w(1) = 0, swx(0) = wx(0) 1 + cos px 1 �/2
wx(0) = wx(1) = 0

Sliding–pinned w(1) = 0, swx(0) = wx(0) cos
px
2

2 �

wx(0) = wxx(1) = 0
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Then we can write Â ¼ sðmÞA and B̂ ¼ sðmÞB, because w1xx
¼ sðmÞw1xx from Eq. (15) for n = 1. Note that

expression (19) is equivalent to Eq. (26) in Bažant (2003). For all the boundary conditions in Table 1, it
can be also shown that w1x

¼ sðmÞw1x . Exploiting this result and observing that w1xxxx ¼ �p2w1xx where
p = p2/a2, with aL = effective length of the column (see Table 1), we obtain the following expression for
the critical load from L3(w1) = 0:
p2 ¼ 4rcrd
ðmÞ

dðmÞ � 4rcr

ð20Þ
Rearranging the terms
ð2� mÞr2
cr þ rcr½dð2Þ þ rEðmþ 2Þ� � dð2ÞrE ¼ 0 ð21Þ
where rE = PEL2/(4EI) = p2/4 is the Euler load of the column. The solution of Eq. (21) gives us the critical
load of the column as
rðmÞcr ¼
dð2Þ þ rEðmþ 2Þ

2ð2� mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4dð2ÞrEð2� mÞ
½dð2Þ þ rEð2þ mÞ�2

s
� 1

( )
ðm 6¼ 2Þ ð22Þ

rð2Þcr ¼
dð2ÞrE

dð2Þ þ 4rE

ðm ¼ 2Þ ð23Þ
The above expressions coincide with Eqs. (5) and (6) in Bažant and Beghini (2005b) independently of the
boundary conditions considered. Therefore, the results obtained in the previous papers (Bažant, 2003;
Bažant and Beghini, 2004, 2005a,b) with neglect of the transverse stiffness are still perfectly valid since
the transverse stiffness affects only terms of order higher than the second. On the other hand, it plays a
fundamental role in the initial postcritical behavior of the structure as shown in what follows.

4.2. Zero contribution (n = 2)

The set of equations associated with the second power of the perturbation parameter makes no contri-
bution to the load–deflection solution for any boundary condition. This can be proven by writing Eq. (16)
for n = 2 as
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ðdðmÞ � 4rcrÞw2xxxx þ 4rcrd
ðmÞw2xx ¼ r1½�4dðmÞw1xx þ 4w1xxxx þ ðm� 2Þðw1xxxx � w1xxxx

Þ� ð24Þ
This equation is solved by superposing the solution of the homogeneous equation L3(w2) = 0, which implies
w2 = w1, and a particular integral w2p obtained by considering the right-hand side of (24). This is a com-
bination of trigonometric functions because of the general solution given by Eq. (18) for w1 and w1. There-
fore, the particular solution w2p is chosen to be a combination of trigonometric functions similar to w1.
Consequently, the left-hand side is zero since L3(w1) = 0 and the only possibility for the right hand side
to be zero is that r1 = 0. This verifies that the second power of the perturbation parameter does not con-
tribute to the load–displacement curve of a column for any boundary condition.

4.3. Initial postcritical behavior (n = 3)

The solution of the coupled equations (15) associated with n = 3 describes the initial postcritical behav-
ior of the structure considered. As a reference case for later comparisons, consider first the simpler problem
of initial postbuckling of Euler–Bernoulli columns, when the cross section is considered rigid and the shear
deformation is negligible, i.e., w(x) = w(x), s(m) = 1, and d!1. In this case the potential energy can be
simply written as (Bažant and Cedolin, 1991):
P� ¼
Z 1

0

w2
xx dx� 4r

Z 1

0

w2
x �

1

12
w4

x

� �
dx ð25Þ
The initial postcritical behavior is obtained by assuming function w(x) in the above expression to be equal
to the first eigenfunction of the buckling problem. Substituting in Eq. (25) the expression of w1 reported in
Table 1 for various boundary conditions, and imposing the condition of vanishing first variation of P* with
respect to the amplification parameter q, we obtain:
r
rcr

¼ 1þ ðpqÞ2

8
ð26Þ
It is interesting to note that this simple formula describes the initial postcritical behavior of Euler–Bernoulli
columns for all the boundary conditions in Table 1. The effect of each boundary condition is given, in this
formula, by the parameter p = p/a, and the amplification parameter q must be properly scaled according to
�, as indicated in Table 1. This is necessary because the perturbation parameter � is assumed to amplify the
maximum displacement along the beam axis.

