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Abstract

We show how the set of Dyck paths of length 2n naturally gives rise to a matroid, which we

call the ‘‘Catalan matroid’’ Cn:We describe this matroid in detail; among several other results,

we show that Cn is self-dual, it is representable over Q but not over finite fields Fq with

qpn � 2; and it has a remarkably nice Tutte polynomial. We then generalize our construction

to obtain a family of matroids, which we call ‘‘shifted matroids’’. They are precisely the

matroids whose independence complex is a shifted simplicial complex.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

A Dyck path of length 2n is a path in the plane from ð0; 0Þ to ð2n; 0Þ; with steps
ð1; 1Þ and ð1;�1Þ; that never passes below the x-axis. It is a classical result (see for
example [14, Corollary 6.2.3.(iv)]) that the number of Dyck paths of length 2n is

equal to the Catalan number Cn ¼ 1
nþ1

2n
n

� �
:

Each Dyck path P defines an up-step set, consisting of the integers i for which the
ith step of P is ð1; 1Þ: The starting point of this paper is Theorem 2.1. It states that
the collection of up-step sets of all Dyck paths of length 2n is the collection of bases
of a matroid. Most of this paper is devoted to the study of this matroid, which we
call the Catalan matroid, and denote Cn:
Section 2 starts by proving Theorem 2.1. As we know, there are many equivalent

ways of defining a matroid: in terms of its rank function, its independent sets, its
flats, and its circuits, among others. The rest of Section 2 is devoted to describing
some of these definitions for Cn:
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In Section 3, we compute the Tutte polynomial of the Catalan matroid. We find
that it enumerates Dyck paths according to two simple statistics. Some nice
enumerative results are derived as a consequence.
In Section 4, we generalize our construction of Cn to a wider class of matroids,

which we call shifted matroids. They are precisely the matroids whose independence
complex is a shifted simplicial complex. We describe the homotopy type of the
independence complex of Catalan and shifted matroids. We then generalize our
construction in a different direction to obtain, for any finite poset P and any order
ideal I ; a shifted family of sets. This family is not always the set of bases of a
matroid.
Finally, in Section 5 we address the question of representability of the matroids we

have constructed. We show that the Catalan matroid, and more generally any shifted
matroid, is representable over Q: In the opposite direction, we show that Cn is not

representable over the finite field Fq if qpn � 2:

Throughout this paper, we will assume some familiarity with the basic concepts of
matroid theory. For instance, Chapter 1 of [10] should be enough to understand
most of the paper. We also highly recommend Section 6.2 and Exercises 6.19–6.37 of
[14] for an encyclopedic treatment of Catalan numbers and related topics.

2. The matroid

Let n be a fixed positive integer. Consider all paths in the plane which start at the
origin and consist of 2n steps, where each step is either ð1; 1Þ or ð1;�1Þ: We will call
such steps up-steps and down-steps, respectively. From now on, the word path will
always to refer to a path of this form.
Such paths are in bijection with subsets of ½2n�: To each path P; we can assign the

set of integers i for which the ith step of P is an up-step. We call this set the up-step

set of P: Conversely, to each subset AD½2n�; we can assign the path whose ith step is
an up-step if and only if i is in A:
To simplify the notation later on, we will omit the brackets when we talk about

subsets of ½2n�: We will also use subsets of ½2n� and paths interchangeably. For
example, for n ¼ 3; the path 13 will be the path with up-steps at steps 1 and 3; and
down-steps at steps 2, 4, 5 and 6.
A useful statistic to keep track of will be the height of path P at x; i.e., the height of

the path after taking its first x steps. We shall denote it htPðxÞ; it is equal to 2jPpxj �
x; where Ppx denotes the set of elements of P which are less than or equal to x: Also,
let minhtP and maxhtP be the minimum and maximum heights that P achieves,
respectively.

