A Remark on Nets of Threshold Elements

Wolffried Stucky
Institut für Angewandte Mathematik, Universität des Saarlandes, Saarbrücken, West Germany

Abstract

The necessary condition for transition functions of Simple Mc-Culloch-Pitts Nets, given in the article: "Nets of Threshold Elements" by Kenneth Krohn and John Rhodes in Corollary 3.1. (iii) is enlarged to a sufficient criterion by addition of another necessary condition.

The symbols, designations and definitions are the same as those in Krohn and Rhodes (1965); that article contains complete algebraic characterizations of general and some special nets of threshold elements and of the transition functions associated with them. In Corollary 3.1. (iii) the authors give a criterion for transition functions of simple McCulloch-Pitts Nets (SMPN) which is necessary but not sufficient. This paper intends to bring a sufficient criterion by addition of another necessary condition.

An example may show that equation (3.1) is not sufficient. Let $N=$ $\{a, b, c\}, a \neq b, a \neq c, b \neq c$, and the map $f: s(N) \rightarrow s(N)$ be defined by

$$
\begin{aligned}
f(\emptyset) & =\emptyset & f(\{a, b\}) & =\{a\} \\
f(\{a\}) & =\{a, b\} & f(\{a, c\}) & =\{b, c\} \\
f(\{b\}) & =\{a, c\} & f(\{b, c\}) & =\{a, b, c\} \\
f(\{c\}) & =\{b, c\} & f(\{a, b, c\}) & =\{a, b, c\}
\end{aligned}
$$

That f satisfies equation (3.1) can easily be seen. Suppose $f=f_{M}$ and $M=(N, T, W)$ ©SMPN. Then must be $W(b, c)=1$ and $W(a, c)+$ $W(b, c)<1$, since $c \epsilon f(\{b\})$ and $c \epsilon f(\{a, b\})$. Therefore follows $W(a, c)=$ $-\omega$. But we have also $c \epsilon f(\{c\})$ and $c \epsilon f(\{a, c\})$ and thus we get $W(c, c)=$ 1 and $W(a, c)+W(c, c) \geqq 1$, which means $W(a, c) \neq-\omega$. This is a contradiction and shows that the assumption is wrong.

In order to define uniquely the weight function $W, f: s(N) \rightarrow s(N)$ must satisfy equation (3.1) and the condition (3.1a), too, as we will now demonstrate.

Corollary 3.1.(iii). Let N be a finite nonempty set and let $f: S(N) \rightarrow$ $s(N)$. Then $f=f_{m}$, for M a Simple McCulloch-Pitts Net, iff for each $A \epsilon \varsigma(N)$

$$
\begin{equation*}
f(A)=\bigcup_{a \in A} \bigcap_{b \in A} f(\{a, b\})=\bigcap_{a \in A} \bigcup_{b \in A} f(\{a, b\}), \tag{3.1}
\end{equation*}
$$

and for each $n, n^{\prime}, n^{\prime \prime} \in N$

$$
\begin{equation*}
f\left(\left\{n^{\prime}\right\}\right) \cap f\left(\left\{n^{\prime \prime}, n\right\}\right) \subseteq f\left(\left\{n^{\prime}, n\right\}\right) \tag{3.1a}
\end{equation*}
$$

Proof. Let $f=f_{M}$ and $M=(N, T, W)$ ©SMPN. We show that there holds now (3.1a) in addition to equation (3.1). For $n=n^{\prime}$ or $n=n^{\prime \prime}$ or $n^{\prime}=n^{\prime \prime}$ (3.1a) is trivial. Let now $n \neq n^{\prime}, n \neq n^{\prime \prime}, n^{\prime} \neq n^{\prime \prime}$, and let $a \epsilon f\left(\left\{n^{\prime}\right\}\right) \cap f\left(\left\{n^{\prime \prime}, n\right\}\right)$, i.e. $W\left(n^{\prime}, a\right)=1$ and $W\left(n^{\prime \prime}, a\right)+W(n, a) \geqq 1$. Then $W(n, a) \geqq 0, W\left(n^{\prime}, a\right)+W(n, a) \geqq 1$ and thus $n \epsilon f\left(\left\{n^{\prime}, n\right\}\right)$, i.e. (3.1a).