Let us now go back to the initial postcritical behavior of homogenized structures including shear and
transverse deformability, and solve the third-order terms of Eq. (15). The expression obtained for the
right hand side of Eq. (16) is slightly complicated, in particular for the case of general m. Therefore,
a computer program using symbolic software has been used to carry out the calculations. In general,
the right hand side for the different boundary conditions can be expressed as a sum of orthogonal
functions:
L3ðw3Þ ¼ dðR3 þ Q3Þ � R3xx ¼ T 1 cos pxþ T 2 cos 2px ð27Þ
To satisfy this equation, we need to suppress the term T1, which will give the expression for r2, while the
term T2 is related to the coefficients in the expression for w3. For m = 2, the resulting expression for r2

(valid for sandwich columns, lattice columns, etc.) is given by
r2 ¼
p4q2

32ðp2 þ dÞ4
½d4 � 5d3p2 þ d2ð16p4cþ 48p2b� 13p4Þ þ dð16p6cþ 48p4b� 7p6Þ þ 4p8cþ 12p6b�

ð28Þ
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where, for the sake of brevity, the superscript (2) has been dropped. This expression is valid for any bound-
ary condition indicated in Table 1. The user needs only to define the proper value of the parameters accord-
ing to the given materials, geometry and boundary conditions. It is noted immediately that for d!1:
r2

rcr

! ðpqÞ2

8
ð29Þ
This agrees with Eq. (26) and thus confirms the validity of Eq. (28).
Eq. (28) can be extended to the case of general m as follows:
r2 ¼ K1r
4
0 þ K2r

3
0 þ K3r

2
0 þ K4r0 þ K5

� �
=K6 ð30Þ
where
K1 ¼ �4p4m2 � 9

2
p2gm3 þ 180p2gþ 63p2gm2 � 198p2gmþ 8mp4

K2 ¼ 144mbp2gþ 9

2
m2p4gþ 2mp6 � m2p6 þ 3

2
m3p4gþ 138p4g� 8p4dþ 27

2
p2gm2d

þ 48p4mcg� 126p2gmd� 84mp4gþ 198p2gdþ 4p4dm

K3 ¼ �9p4gmdþ 84p4gdþ 12p6g� 144bp2gd� 3

2
m2p6gþ mp6d

� 2p6dþ 63p2gd2 þ 36p4bgm� 48p4cgdþ 3mp6g� 27

2
p2gmd2 þ 12mp6cg� 9

2
m2p4gd

K4 ¼ �12p6cgd� 36p4bgdþ 3mp6gdþ 9

2
p4gd2 þ 9

2
p2gd3 � 3p6gdþ 9

2
mp4gd2

K5 ¼ �
3

2
p6gd2 � 3

2
p4gd3

K6 ¼ 12gðr0m� 2r0 � dÞðr2
0m2 � 4mr2

0 � 2r0mdþ 4r2
0 þ 4dr0 þ d2 þ p2dÞ
Eq. (30) is valid again for any boundary condition in Table 1, each characterized by a certain value of
parameter p. The generality of this expression makes it a useful tool to verify numerical solutions by finite
elements or similar methods.
5. Parametric study and identification of imperfection sensitive cases

Several combinations of parameters in Eqs. (28) and (30) are considered to investigate the imperfection
sensitivity of a homogenized orthotropic column; this sensitivity being characterized by a negative value for
the expression of r2. The results of the parametric study are shown in Figs. 2–5 in terms of the dimension-
less variables GXZ/EXX, EZZ/EXX and r2/r0.

For p = 2p (clamped–clamped columns), L/h = 5 and m = 2 (sandwich and lattice columns, etc.), Fig. 2
shows that the structure exhibits imperfection sensitivity for a wide range of values of GXZ/EXX and
EZZ/EXX (see the white region in the figure). This sensitivity disappears quickly for more slender structures,
as Fig. 3 documents for the case of L/h = 10 and m = 2. For the short column shown in Fig. 2, several load–
deflection curves corresponding to different values of EZZ/EXX are depicted in Fig. 6 (note that this column
has no initial imperfection).