Theorem 2.1. Let Bn be the collection of up-step sets of all Dyck paths of length 2n:
Then Bn is the collection of bases of a matroid on the set ½2n�:

To prove Theorem 2.1, we will use the following lemma.
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Lemma 2.2. The collection Bn consists of all the sets of positive integers

fa1oa2o?oang such that aip2i � 1 for 1pipn:

Proof. A path fa1o?oang is Dyck if and only if, for each i with 1pipn; the ith
up-step comes before the ith down-step; that is, if and only if aip2i � 1: &

Proof of Theorem 2.1. It is easy to check directly that Bn satisfies the basis exchange
axiom; we invite the reader to carry out this proof. We now present a shorter proof,
using a connection with transversal matroids suggested by several people, including
the authors of [3] and one of the anonymous referees.
Recall that, given a finite set S and a collection A ¼ ðA1;A2;y;AnÞ of subsets

of S; a transversal of A is a set of n distinct elements of S which can be labeled
s1;y; sn so that siAAi for 1pipn: It is well-known that the collection of all trans-
versals of A is the collection of bases of a matroid on S: Such a matroid is called
a transversal matroid, and the collection A is called a presentation of the mat-
roid. For more information on transversal matroids, see for example Chapter 7
of [18].
We will prove that Bn is precisely the collection of transversals of the collection

An ¼ ð½1�; ½3�; ½5�;y; ½2n � 1�Þ: It will follow that Bn is the collection of bases of the
transversal matroid with presentation An:
Lemma 2.2 makes it clear that every set in Bn is a transversal of An: For the

converse, consider a transversal A of An; say A ¼ fa1; a2;y; ang; where aiA½2i � 1�
for 1pipn: Let b1ob2o?obn be the increasing rearrangement of A: Since
a1; a2;y; ai are all less than or equal to 2i � 1; it follows that bi; which is the ith
smallest element of A; must also be less than or equal to 2i � 1; i.e., biA½2i � 1�: It
follows that AABn: &

From Theorem 2.1, we have a unique matroid on the ground set ½2n� whose
collection of bases is Bn: We will call it the Catalan matroid of rank n (or simply the
Catalan matroid ), and denote it by Cn: This paper is mostly devoted to the study of
this matroid.

Proposition 2.3. The rank function of Cn is given by

rðAÞ ¼ n þ IminhtA=2m

for each AD½2n�:

Proof. Fix a subset AD½2n�; and let minhtA ¼ �y; where y is a non-negative integer.
Also, let x be the smallest integer such that htAðxÞ ¼ minhtA:
Recall that the rank of a subset A of ½2n� is equal to the largest possible size of an

intersection A-B; where B is a basis of Cn:
The path A is at height �y after taking jApxj up-steps and x � jApxj down-steps,

so jApxj ¼ ðx � yÞ=2: Also, for any basis B; we have that jB4xjpn � x=2;
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since htBðxÞX0: Hence

jA-Bj ¼ jðA-BÞpxj þ jðA-BÞ4xjpjApxj þ jB4xjpn � y=2:

We conclude that rðAÞpn þ IminhtA=2m:
Now we need a basis B with jA-Bj ¼ n þ IminhtA=2m: We construct it as

follows. First, add to A the smallest a ¼ Jy=2n numbers that it is missing, to obtain
the set A0: Then htA0 ðxÞ ¼ 2a � yX0; in fact, it is clear that the path A0 never crosses
the x-axis. Let jAj ¼ n þ h for some integer h; then htAð2nÞ ¼ 2h and htA0 ð2nÞ ¼
2h þ 2a: Now remove from A0 the largest h þ a numbers that it contains, to obtain
the set B: It is again easy to see that the path B never crosses the x-axis, and ends at
ð2n; 0Þ: So B is Dyck, and

jA-Bj ¼ jA-A0j � ðh þ aÞ ¼ jAj � ðh þ aÞ ¼ n � a

as desired. &

Now that we know the rank function of Cn; we describe several important
classes of subsets of the matroid in Propositions 2.4–2.8. We will only
provide a proof for Proposition 2.4; the remaining proofs are similar in flavor.
The interested reader may want to complete the details to get better acquainted with
the matroid Cn:

Proposition 2.4. The flats of Cn are: the set ½2n�; and the subsets AD½2n� such

that

(i) minhtA is odd, and

(ii) if htAðxÞ ¼ minhtA; then fx þ 1;y; 2ngDA:

Proof. Let A be a flat of Cn other than ½2n�; and let x be such that htAðxÞ ¼ minhtA:
If some integer y with x þ 1pypn was not in A; then we would clearly have
minhtA,y ¼ minhtA and thus rðA,yÞ ¼ rðAÞ; contradicting the assumption that A is

a flat. Therefore, any flat must satisfy condition (ii).
Also, if we had a flat A with minhtA ¼ �2h achieved at htAðxÞ; then we would

have xeA; and minhtA,x ¼ �2h þ 1 would be achieved at htA,xðx � 1Þ: We would
then have rðA,xÞ ¼ rðAÞ; again a contradiction. So any flat A must also satisfy
condition (i).
Conversely, assume that A satisfies conditions (i) and (ii). Let minhtA ¼ �ð2k þ 1Þ;

which can only be achieved once, say at htAðxÞ: Any y which is not in A must be less
than or equal to x; and we have minhtA,y ¼ �ð2k � 1Þ if yox; or minhtA,y ¼ �2k

if y ¼ x: In either case, rðA,yÞ ¼ rðAÞ þ 1: This completes the proof. &

Proposition 2.5. The independent sets of Cn are the subsets AD½2n� such that

minhtA ¼ htAð2nÞ:

Proposition 2.6. The spanning sets of Cn are the subsets AD½2n� such that minhtA ¼ 0:
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Proposition 2.7. The circuits of Cn are the subsets AD½2n� of the form A ¼
f2k; 2k þ b1;y; 2k þ bn�kg; for some positive integer kpn and some Dyck path

fb1;y; bn�kg of length 2ðn � kÞ:

Proposition 2.8. The cocircuits of Cn are the subsets AD½2n� such that

(i) maxhtA ¼ 1; and

(ii) if htAðxÞ ¼ 1; then A has no elements greater than x:

We complete this section with an observation which is interesting in itself, and will
also be important to us in Section 3.

Proposition 2.9. The Catalan matroid is self-dual.1

Proof. Say B ¼ fb1;y; bng is a basis of Cn; and let ½2n� � B ¼ fc1;y; cng be the
corresponding basis of the dual matroid C�

n: Then f2n þ 1� cn;y; 2n þ 1� c1g is a
Dyck path; in fact, it is the path obtained by reflecting the Dyck path B across a
vertical axis. So the bases of C�

n are simply the up-step sets of all Dyck paths of

length 2n; under the relabeling x-2n þ 1� x: Thus C�
nDCn: &

3. The Tutte polynomial

Given a matroid M over a ground set S; its Tutte polynomial is defined as

TMðq; tÞ ¼
X
ADS

ðq � 1ÞrðSÞ�rðAÞ ðt � 1ÞjAj�rðAÞ:

For our purposes, it is more convenient to define the Tutte polynomial in terms of
the internal and external activity of the bases. We recall this definition now.
We first need to fix an arbitrary linear ordering of S:
For any basis B and any element eeB; the set B,e contains a unique circuit. If e is

the smallest element of that circuit with respect to our fixed linear order, then we say
that e is externally active with respect to B: The number of externally active elements
with respect to B is called the external activity of B; we shall denote it by eðBÞ:
Dually, for any basis B and any element iAB; the set S � B,i contains a unique

cocircuit. If i is the smallest element of that cocircuit, then we say that i is internally

active with respect to B: The number of internally active elements with respect to B is
called the internal activity of B; we shall denote it by iðBÞ:2
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1We follow Oxley [10] in calling a matroid M self-dual if MDM�: It is worth mentioning, however, that
some authors reserve the term ‘‘self-dual’’ for matroids M such that M ¼ M�:

2The internally active elements with respect to a basis B of M are precisely the externally active elements

with respect to the basis S � B of the dual matroid M�: That is why we say that internal activity and

external activity are dual concepts.

