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Abstract

We show how the set of Dyck paths of length 2xn naturally gives rise to a matroid, which we
call the “Catalan matroid” C,. We describe this matroid in detail; among several other results,
we show that C, is self-dual, it is representable over Q but not over finite fields F, with
g<n —2, and it has a remarkably nice Tutte polynomial. We then generalize our construction
to obtain a family of matroids, which we call “‘shifted matroids”. They are precisely the
matroids whose independence complex is a shifted simplicial complex.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

A Dyck path of length 27 is a path in the plane from (0,0) to (2n,0), with steps
(1,1) and (1, —1), that never passes below the x-axis. It is a classical result (see for
example [14, Corollary 6.2.3.(iv)]) that the number of Dyck paths of length 2n is
equal to the Catalan number C, = ;15 (¥).

Each Dyck path P defines an up-step set, consisting of the integers i for which the
ith step of P is (1,1). The starting point of this paper is Theorem 2.1. It states that
the collection of up-step sets of all Dyck paths of length 2# is the collection of bases
of a matroid. Most of this paper is devoted to the study of this matroid, which we
call the Catalan matroid, and denote C,.

Section 2 starts by proving Theorem 2.1. As we know, there are many equivalent
ways of defining a matroid: in terms of its rank function, its independent sets, its
flats, and its circuits, among others. The rest of Section 2 is devoted to describing

some of these definitions for C,,.
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In Section 3, we compute the Tutte polynomial of the Catalan matroid. We find
that it enumerates Dyck paths according to two simple statistics. Some nice
enumerative results are derived as a consequence.

In Section 4, we generalize our construction of C, to a wider class of matroids,
which we call shifted matroids. They are precisely the matroids whose independence
complex is a shifted simplicial complex. We describe the homotopy type of the
independence complex of Catalan and shifted matroids. We then generalize our
construction in a different direction to obtain, for any finite poset P and any order
ideal I, a shifted family of sets. This family is not always the set of bases of a
matroid.

Finally, in Section 5 we address the question of representability of the matroids we
have constructed. We show that the Catalan matroid, and more generally any shifted
matroid, is representable over (2. In the opposite direction, we show that C, is not
representable over the finite field F, if g<n — 2.

Throughout this paper, we will assume some familiarity with the basic concepts of
matroid theory. For instance, Chapter 1 of [10] should be enough to understand
most of the paper. We also highly recommend Section 6.2 and Exercises 6.19—6.37 of
[14] for an encyclopedic treatment of Catalan numbers and related topics.

2. The matroid

Let n be a fixed positive integer. Consider all paths in the plane which start at the
origin and consist of 2n steps, where each step is either (1,1) or (1,—1). We will call
such steps up-steps and down-steps, respectively. From now on, the word path will
always to refer to a path of this form.

Such paths are in bijection with subsets of [2n]. To each path P, we can assign the
set of integers i for which the ith step of P is an up-step. We call this set the up-step
set of P. Conversely, to each subset A < [2n], we can assign the path whose ith step is
an up-step if and only if 7 is in A.

To simplify the notation later on, we will omit the brackets when we talk about
subsets of [2n]. We will also use subsets of [2n] and paths interchangeably. For
example, for n = 3, the path 13 will be the path with up-steps at steps 1 and 3, and
down-steps at steps 2, 4, 5 and 6.

A useful statistic to keep track of will be the height of path P at x; i.e., the height of
the path after taking its first x steps. We shall denote it htp(x); it is equal to 2| P, | —
x, where P, denotes the set of elements of P which are less than or equal to x. Also,
let minhtp and maxhtp be the minimum and maximum heights that P achieves,
respectively.

Theorem 2.1. Let B, be the collection of up-step sets of all Dyck paths of length 2n.
Then B, is the collection of bases of a matroid on the set [2n].

To prove Theorem 2.1, we will use the following lemma.
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Lemma 2.2. The collection %, consists of all the sets of positive integers
{a1<ay<---<ay} such that a;<2i — 1 for 1<i<n.