If the parameter m is changed to m = 1 (Biot�s strain measure), the imperfection sensitivity appears again
for short columns (see Fig. 4). For m = �2 (Almansi�s Lagrangian strain, valid for helical springs, elasto-
meric rubber bearings, etc.), there is no imperfection sensitivity, as Fig. 5 shows.



Fig. 2. Imperfection sensitivity for a short column clamped at both ends and m = 2.
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For p = p (pinned–pinned or sliding–clamped column), L/h = 5 and m = 2, the region of parameters giv-
ing imperfection sensitivity is very small and it includes only transverse and shear stiffness values very close
to zero. For more slender columns (i.e., higher L/h) or different values of the parameter m, the imperfection
sensitivity disappears completely.

For p = p/2 (clamped–free column), there is no sign of imperfection sensitivity for any combination of
parameters considered.
6. Effect of imperfections on column maximum load

So far, the analysis dealt with perfect columns. However, to understand the effect of imperfection sen-
sitivity on the maximum load a column can carry, initial imperfections must be considered. As indicated
in Waas (1992) (and references therein), this can be simply done by replacing expansion (14) for r with:



Fig. 4. Imperfection sensitivity for a short column clamped at both ends and m = 1.

Fig. 3. Imperfection sensitivity for a slender column clamped at both ends and m = 2.
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r�� ¼ ðr0 � rÞ�þ �2r1 þ �3r2 þ � � � ð31Þ

where r1 = 0, as proven earlier, and �� is the level of imperfection in the column measured with respect to its
buckling mode . Therefore, the load deflection relation becomes:
r
r0

¼ �

�þ ��
þ r2

r0

�3

�þ ��
ð32Þ
In the case of r2 < 0 (i.e., an imperfection sensitive structure), this equation gives a maximum load (for
small ��) at:
�max ¼ � r0

r2

��

2

� �1=3

ð33Þ
Substituting this into Eq. (32), and using the series expansion:
�max

�max þ ��
¼ 1þ ��

�max

� ��1

¼ 1� ��

�max

þ � � � ð34Þ



Fig. 5. Imperfection sensitivity for a short column clamped at both ends and m = �2.

Fig. 6. Postcritical behavior for a short column clamped at both ends and m = 2.
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we finally obtain:
rmax

r0

¼ 1� 3 � r2

4r0

� �1=3

ð��Þ2=3 ð35Þ
This expression agrees with Koiter�s 2/3-power law.
The effect of the imperfection �� on the maximum load of a column is depicted in Fig. 7. The column

is considered to be characterized by m = 2, L/h = 5, EZZ/EXX = 0.045 and GXZ/EXX = 0.16. These prop-
erties correspond to the ratio r2/r0 = �6.1504, as calculated from Eq. (28). The lines in Fig. 7 are the
plots of Eq. (32) for different values of ��, while the circles represent the peaks predicted from the
asymptotic solution in Eqs. (33) and (35). It is seen that the discrepancy between the maximum load
obtained by the two approaches tends to zero for ��! 0. For increasing values of �� the accuracy of
Eq. (35) decreases. However, for an imperfection of 2% the error is only about 4%, which is normally
acceptable.



Fig. 7. Reduction in maximum load caused by imperfection sensitivity for r2/r0 = �6.1504 and various values for the initial
imperfection ��.
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7. Comparison with finite element simulations

Finite element computations corresponding to the case of L/h = 5, EZZ/EXX = 0.045, GXZ/EXX = 0.16
with EXX = 5.088 GPa were carried out using the commercial software package ABAQUS. The homoge-
nized column strip was modelled as a linear elastic orthotropic medium, obeying the constitutive relations
given in Eq. (7). CPS8 plane stress elements and a sufficiently fine mesh with 2000 elements were used. One
case with a finer mesh of 8000 elements was computed and found to yield no change in the predicted buck-
ling loads. Thus the mesh with 2000 elements was adopted for all the finite element computations. The
length of the column was assumed to be 60 mm and the thickness 12 mm (giving an aspect ratio of 5), with
a width (in the y-direction) of 1 mm. Clamped–clamped end conditions were assumed. A linear elastic
eigenvalue analysis was conducted to obtain the buckling load Pcr, giving Pcr = 4600 N. This value is
4% higher than that predicted by the Engesser formula (see Eq. (4) in Bažant and Beghini, 2005a), which
is 4409 N, and 13% lower than the load predicted by the Haringx formula (see Eq. (5) in Bažant and
Beghini, 2005a). This confirms once more that a commercial finite element software gives predictions closer
to the Engesser formula if the shear modulus is kept constant as discussed in detail in Bažant and Beghini
(2004, 2005a,b).

