INFORMATION AND CONTROL 11, 266-268 (1967)

A Remark on Nets of Threshold Elements

WOLFFRIED STUCKY

Institut für Angewandte Mathematik, Universität des Saarlandes, Saarbrücken, West Germany

The necessary condition for transition functions of Simple Mc-Culloch-Pitts Nets, given in the article: "Nets of Threshold Elements" by Kenneth Krohn and John Rhodes in Corollary 3.1. (iii) is enlarged to a sufficient criterion by addition of another necessary condition.

The symbols, designations and definitions are the same as those in Krohn and Rhodes (1965); that article contains complete algebraic characterizations of general and some special nets of threshold elements and of the transition functions associated with them. In Corollary 3.1. (iii) the authors give a criterion for transition functions of Simple McCulloch-Pitts Nets (SMPN) which is necessary but not sufficient. This paper intends to bring a sufficient criterion by addition of another necessary condition.

An example may show that equation (3.1) is not sufficient. Let $N = \{a, b, c\}, a \neq b, a \neq c, b \neq c$, and the map $f:S(N) \to S(N)$ be defined by

$f(\emptyset) = \emptyset$	$f(\{a, b\}) = \{a\}$
$f(\{a\}) = \{a, b\}$	$f(\{a, c\}) = \{b, c\}$
$f(\{b\}) = \{a, c\}$	$f(\{b, c\}) = \{a, b, c\}$
$f(\{c\}) = \{b, c\}$	$f(\{a, b, c\}) = \{a, b, c\}$

That f satisfies equation (3.1) can easily be seen. Suppose $f = f_M$ and $M = (N, T, W) \in SMPN$. Then must be W(b, c) = 1 and W(a, c) + W(b, c) < 1, since $c \epsilon f(\{b\})$ and $c \epsilon f(\{a, b\})$. Therefore follows $W(a, c) = -\omega$. But we have also $c \epsilon f(\{c\})$ and $c \epsilon f(\{a, c\})$ and thus we get W(c, c) = 1 and $W(a, c) + W(c, c) \ge 1$, which means $W(a, c) \ne -\omega$. This is a contradiction and shows that the assumption is wrong.

In order to define uniquely the weight function W, $f:S(N) \to S(N)$ must satisfy equation (3.1) and the condition (3.1a), too, as we will now demonstrate.

COROLLARY 3.1.(iii). Let N be a finite nonempty set and let $f:S(N) \rightarrow S(N)$. Then $f = f_M$, for M a Simple McCulloch-Pitts Net, iff for each $A \in S(N)$

$$f(A) = \bigcup_{a \in A} \bigcap_{b \in A} f(\{a, b\}) = \bigcap_{a \in A} \bigcup_{b \in A} f(\{a, b\}), \qquad (3.1)$$

and for each $n, n', n'' \in N$

$$f(\{n'\}) \cap f(\{n'', n\}) \subseteq f(\{n', n\}).$$
(3.1a)

Proof. Let $f = f_M$ and M = (N, T, W) (SMPN. We show that there holds now (3.1a) in addition to equation (3.1). For n = n' or n = n'' or n' = n'' (3.1a) is trivial. Let now $n \neq n', n \neq n'', n' \neq n''$, and let $a \epsilon f(\{n'\}) \cap f(\{n'', n\})$, i.e. W(n', a) = 1 and $W(n'', a) + W(n, a) \ge 1$. Then $W(n, a) \ge 0$, $W(n', a) + W(n, a) \ge 1$ and thus $n \epsilon f(\{n', n\})$, i.e. (3.1a).