Proof. A path {a; <---<a,} is Dyck if and only if, for each i with 1 <i<n, the ith
up-step comes before the ith down-step; that is, if and only if ¢;<2i—1. O

Proof of Theorem 2.1. It is casy to check directly that 4, satisfies the basis exchange
axiom; we invite the reader to carry out this proof. We now present a shorter proof,
using a connection with transversal matroids suggested by several people, including
the authors of [3] and one of the anonymous referees.

Recall that, given a finite set S and a collection o7 = (A4, 45, ..., A,) of subsets
of S, a transversal of .o/ is a set of n distinct elements of S which can be labeled
St, ..., 8, so that s;e 4; for 1<i<n. It is well-known that the collection of all trans-
versals of .7 is the collection of bases of a matroid on S. Such a matroid is called
a transversal matroid, and the collection .o/ is called a presentation of the mat-
roid. For more information on transversal matroids, see for example Chapter 7
of [18].

We will prove that 4, is precisely the collection of transversals of the collection
o, = ([1],[3], 5], ..., [2n — 1]). It will follow that 4, is the collection of bases of the
transversal matroid with presentation .7,,.

Lemma 2.2 makes it clear that every set in 4, is a transversal of .«/,,. For the
converse, consider a transversal 4 of .«/,; say A = {ay,ay, ..., a,}, where a;€[2i — 1]
for 1<i<n. Let by<b,<---<b, be the increasing rearrangement of A. Since
ai,a, ...,a; are all less than or equal to 2i — 1, it follows that b;, which is the ith
smallest element of 4, must also be less than or equal to 2i — 1; i.e., b;e[2i — 1]. Tt
follows that 4€%,. 0O

From Theorem 2.1, we have a unique matroid on the ground set [2n] whose
collection of bases is %,,. We will call it the Catalan matroid of rank n (or simply the
Catalan matroid), and denote it by C,. This paper is mostly devoted to the study of
this matroid.

Proposition 2.3. The rank function of C, is given by
r(A) = n+ | minht,/2 |
for each A<= [2n].

Proof. Fix a subset 4 =[2n], and let minht, = —y, where y is a non-negative integer.
Also, let x be the smallest integer such that ht,(x) = minht,.

Recall that the rank of a subset A of [2n] is equal to the largest possible size of an
intersection A N B, where B is a basis of C,.

The path A4 is at height —y after taking |4 <,| up-steps and x — |4 <.| down-steps,
$0 |A<x| = (x—y)/2. Also, for any basis B, we have that |B.,|<n—x/2,
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since htz(x)>0. Hence
[AnB| = [(AnB) |+ (A0 B). (|S[A<i| + [B> o[ <n —y/2.

We conclude that r(4)<n+ | minht,/2 |.

Now we need a basis B with |4nB| =n+ | minht,/2 |. We construct it as
follows. First, add to A the smallest « = [ y/2| numbers that it is missing, to obtain
the set A’. Then ht(x) = 2a — y>0; in fact, it is clear that the path 4’ never crosses
the x-axis. Let |A| =n+ h for some integer /; then hty(2n) = 2k and hty(2n) =
2h + 2a. Now remove from A’ the largest 4 + @ numbers that it contains, to obtain
the set B. It is again easy to see that the path B never crosses the x-axis, and ends at
(2m,0). So B is Dyck, and

|[AnB|=|AnA|— (h+a)=|A|— (h+a)=n—a
as desired. [

Now that we know the rank function of C,, we describe several important
classes of subsets of the matroid in Propositions 2.4-2.8. We will only
provide a proof for Proposition 2.4; the remaining proofs are similar in flavor.
The interested reader may want to complete the details to get better acquainted with
the matroid C,.

Proposition 2.4. The flats of C, are: the set [2n], and the subsets A<[2n] such
that

(1) minht, is odd, and
(i) if ht4(x) = minhty, then {x +1,...,2n} = A4.