To assess imperfection sensitivity, the initial strip geometry was perturbed by the buckling mode shape,
which is shown in Fig. 8. The maximum amplitude of the initial geometric imperfection was set at 1% of the
Fig. 8. Buckling mode shape for a clamped–clamped column.
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column length L. The right edge of the column was subjected to a known ramp displacement. Because of
the possibility of an unstable equilibrium path, the arc length method (Riks, 1972) was used to perform the
nonlinear geometric analysis.

Initially, the column response is, as expected, linear (in a plot of P versus the load point displacement or
of P versus the deflection of point V in the Z-direction, marked in the buckled mode shape; Fig. 8). With
continued loading, as the column approaches the buckling load, the load goes through a maximum, but
begins to unload immediately thereafter along an unstable equilibrium path. The maximum load obtained
is 94% of the critical load, as indicated in Fig. 9. This may be compared to Koiter�s 2/3-power law, Eq. (35),
which gives rmax/r0 = 84% for r2/r0 = �6.1504.

The finite element prediction for the reduction in maximum load capacity is 10% higher than the
prediction of Eq. (35). This is probably due to two main factors. First, the two models are derived
from different theories; Eq. (35) stems from a one-dimensional homogenized beam theory
approximation, while the elastic finite element analysis is two-dimensional. Second, several approxima-
tions have been used to derive Eq. (35); if we compute, for example, the load capacity numerically
from Eq. (32) rather than using its asymptotic form Eq. (35), we obtain rmax/r0 = 85.5%. This value
is closer to the finite element predictions by 1.5%. Similarly, if we include additional terms in the po-
tential energy (9) or in the expansion (14), we progressively reach the finite element solution. However,
the additional analytical burden becomes unbearable and numerical solution becomes the only viable
way.

A series of deformed mode shapes corresponding to different points on the response curve (Fig. 10) are
shown in Fig. 11 (see Table 2 for location data). Notice that along the unloading path, a secondary insta-
bility (�pinching� due to high compression on the lower surface of the column) has occurred at state D, and
beyond that state calculations indicate material interpenetration (states E and F), which is impossible. At
that stage the finite element results are, of course, unreliable.

To investigate the influence of ratio EZZ/EXX on the imperfection sensitivity, two other simulations have
been carried out for the same aspect ratio L/h = 5 with EZZ/EXX = 0.2 and EZZ/EXX = 1.0. As predicted by
the analytical results presented earlier, the imperfection sensitivity disappears, as indicated in Fig. 9.

To gain insight into imperfection sensitivity, evolution of the contours of normal stress S33 and shear
stress S13 as a function of load are presented in Figs. 12 and 13 for the case of L/h = 5 and
EZZ/EXX = 0.045, which is imperfection sensitive, and Figs. 14 and 15 for the case of L/h = 5 and
EZZ/EXX = 1.0, which is imperfection insensitive (see Table 3 for location of points a, b, c and d). Notice
that, in Figs. 12 and 13, the onset of instability (maximum load) coincides with the simultaneous �stress
0

0.2

0.4

0.6

0.8

1

1.2

0 0.01 0.02 0.03 0.04 0.05 0.06
w/L at point V

P
/P

cr

Ezz/Exx=0.045

Ezz/Exx =0.2

Ezz/Exx =1

Gxz/Exx =0.16

L/h =5

Fig. 9. Load–displacement curves for a short column and three different ratios of EZZ/EXX.



Fig. 11. Deformed shapes of the column with aspect ratio L/h = 5, GXZ/EXX = 0.16 and EZZ/EXX = 0.045. Location B corresponds to
the peak load point.
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Fig. 10. Detail of two load–displacement curves of Fig. 9. Points A, B are on the loading path, C, D, E, F on the unloading one. Inset
shows the peak load. Points a, b, c, d are all on the loading path.
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Table 2
Normalized loads and transverse displacements for which deformed shapes are shown (EZZ/EXX = 0.045)

Location A B C D E F

P/Pcr 0.926225 0.940251 0.940170 0.903850 0.784032 0.722105
w/L 0.032739 0.038504 0.038555 0.030245 0.018327 0.019386