F. Ardila / Journal of Combinatorial Theory, Series A 104 (2003) 49–62 53



Proposition 3.1 (Crapo [4]). For any matroid M and any linear order of its

ground set,

TMðq; tÞ ¼
X

B basis

qiðBÞteðBÞ:

We will use Proposition 3.1 to study the Tutte polynomial of the Catalan matroid.
The first thing to do is to fix a linear order of its ground set, ½2n�: We will use the
most natural choice: 1o2o?o2n: Now we compute the internal and external
activity of each basis of Cn:

Lemma 3.2. The internal activity of a Dyck path B is equal to the number of up-steps

that B takes before its first down-step.

Proof. Let iAB: The path ½2n� � B never goes above height 0; the path ½2n� � B,i

goes up to height 2: Let j be the smallest integer such that ht½2n��B,iðjÞ ¼ 1:

Clearly jXi:
Let D be the unique cocircuit of Cn which can be obtained by deleting some

elements of ½2n� � B,i: We cannot delete any element less than or equal to j; or else
the resulting path will not reach height 1. We must delete any element larger than j

by Proposition 2.8. So D ¼ ð½2n� � BÞpj:

Therefore, i is the smallest element of D if and only if B contains all of 1; 2;y;
i � 1: This completes the proof. &

Lemma 3.3. The external activity of a Dyck path B is equal to the number of positive

integers x for which htBðxÞ ¼ 0:

Proof. Let eeB: The path B,e ends at height 2; let 2k � 1 be the largest integer such
that htB,eð2k � 1Þ ¼ 1: Clearly 2k � 1oe:
We start by showing that the unique circuit C of Cn contained in B,e is

ðB,eÞ
X2k:

Since CDB,e; we have that htCð2nÞ � htCð2k � 1ÞphtB,eð2nÞ � htB,eð2k � 1Þ
¼ 1: Equality holds if and only if every up-step of B,e after the ð2k � 1Þth is also an
up-step of C; i.e., when ðB,eÞ

X2k ¼ CX2k:

But it is clear from Proposition 2.7 that htCð2nÞ �minhtC ¼ 1; and that minhtC
is only achieved at htCðmin C � 1Þ: So the above inequality can only hold if
min C ¼ 2k: Thus C ¼ CX2k ¼ ðB,eÞ

X2k as desired.

Now we know that minC ¼ 2k; so e is externally active if and only if e ¼ 2k:
If htBðeÞ ¼ 0; this is clearly the case. On the other hand, if htBðeÞX1; then htB,e

ðe � 1Þ ¼ htBðe � 1ÞX2; so this is not the case. This completes the proof. &

Theorem 3.4. For a Dyck path P; let aðPÞ denote the number of up-steps that P takes

before its first down-step, and let bðPÞ denote the number of positive integers x for

which htPðxÞ ¼ 0:
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Then the Tutte polynomial of the Catalan matroid Cn is equal to

TCn
ðq; tÞ ¼

X
P Dyck

qaðPÞtbðPÞ;

where the sum is over all Dyck paths of length 2n:

Proof. This follows immediately from Proposition 3.1 and Lemmas 3.2 and 3.3. &

Corollary 3.5. The polynomial
X

P Dyck

qaðPÞtbðPÞ;

is symmetric in q and t:

Proof. It is well-known that, for any matroid M; we have TM� ðq; tÞ ¼ TMðt; qÞ: The
result follows from Proposition 2.9 and Theorem 3.4. &

It is a known fact that the statistics aðPÞ and bðPÞ are equidistributed over the set
of Dyck paths of length 2n: the number of paths with aðPÞ ¼ k and the number of

paths with bðPÞ ¼ k are both equal to k
2n�k

2n�k
n

� �
: For the first equality, see for

example [16]; for the second, see [9, Eq. (7)].
Corollary 3.5 was also discovered independently by James Haglund [6]. It is not

difficult to prove it directly; in fact, it will be an immediate consequence of our next
theorem.