Proof. Let 4 be a flat of C, other than [2x], and let x be such that ht4(x) = minht.
If some integer y with x + I<y<mn was not in 4, then we would clearly have
minht,, = minht, and thus r(4 Uy) = r(A), contradicting the assumption that A4 is
a flat. Therefore, any flat must satisfy condition (ii).

Also, if we had a flat 4 with minht, = —2/ achieved at ht,(x), then we would
have x¢ A, and minht,, = —2/ + 1 would be achieved at ht4,(x — 1). We would
then have r(4ux) =r(A4), again a contradiction. So any flat 4 must also satisfy
condition (i).

Conversely, assume that A satisfies conditions (i) and (ii). Let minhty = —(2k + 1),
which can only be achieved once, say at ht4(x). Any y which is not in 4 must be less
than or equal to x; and we have minht,, = —(2k — 1) if y<x, or minht,,, = —2k
if y = x. In either case, r(4uUy) = r(4) + 1. This completes the proof. [

Proposition 2.5. The independent sets of C, are the subsets A<[2n] such that
minht, = hty (21’1)

Proposition 2.6. The spanning sets of C,, are the subsets A< [2n] such that minht, = 0.
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Proposition 2.7. The circuits of C, are the subsets A<[2n] of the form A=
{2k,2k + by, ...,2k + b,_1}, for some positive integer k<n and some Dyck path
{b1, ..., by_i} of length 2(n — k).

Proposition 2.8. The cocircuits of C, are the subsets A< [2n] such that

(1) maxhty =1, and
(i) if ' hty(x) =1, then A has no elements greater than x.

We complete this section with an observation which is interesting in itself, and will
also be important to us in Section 3.

Proposition 2.9. The Catalan matroid is self-dual.'

Proof. Say B = {by, ...,b,} is a basis of Cy,, and let 2n] — B= {ci,...,¢,} be the
corresponding basis of the dual matroid C;. Then {2n+1—¢,,...,2n+1—c¢ }isa
Dyck path; in fact, it is the path obtained by reflecting the Dyck path B across a
vertical axis. So the bases of C) are simply the up-step sets of all Dyck paths of
length 2n, under the relabeling x—»2n + 1 — x. Thus C;=C,. O

3. The Tutte polynomial

Given a matroid M over a ground set S, its Tutte polynomial is defined as

Tu(g,0) = > (¢ =107 (==,
AcS

For our purposes, it is more convenient to define the Tutte polynomial in terms of
the internal and external activity of the bases. We recall this definition now.

We first need to fix an arbitrary linear ordering of S.

For any basis B and any element e¢ B, the set Bu e contains a unique circuit. If e is
the smallest element of that circuit with respect to our fixed linear order, then we say
that e is externally active with respect to B. The number of externally active elements
with respect to B is called the external activity of B; we shall denote it by e(B).

Dually, for any basis B and any element i€ B, the set S — Bui contains a unique
cocircuit. If 7 is the smallest element of that cocircuit, then we say that i is internally
active with respect to B. The number of internally active elements with respect to B is
called the internal activity of B; we shall denote it by i(B).”

"We follow Oxley [10] in calling a matroid M self-dual if M =~ M*. It is worth mentioning, however, that
some authors reserve the term “self-dual” for matroids M such that M = M*.

2The internally active elements with respect to a basis B of M are precisely the externally active elements
with respect to the basis S — B of the dual matroid M*. That is why we say that internal activity and
external activity are dual concepts.
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Proposition 3.1 (Crapo [4]). For any matroid M and any linear order of its
ground set,

Tul(g,0)= Y ¢Pr®.
B basis

We will use Proposition 3.1 to study the Tutte polynomial of the Catalan matroid.
The first thing to do is to fix a linear order of its ground set, [2n]. We will use the
most natural choice: 1<2<---<2n. Now we compute the internal and external
activity of each basis of C,.