Fig. 12. S33 variations for the column analyzed with EZZ/EXX = 0.045.
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localization�. Shear and normal stresses, initially more or less uniform, rapidly localize at the bottom sur-
face at mid-length of the column, where, due to the large axial compression, the �pinching� also causes a
large normal component of stress, S33. In contrast, such stress localization and skewing of the stress distri-
bution in the prebuckling regime is not present in the series of contours shown in Figs. 14 and 15. These



Fig. 13. S13 variations for the column analyzed with EZZ/EXX = 0.045.
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contour plots clearly show the influence of different material stiffness ratios on the initial postcritical
behavior.
8. Explanation of cause of imperfection sensitivity

Experience with finite element analysis suggests a simple, intuitive argument to explain the presence or
absence of imperfection sensitivity for the columns analyzed. Consider first the case of L/h = 5 and
EZZ/EXX = 0.045, as sketched in Fig. 16a and b. In Fig. 16a, half of the column analyzed by finite elements is
schematically represented by means of two vertical columns composed of two rigid segments of equal length
L/4, simulating the external surfaces of the column. The shear stiffness is modelled by rotational springs with
stiffness KXZ, while the transverse stiffness is modelled by the two horizontal springs with stiffness KZZ. The
top spring simulates the tensile region around the quarter length, while the bottom one simulates the compres-



Fig. 14. S33 variations for the column analyzed with EZZ/EXX = 1.
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sion region around the middle length. The equilibrium equations for the two columns can be written as follows
(see Fig. 16b):
P 1Lðsin h1 þ sin h2Þ � 4KXZh1 þ F 1L cos h1 � F 2Lðcos h1 þ cos h2Þ ¼ 0 ð36Þ
P 2Lðsin h1 þ sin h2Þ � 4KXZh2 � F 1L cos h2 þ F 2Lðcos h1 þ cos h2Þ ¼ 0 ð37Þ
where P1 and P2 are the loads acting on each column; h1 is the rotation of the top segment of the left col-
umn, which is assumed for simplicity to be equal to the rotation of the bottom segment of the right column;
h2 is the rotation of the bottom segment of the left column, which is assumed for simplicity to be equal to
the rotation of the top segment of the right column; and jF 1j ¼ jF 2j ¼ KZZLðsin h2 � sin h1Þ=4 ¼
forces in the springs. The assumption about the rotations implies that the two points of loading, which



Fig. 15. S13 variations for the column analyzed with EZZ/EXX = 1.

Table 3
Normalized loads and transverse displacements for which deformed shapes are shown (EZZ/EXX = 1.0)

Location a b c d

P/Pcr 0.969029085 0.997555603 1.029446108 1.058603507
w/L 0.033148833 0.038881500 0.047648833 0.059465833
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are sliding vertically downwards, do so together. If we now define the overall load P carried by the system
as P = P1 + P2, we can add the two equilibrium equations (36) and (37), and we obtain:
P ¼ 4KXZ
h1 þ h2

Lðsin h1 þ sin h2Þ
þ KZZL

4
ðsin h2 � sin h1Þ

cos h2 � cos h1

sin h1 þ sin h2

ð38Þ



Fig. 16. (a) Schematic representation of the column with EZZ/EXX = 0.045; (b) forces acting in the system; (c) imperfection sensitive
behavior for the column with EZZ/EXX = 0.045; (d) schematic representation of the column with EZZ/EXX = 1.0, and (e) its
imperfection insensitive behavior.
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If we introduce here the Taylor series expansion for the sine and cosine functions and assume that h2� h1,
we obtain, with second-order accuracy:
P ¼ 4KXZ

L
þ h2

2

2KXZ

3L
� KZZL

8

� �
ð39Þ
This expression implies imperfection sensitivity of the structure, as sketched in Fig. 16c, for the stiffness val-
ues satisfying the inequality:
KXZ

KZZL2
<

3

16
ð40Þ
This explains in a more intuitive manner than the rigorous and complex variational analysis why there is
imperfection sensitivity for the column with L/h = 5 and EZZ/EXX = 0.045.
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An alternative point of view is to observe (Fig. 16a) that the lateral deflections of the two columns inter-
act during buckling. As shown in detail by Koiter (1945) and also explained by Bažant and Cedolin (1991,
Section 4.6), interaction of modes usually causes imperfection sensitivity, as it does in this case.