Now f satisfy the conditions (3.1) and (3.1a). We show then that $f = f_M$, for M a Simple McCulloch-Pitts Net. Define $M = (N, T, W) \epsilon$ SMPN as follows. For all $n \epsilon N$ let T(n) = 1. For $(a, n) \epsilon N \times N$ let

$$W(a, n) = \begin{cases} 1, \text{ if } n \epsilon f(\{a\}) \\ 0, \text{ if } n \epsilon f(\{n', a\}) - f(\{a\}) \text{ for some } n' \epsilon N \\ -\omega, \text{ if } n \epsilon f(\{n''\}) - f(\{n'', a\}) \text{ for some } n'' \epsilon N \\ 0 \text{ or } -\omega \text{ (either one of these two), if } n \epsilon f(\{n_j\}) \text{ for all } n_j \epsilon N. \end{cases}$$

Let us say W is defined for all $(a, n) \in N \times N$: if $n \notin f(\{a\})$, but $n \notin f(\{n'\})$ for some $n' \in N$, then either $n \notin f(\{n', a\})$ [and therefore $n \notin f(\{n', a\}) - f(\{a\})$], or $n \notin f(\{n', a\})$, and therefore $n \notin f(\{n'\}) - f(\{n', a\})$.

W is also uniquely defined: if $n \epsilon f(\{n', a\}) - f(\{a\})$ then $n \epsilon f(\{a\})$, but $n \epsilon f(\{n'\})$ because of (3.1). If $n \epsilon f(\{n''\}) - f(\{n'', a\})$ then $n \epsilon f(\{n''\})$, but $n \epsilon f(\{a\})$ because of (3.1). Suppose $n \epsilon f(\{n', a\}) - f(\{a\})$ for some $n' \epsilon N$ and $n \epsilon f(\{n''\}) - f(\{n'', a\})$ for some $n'' \epsilon N$, then $n \epsilon f(\{n''\}) \cap$ $f(\{n', a\})$ and we get also $n \epsilon f(\{n'', a\})$ because of (3.1a). This is a contradiction.

Thus we see that $W: N \times N \to \{0, 1, -\omega\}$ is well defined.

Now we show $f = f_M$. It is clear that $f(\emptyset) = f_M(\emptyset) = \emptyset$ and $f(\{a\}) = f_M(\{a\})$ for all $a \in N$. Let a and b be two elements of N and $a \neq b$. Let $n \in f(\{a, b\})$. Then either $n \in f(\{a\})$ or $n \in f(\{b\})$. We assume $n \in f(\{a\})$, i.e. W(a, n) = 1. If $n \in f(\{b\})$, then W(b, n) = 1. If $n \in f(\{b\})$, then $n \in f(\{a, b\}) - f(\{b\})$ and consequently W(b, n) = 0. Therefore we have

 $W(b, n) \ge 0$ in all cases. It follows $W(a, n) + W(b, n) \ge 1$, i.e. $n \in f_M(\{a, b\})$ and so $f(\{a, b\}) \subseteq f_M(\{a, b\})$.

Now let $n \epsilon f_M(\{a, b\})$, which means $W(a, n) + W(b, n) \ge 1$. If W(a, n) = W(b, n) = 1, then $n \epsilon f(\{a\}) \cap f(\{b\})$ and therefore $n \epsilon f(\{a, b\})$. If W(a, n) = 1 and W(b, n) = 0, then because of $n \epsilon f(\{a\})$ we get $n \epsilon f(\{n', b\}) - f(\{b\})$ for some $n' \epsilon N$ (see definition of W). As a consequence of (3.1a) we see that $n \epsilon f(\{a, b\})$ and thus $f_M(\{a, b\}) \subseteq f(\{a, b\})$. Therefore we have shown: $f(\{a, b\}) = f_M(\{a, b\})$.

Thus we get $f = f_M$, since for any $A \in S(N)$ we have

$$f(A) = \bigcup_{a \in A} \bigcap_{b \in A} f(\{a, b\}) = \bigcup_{a \in A} \bigcap_{b \in A} f_{\mathcal{M}}(\{a, b\}) = f_{\mathcal{M}}(A).$$

This proves Corollary 3.1.(iii).

RECEIVED: June 27, 1966

REFERENCE

KROHN, K. AND RHODES, J. (1965), Nets of threshold elements. Inform. Control 8, 579-588.