Lemma 3.2. The internal activity of a Dyck path B is equal to the number of up-steps
that B takes before its first down-step.

Proof. Let ie B. The path [2n] — B never goes above height 0; the path [2n] — Bui
goes up to height 2. Let j be the smallest integer such that htp,_p_ (/) = 1.
Clearly j>1i.

Let D be the unique cocircuit of C, which can be obtained by deleting some
elements of [2n] — Bui. We cannot delete any element less than or equal to j, or else
the resulting path will not reach height 1. We must delete any element larger than j
by Proposition 2.8. So D = ([2n] — B) ;.

Therefore, i is the smallest element of D if and only if B contains all of 1,2, ...,
i — 1. This completes the proof. [

Lemma 3.3. The external activity of a Dyck path B is equal to the number of positive
integers x for which htg(x) = 0.

Proof. Let e¢ B. The path Bue ends at height 2; let 2k — 1 be the largest integer such
that htg,.(2k — 1) = 1. Clearly 2k — 1 <e.

We start by showing that the unique circuit C of C, contained in Bue is
(Bue) -

Since C= Bue, we have that hte(2n) — hte(2k — 1) <htp.(2n) — htp,.(2k — 1)
= 1. Equality holds if and only if every up-step of Bue after the (2k — 1)th is also an
up-step of C; i.e., when (Bue). o = C>.

But it is clear from Proposition 2.7 that ht(2n) — minhte = 1, and that minht¢
is only achieved at hte(min C —1). So the above inequality can only hold if
min C = 2k. Thus C = Cxo; = (Bue),, as desired.

Now we know that min C = 2k, so e is externally active if and only if e = 2k.
If htg(e) = 0, this is clearly the case. On the other hand, if htg(e)>1, then htg .
(e — 1) = htg(e — 1) =2, so this is not the case. This completes the proof. [

Theorem 3.4. For a Dyck path P, let a(P) denote the number of up-steps that P takes

before its first down-step, and let b(P) denote the number of positive integers x for
which htp(x) = 0.
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Then the Tutte polynomial of the Catalan matroid C, is equal to

TC q; Zq

P Dyck

where the sum is over all Dyck paths of length 2n.
Proof. This follows immediately from Proposition 3.1 and Lemmas 3.2 and 3.3. [

Corollary 3.5. The polynomial

Z ¢ P) )

P Dyck

is symmetric in q and t.

Proof. It is well-known that, for any matroid M, we have Ty (q,t) = Ty (t,q). The
result follows from Proposition 2.9 and Theorem 3.4. [

It is a known fact that the statistics a(P) and b(P) are equidistributed over the set
of Dyck paths of length 2n: the number of paths with a(P) = k and the number of
paths with b(P) = k are both equal to 74 (***). For the first equality, see for
example [16]; for the second, see [9, Eq. (7)].

Corollary 3.5 was also discovered independently by James Haglund [6]. It is not
difficult to prove it directly; in fact, it will be an immediate consequence of our next
theorem.

Theorem 3.6. Let C(x) =1(1 — V1 —4x) = Cy + Cix + Cox? + -+ be the generating
function for the Catalan numbers. Then

. 14(gt—q—1)xC(x)
> T, (g,0x" =1 —qix+(qt — g — )xC(x)’

n=0

Proof. A Dyck path P of length 2n>2 can be decomposed uniquely in the standard
way: it starts with an up-step, then it follows a Dyck path P; of length 2r, then it takes
a down-step, and it ends with a Dyck path P, of length 2s, for some non-negative
integers r,s with r + s = n — 1. More precisely, and necessarily more confusingly,

P={1,14+p,1+ps, ..., 1 +p2r+2+q1,2r +2 4+ q2, ..., 2r + 2 4+ ¢s}

for some Dyck paths {py, ...,p,} and {q1, ..., ¢} withr+s=n—1.
It is clear that in this decomposition we have a(P)=a(P;)+ 1 and b(P) =
b(Pz) + 1. Therefore,

c, q, Z Z Z q a(Py) +1 b(P2)+

r+s=n—1 P eB, PreH;