Theorem 3.6. Let CðxÞ ¼ 1
2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x

p
Þ ¼ C0 þ C1x þ C2x

2 þ? be the generating

function for the Catalan numbers. Then

X
nX0

TCn
ðq; tÞxn ¼ 1þ ðqt � q � tÞxCðxÞ

1� qtx þ ðqt � q � tÞxCðxÞ:

Proof. A Dyck path P of length 2nZ2 can be decomposed uniquely in the standard
way: it starts with an up-step, then it follows a Dyck path P1 of length 2r; then it takes
a down-step, and it ends with a Dyck path P2 of length 2s; for some non-negative
integers r; s with r þ s ¼ n � 1: More precisely, and necessarily more confusingly,

P ¼ f1; 1þ p1; 1þ p2;y; 1þ pr; 2r þ 2þ q1; 2r þ 2þ q2;y; 2r þ 2þ qsg

for some Dyck paths fp1;y; prg and fq1;y; qsg with r þ s ¼ n � 1:
It is clear that in this decomposition we have aðPÞ ¼ aðP1Þ þ 1 and bðPÞ ¼

bðP2Þ þ 1: Therefore,

TCn
ðq; tÞ ¼

X
rþs¼n�1

X
P1ABr

X
P2ABs

qaðP1Þþ1 tbðP2Þþ1

¼ qt
X

rþs¼n�1
TCr

ðq; 1ÞTCs
ð1; tÞ
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for nX1; so if we write Tðq; t; xÞ ¼
P

nX0 TCn
ðq; tÞxn; we have

Tðq; t; xÞ ¼ 1þ qtxTðq; 1; xÞTð1; t; xÞ: ð1Þ

Now observe that Tð1; 1; xÞ ¼ CðxÞ: Setting q ¼ 1 in (1) gives a formula for
Tð1; t; xÞ; and setting t ¼ 1 gives a formula for Tðq; 1; xÞ: Substituting these two
formulas back into (1), we get the desired result. &

4. Shifted matroids

We now generalize our construction of Cn to a larger family of matroids, which
we call shifted matroids. There is one shifted matroid for each non-empty set
S ¼ fs1o?osng of positive integers, which we shall denote SMðs1;y; snÞ:

Theorem 4.1. Let S ¼ fs1o?osng be a set of positive integers, and let BS be the

collection of sets of positive integers fa1o?oang such that a1ps1;y; anpsn: Then

BS is the collection of bases of a matroid SMðs1;y; snÞ on the set ½sn�:

Proof. We can repeat the argument of Theorem 2.1 to conclude that SMðs1;y; snÞ is

the transversal matroid with presentation AS ¼ ð½s1�; ½s2�;y; ½sn�Þ: &

The Catalan matroid is a member of the shifted matroid family. From Lemma 2.2
we know that the Catalan matroid Cn is exactly the shifted matroid
SMð1; 3; 5;y; 2n � 1Þ; with an additional loop 2n:
Shifted matroids have been discovered several times in the past. Welsh [17] used

them to prove a lower bound for the number of non-isomorphic matroids on ½n�:
Oxley et al. [11] gave different characterizations of them. Bonin and de Mier [2],
Bonin et al. [3] are currently studying a wider class of matroids which provides an
excellent level of generality for matroid-theoretic structural considerations. It is
worth pointing out that the generalized Catalan matroids of [3] are precisely our
shifted matroids.
Now we present a new characterization of shifted matroids. Recall that an abstract

simplicial complex D on ½n� is a family of subsets of ½n� (called faces) such that if GAD
and FDG; then FAD: A simplicial complex D is shifted if, for any face FAD and any
pair of elements ioj such that ieF and jAF ; the subset F � j,i is also a face of D:
The family of independent sets of a matroid M is always a simplicial complex,

called the independence complex or matroid complex of M: For shifted matroids, we
have the following simple observation.

Proposition 4.2. The independence complex of a shifted matroid SMðs1;y; snÞ is a

shifted complex.

Proof. If FD½sn� is independent, it is contained in some basis B:