Now f satisfy the conditions (3.1) and (3.1a). We show then that $f=f_{M}$, for M a Simple McCulloch-Pitts Net. Define $M=$ (N, T, W) GMMP as follows. For all $n \in N$ let $T(n)=1$. For $(a, n) \epsilon N \times$ N let
$W(a, n)=\left\{\begin{array}{l}1, \text { if } n \epsilon f(\{a\}) \\ 0, \text { if } n \in f\left(\left\{n^{\prime}, a\right\}\right)-f(\{a\}) \text { for some } n^{\prime} \epsilon N \\ -\omega, \text { if } n \epsilon f\left(\left\{n^{\prime \prime}\right\}\right)-f\left(\left\{n^{\prime \prime}, a\right\}\right) \text { for some } n^{\prime \prime} \epsilon N \\ 0 \text { or }-\omega(\text { either one of these two }) \text {, if } n \epsilon f\left(\left\{n_{j}\right\}\right) \text { for all } n_{j} \epsilon N .\end{array}\right.$
Let us say W is defined for all ($a, n) \epsilon N \times N$: if $n \in f(\{a\})$, but $n \in f\left(\left\{n^{\prime}\right\}\right)$ for some $n^{\prime} \epsilon N$, then either $n \in f\left(\left\{n^{\prime}, a\right\}\right)$ [and therefore $n \in f\left(\left\{n^{\prime}, a\right\}\right)$ $f(\{a\})]$, or $n \epsilon f\left(\left\{n^{\prime}, a\right\}\right)$, and therefore $n \epsilon f\left(\left\{n^{\prime}\right\}\right)-f\left(\left\{n^{\prime}, a\right\}\right)$.
W is also uniquely defined: if $n \in f\left(\left\{n^{\prime}, a\right\}\right)-f(\{a\})$ then $n_{\notin f}(\{a\})$, but $n \in f\left(\left\{n^{\prime}\right\}\right)$ because of (3.1). If $n \in f\left(\left\{n^{\prime \prime}\right\}\right)-f\left(\left\{n^{\prime \prime}, a\right\}\right)$ then $n \in f\left(\left\{n^{\prime \prime}\right\}\right)$, but $n \notin f(\{a\})$ because of (3.1). Suppose $n \epsilon f\left(\left\{n^{\prime}, a\right\}\right)-f(\{a\})$ for some $n^{\prime} \in N$ and $n \in f\left(\left\{n^{\prime \prime}\right\}\right)-f\left(\left\{n^{\prime \prime}, a\right\}\right)$ for some $n^{\prime \prime} \in N$, then $n \in f\left(\left\{n^{\prime \prime}\right\}\right) \cap$ $f\left(\left\{n^{\prime}, a\right\}\right)$ and we get also $n \epsilon f\left(\left\{n^{\prime \prime}, a\right\}\right)$ because of (3.1a). This is a contradiction.

Thus we see that $W: N \times N \rightarrow\{0,1,-\omega\}$ is well defined.
Now we show $f=f_{M}$. It is clear that $f(\emptyset)=f_{M}(\emptyset)=\emptyset$ and $f(\{a\})=$ $f_{M}(\{a\})$ for all $a \in N$. Let a and b be two elements of N and $a \neq b$. Let $n \epsilon f(\{a, b\})$. Then either $n \in f(\{a\})$ or $n \epsilon f(\{b\})$. We assume $n \in f(\{a\})$, i.e. $W(a, n)=1$. If $n \epsilon f(\{b\})$, then $W(b, n)=1$. If $n \notin f(\{b\})$, then $n \in f(\{a, b\})-f(\{b\})$ and consequently $W(b, n)=0$. Therefore we have
$W(b, n) \geqq 0$ in all cases. It follows $W(a, n)+W(b, n) \geqq 1$, i.e. $n \in f_{M}(\{a, b\})$ and so $f(\{a, b\}) \subseteq f_{M}(\{a, b\})$.

Now let $n \in f_{M}(\{a, b\})$, which means $W(a, n)+W(b, n) \geqq 1$. If $W(a, n)=W(b, n)=1$, then $n \in f(\{a\}) \cap f(\{b\})$ and therefore $n \in f(\{a, b\})$. If $W(a, n)=1$ and $W(b, n)=0$, then because of $n \in f(\{a\})$ we get $n \epsilon f\left(\left\{n^{\prime}, b\right\}\right)-f(\{b\})$ for some $n^{\prime} \in N$ (see definition of W). As a consequence of (3.1a) we see that $n \epsilon f(\{a, b\})$ and thus $f_{M}(\{a, b\}) \subseteq$ $f(\{a, b\})$. Therefore we have shown: $f(\{a, b\})=f_{M}(\{a, b\})$.

Thus we get $f=f_{M}$, since for any $A \epsilon \delta(N)$ we have

$$
f(A)=\bigcup_{a \in A} \bigcap_{b \in A} f(\{a, b\})=\bigcup_{a \in A} \bigcap_{b \in A} f_{M}(\{a, b\})=f_{M}(A)
$$

This proves Corollary 3.1.(iii).
Recerved: June 27, 1966
REFERENCE
Krohn, K. and Rhodes, J. (1965), Nets of threshold elements. Inform. Control 8, 579-588.