=qt Y Tc (g, )Tc(1,1)

r+s=n—1
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for n=1; so if we write T(q,t,x) =, Tc, (¢, 1)x", we have
T(g,t,x) =1+ gtxT(q, 1, x)T(1, ¢, x). (1)

Now observe that T(I,1,x) = C(x). Setting ¢ =1 in (1) gives a formula for
T(1,t,x), and setting =1 gives a formula for T(q, 1, x). Substituting these two
formulas back into (1), we get the desired result. [

4. Shifted matroids
We now generalize our construction of C, to a larger family of matroids, which
we call shifted matroids. There is one shifted matroid for each non-empty set

S = {s1<---<s,} of positive integers, which we shall denote SM(sy, ..., ;).

Theorem 4.1. Let S = {s1<:--<s,} be a set of positive integers, and let Bs be the

collection of sets of positive integers {a) < --- <ay} such that a\<sy, ...,a,<s,. Then
Bs is the collection of bases of a matroid SM(sy, ...,s,) on the set [s,].
Proof. We can repeat the argument of Theorem 2.1 to conclude that SM(sy, ..., s,) is
the transversal matroid with presentation of s = ([s1],[s2], .-, [sn]). O

The Catalan matroid is a member of the shifted matroid family. From Lemma 2.2
we know that the Catalan matroid C, is exactly the shifted matroid
SM(1,3,5,...,2n — 1), with an additional loop 2.

Shifted matroids have been discovered several times in the past. Welsh [17] used
them to prove a lower bound for the number of non-isomorphic matroids on [n].
Oxley et al. [11] gave different characterizations of them. Bonin and de Mier [2],
Bonin et al. [3] are currently studying a wider class of matroids which provides an
excellent level of generality for matroid-theoretic structural considerations. It is
worth pointing out that the generalized Catalan matroids of [3] are precisely our
shifted matroids.

Now we present a new characterization of shifted matroids. Recall that an abstract
simplicial complex A on [n] is a family of subsets of [n] (called faces) such that if Ge 4
and F< G, then Fe 4. A simplicial complex 4 is shifted if, for any face F € 4 and any
pair of elements i< such that i¢ F and je F, the subset F — jui is also a face of 4.

The family of independent sets of a matroid M is always a simplicial complex,
called the independence complex or matroid complex of M. For shifted matroids, we
have the following simple observation.

Proposition 4.2. The independence complex of a shifted matroid SM(sy, ...,s,) is a
shifted complex.

Proof. If F<|s,] is independent, it is contained in some basis B. Now assume that we
have two elements i<j such that i¢ F and je F, and let G = F — jui. If the basis B
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contains i, then it contains G. Otherwise, B — jui is also a basis: for any 1 <k <n, its
kth smallest is less than or equal to the kth smallest element of B, which is less than
or equal to s;. This basis contains G. In both cases, we conclude that G is
independent. [

Klivans [8] characterizes shifted matroid complexes: shifted complexes which are
independence complexes of matroids. Her results and ours were discovered almost
simultaneously. When we sat down to discuss them, we realized that her shifted
matroid complexes were precisely the independence complexes of the matroids
SM(sy, ..., ;). This is why these matroids were baptized “shifted matroids”.

Proposition 4.3 (Klivans, [8]). If the independence complex of a loop-less matroid M
is a shifted complex, then M =~SM(sy, ...,s,) for some positive integers sy < --- <s,.

Corollary 4.4. The independence complex of a matroid M is a shifted complex if and
only if M is a shifted matroid.