On the contrary, if we consider the case L/h = 5 and EZZ/EXX = 1, the column can be sketched as in
Fig. 16d. The external surfaces of the column are now represented as a single rigid bar and the horizontal
springs are replaced by rigid connections. In this case the rotations of the two columns are the same:
h1 = h2 = h. Therefore, the load carrying capability of the system can simply be derived as a particular case
of Eq. (38):
P ¼ 4KXZ
h

L sin h
¼ 4KXZ

L
1þ h2

6

� �
ð41Þ
This expression implies that the structure exhibits no imperfection sensitivity, as sketched in Fig. 16e, and
agrees with what the finite element analysis shows.

These simple examples show in an intuitive manner that imperfection sensitivity stems from the locali-
zation of stresses into the core with a low transverse stiffness. This is confirmed by the fact that similar stud-
ies (e.g., Huang and Kardomateas, 2000) conducted on sandwich beams including the shear deformability
of the structure but neglecting the transverse deformability show no imperfection sensitivity.
9. Remarks on internal instability and mode interaction

The analytical model described in the previous sections captures the instability due to buckling, which is
the most important instability mode that may be encountered in practice for highly orthotropic structures.
However, there are some instabilities which cannot be accounted for by applying the kinematic model (3)
with the constitutive model (7) for sandwich structures and, in general, for structures reinforced in the
direction of the applied load. In particular, the present formulation cannot describe the wrinkling of the
Fig. 17. Bulging instability for a sandwich column (left) and its interpretation (right).
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skin or the bulging of sandwich columns, which are cases of surface and internal instabilities (Bažant and
Cedolin, 1991, Sec. 11.7).

The bulging instability is depicted in Fig. 17 for the case of a sandwich column with skin thickness hs and
core thickness hc such that 2hs + hc = h. If the wavelength is not shorter than the core thickness hc, this
instability can be schematically analyzed by assuming that the skins are acting as beams on an elastic foun-
dation (Bažant and Cedolin, 1991) carrying one half of the overall load P on the sandwich (see Fig. 17 on
the right). The stiffness c of the springs per unit length of column is c = 2EZZ/hc, and from this the critical
load for the skin instability is obtained as
P cr ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cEsh

3
s=12

q
ð42Þ
where Es is the longitudinal modulus of the skin, which is assumed to be approximatively equal to EXX.
The bulging instability interacts with the global buckling described in the previous sections if the Eng-

esser critical load, given by Eq. (23), is close to the bulging load, given by Eq. (42). To understand if this
may happen in practical applications, let us consider the column analyzed by finite element with
EZZ/EXX = 0.045 and L/h = 5. In this case, the two critical loads would be equal for skin thickness
hs = 0.5 mm, which corresponds to the ratio hs/hc = 1/20. In most practical applications hs/hc P 1/10, in
particular for hs/hc = 1/10 the bulging critical load of the sandwich column considered is twice the Engesser
load. Therefore, the instability would be of the type described in the previous sections, without interaction
with the bulging. Note, however, that if a sandwich with hs/hc = 1/20 is used, the interaction occurs and a
detailed investigation by finite elements is then required to assess the effect of this interaction.

Other types of instability, described in detail in Bažant and Cedolin (1991) (Sec. 11.7), are characterized
by a critical load significantly higher than the Engesser load; therefore, they are not involved in common
applications.

In conclusion, for most practical situations the interaction of different instability modes can be neglected
because the buckling instability dominates.
10. Conclusions

1. The general method for initial postcritical analysis of structures with low shear and transverse stiffness

presented in this study is a useful tool to verify the numerical solutions obtained, e.g., by finite elements.
2. For linearly deforming clamped–clamped short columns deforming linearly with Doyle–Ericksen tensors of

parameter m = 2 or m = 1, there is a stiffness range for which the structure exhibits imperfection sensitivity.
The maximum load of such columns is reduced, and the collapse is dynamic if the load is controlled.

3. Comparison with finite element analysis of short columns shows that the present analytical formulas
predict the maximum load quite accurately.

4. Imperfection sensitivity of sandwich columns can be caused by transverse deformations of the core. If
these are neglected, imperfection sensitivity can be missed.

5. Sandwich columns and, more generally, columns reinforced in the direction of the applied load may
exhibit interaction of instability modes, particularly buckling and bulging. However, the buckling insta-
bility dominates in most cases.
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