One of the main reasons to study shifted complexes is the simplicity of their
topology. For any simplicial complex I', one can construct a shifted simplicial
complex A(I'). This shifted complex preserves many combinatorial and topological
properties of I', but is much easier to study [7]. In particular, any shifted complex is
homotopically equivalent to a wedge of spheres. Therefore, its homology groups
have no torsion and its cohomology ring is trivial. We now use these facts to discuss
the topology of Catalan matroid complexes and, more generally, shifted matroid
complexes.

The Catalan matroid complex is contractible, since every basis contains 1. So is the
complex of any shifted matroid SM(1,s,, ...,s,). Instead, consider the reduced
Catalan matroid complex: the independence complex of the Catalan matroid with the
coloop 1 deleted.

Proposition 4.5. The reduced Catalan matroid complex is homotopically equivalent to
a wedge of C,_1 (n — 2)-dimensional spheres.

Let 1<sy<---<s, be integers. The independence complex of SM(si, ...,s,) is
homotopically equivalent to a wedge of (n — 1)-dimensional spheres. The number of
spheres is equal to the number of bases of SM(s; — 1, ...,5, — 1).

Proof. We use Lemma 3.1 of [7]. Any shifted complex is homotopically equivalent to
a wedge of spheres, possibly of different dimensions. In our case, since matroid
complexes are pure, the spheres must have the same dimension.

For the reduced Catalan matroid complex, the spheres are (n — 2)-dimensional.
The number of them is equal to the number of maximal faces of the complex which
do not contain 2; that is, the number of Dyck paths of length 2n whose second step is
a down-step. There are C,_; such paths.

For the independence complex of SM(sy,...,s,), the spheres are (n—1)-
dimensional. The number of them is equal to the number of maximal faces of the
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complex which do not contain 1. Subtracting 1 from the labels of these faces puts
them in bijective correspondence with the bases of SM(s; — 1, ...,s, — 1). O

Theorem 4.1 and Propositions 4.2 and 4.3 have a nice application to Young
tableaux. Recall that a partition A = (21, ..., A) of n is a weakly decreasing sequence
of positive integers which add up to n. We associate to it a Young diagram: a left-
justified array of unit squares, which has A; squares on the ith row from top to
bottom.> A standard Young tableaux is a placement of the integers 1, ...,n in the
squares of the Young diagram, in such a way that the numbers are increasing from
left to right and from top to bottom.

These definitions will be sufficient for our purposes. For a much deeper treatment
of the theory of Young tableaux, we refer the reader to [J].

Corollary 4.6. Let 1 be a partition. Define the first row set of a standard Young
tableau T of shape A to be the set of entries which appear in the first row of T. Then the
collection of first row sets of all standard Young tableaux of shape 1 is the collection of
bases of a shifted matroid.

Proof. Let X' = (4, ..., 4,) be the conjugate partition of 4, so 4/ is the number of
squares on the ith column of the Young diagram of A. Let s; = 1 + A4/ + --- + 4,
for 1<i<n.

Let {b; <--- <b,} be the first row set of a standard Young tableau T of shape 1.
The first entry on the ith column of T is b;; it is smaller than every entry to its
southeast. There are only A;' + --- + 4;_|’ cells which are not to its southeast,
so b; <s;

Conversely, if B={b;<---<b,} is such that b;<s; for 1<i<n, then we can
construct a standard Young tableau with first row set B. To do it, we first put the
elements of B in order on the first row of A. Then we put the remaining numbers from
1 to |4 on the remaining cells going in order down the columns, starting with the
leftmost column. The inequalities b; <s; guarantee that this process does indeed give
a Young tableau 7.

It follows that the collection in question is simply the collection of bases of the
matroid SM(sy, ...,s,). O

We might try to generalize Corollary 4.6, replacing the first row of / by any
partition u< . Define the p-set of a standard Young tableau 7' of shape A to be the
set of entries which appear in the sub-shape u in 7.

It is not too difficult to see that we do not always get the collection of bases of a
matroid with this construction. However, we can still say something interesting.

Proposition 4.7. Let p</ be partitions. Then the collection %;, of u-sets of all
standard Young tableau of shape J. is a shifted family.

3This is the English way of drawing Young diagrams; francophones draw them with 2; squares on the
ith row from bottom to top.
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In fact, as suggested by Stanley [15], this result still holds in the following more
general setting. Let P be a partially ordered set, or poset, of n elements. Recall that a
subset I of P is an order ideal of P if, for any pair of elements x, ye P with x < py and
vel, we also have xel. Also recall that a linear extension of P is a bijection
f : P—[n] such that i< pj implies that /(i) <f(j). For more information on posets,
we refer the reader to [13, Chapter 3].

Define the I-set of a linear extension f of P to be the set { f(i):iel}.

Proposition 4.8. Let P be a finite poset, and let I be an order ideal of P. Then the
collection Bp; of I-sets of all linear extensions of P is a shifted family.

Proof of Proposition 4.8. We need to check that if we have a set Be #p; and a pair of
numbers a<b such that a¢ B and be B, then B—buaeBp;. It is enough to show
this for @ = b — 1; the general case will then follow by induction on b — a.

So let f be a linear extension of P with I-set B, and let b€ B be such that 5 — 1 ¢ B.
Letb=f(i) and b — 1 = f(p) where iel and pe P — I. Let g : P— [n] be defined by
switching the values of f at i and p; i.e.,

Sf(x)if x¢d{ip},
gx)=q¢b—-1 if x=1, (2)
b if x=p.

We claim that g is also a linear extension for P. An important observation is that i
and p are incomparable in P. If we had i <p, then we would have b = f(i) <f(p) =
b — 1. If we had i>p, then iel would imply pel.

Since f is a linear extension, we know that f(i) = b satisfies several inequalities: it
must be greater than all the values that " takes on P_;, and less than all the values
that f takes on P.;. But b is never compared to b — 1 here, since p and i are
incomparable. Therefore, b — 1 also satisfies all those inequalities that b needs to
satisfy.

Similarly, b — 1 is greater than all the values that /" takes on P, and less than all
the values that /" takes on P ,. The number b also satisfies these inequalities.

So we can switch the values of /(i) and f( p), and the resulting function g defined
by (2) will also be a linear extension of P. Also, the I-set of g is B— bu (b — 1). This
concludes the proof. [

Proof of Proposition 4.7. The cells of A can be given a partial order P;:
cell i is less than cell j in P; if and only if cell i is northwest of cell j in 4.
The cells of u define an order ideal I, of P;, and %;, = %p, ;. Now use
Proposition 4.8. [

In view of Corollary 4.6 and Proposition 4.8, a natural problem, suggested by
Richard Stanley, is the following.
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Problem 4.9. Characterize the pairs (P,I) of a finite poset P and an order ideal I for
which Bp is the set of bases of a matroid.

5. Representability

Piff and Welsh [12] showed that every transversal matroid is representable over
fields of every characteristic. We use ideas essentially equivalent to theirs to give
vector representations for the Catalan and shifted matroids, which are transversal.

To write down an explicit representation, we will use the notion of a generic
collection of numbers. There are many different approaches that we could follow;
one that is sufficient for our purposes is the following. Given a collection of real
numbers xi, ..., xy, let xg = [[,.¢ x; for each subset S<[N] with |S| = n. Form all

the 2() possible sums of some of the xg’s. If these sums are all distinct, we will say
that the initial collection of numbers is n-generic. Most N-tuples of real numbers are
n-generic. A specific example is a set of algebraically independent real numbers.
Another example is any sequence of positive integers which increases quickly
enough; for example one such that, for each 1<i<N, we have x;>>_ x5 summing
over all n-subsets S of [i — 1].

Theorem 5.1. Let vy, ..., vy, be the columns of a matrix
anp 0 0 0 O 0 0
ay axn a3 0 0 0 0
A= | a3 axn a3z ay as 0 - 0 0
dyl  dp2  Ap3y  dp4  dps  dye e ap2n—1 0

where the ay’s with 1 <i<n and 1<j<2i — 1 are n-generic integers. Then the vector
matroid of {vi, ..., v} is isomorphic to the Catalan matroid C,,.

Theorem 5.2. Let s1<---<s, be arbitrary positive integers. Let vy, ...,vs, be the
columns of a matrix A = (aij)lsign,lgjgs,,v where the ay’s with 1<i<n and 1<j<s;
are n-generic, and the remaining ay’s are equal to 0. Then the vector matroid of
{v1, ..., v, } is isomorphic to the shifted matroid SM(sy, ...,s,).

The above two theorems are not difficult to prove directly. Columns ¢y, ..., ¢, of
the matrix are a basis for R” if and only if the determinant of the corresponding n x n
matrix M, is non-zero. This determinant is a sum of n! terms with plus and minus
signs; by the n-genericity condition, if any of these terms is non-zero then det M, #0.
Since M., has its non-zero entries on the bottom left, det M. #0 if and only if all the
diagonal entries of M, are all non-zero; this is equivalent to {cy, ..., ¢, } being a basis
of the shifted matroid. For more details, we refer the reader to [12].
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Theorem 5.1 shows that the Catalan matroid is representable over Q, or even over
a sufficiently large finite field. In the other direction, we now show a negative result
about representing C, over finite fields.

Proposition 5.3. The Catalan matroid C, is not representable over the finite field F,
if g<n-—2.

Proof. It is known ([10, Proposition 6.5.2]) and easy to show that the uniform
matroid U,y is F,-representable if and only if >k — 1. A matroid containing it as a
minor is not representable over F, for ¢g<k — 2. This suggests that we should find the
largest k for which U,y is a minor of C,.

We can use the Scum theorem (Higgs, [10, Proposition 3.3.7]), which essentially
says that, if a matroid has a certain minor, then it must have that same minor
hanging from the top of its lattice of flats. Our question is then equivalent to finding
the largest k for which there exists a rank-(n —2) flat which is contained in k
rank-(n — 1) flats.

Lemma 5.4. Let A be a rank-(n — 2) flat, and let x be the smallest integer such that
hty(x) = —1. Then there are exactly £ rank-(n — 1) flats containing A.

Proof of Lemma 5.4. We know from Propositions 2.3 and 2.4 that minht, = —3 and
that, once the path A4 reaches height —3, say at ht,(y), it only takes up-steps. We
want to add elements to 4 to obtain a path which reaches a minimum height —1, and
only takes up-steps after that.

Say that we add one element a to A. This new up-step at @ comes before
the yth, so hty ,(y) = —1. If we do not want to add any more elements to A, we
have to make sure that 4 Ua only reaches height —1 at y. For this to be true, we
need the new up-step a to occur on or before the xth step. In A, there are %‘ down-
steps up to the xth to choose from. Each one of these gives a rank-(n — 1) flat
containing A4.

On the other hand, if we are to add more elements to 4 to obtain a rank-(r — 1)
flat B, they will all be less than y so we will have htg(y) > 0. The minimum height in B
must then be achieved at some z for which hty(z) = —1. In fact, for this z to be
unique, it must be the leftmost one; i.e., it must be x. So the only possibility is that
B=Ac.,u{x+1,...,2n}, which is indeed a rank-(n — 1) flat. This concludes the
proof of Lemma 5.4. O

Having shown Lemma 54, the rest is easy. The rank-(n—2) flat
which is contained in the largest number of rank-(n— 1) flats, is the latest
one to arrive to height —1. This flat is clearly {1,2,...,n—3,n— 2,2n}, which
arrives to height —1 after 2n — 3 steps. It is contained in exactly n rank-(n — 1)
flats.

Therefore C, contains U, as a minor, and thus it is not representable over a field
F, with g<n—2. O
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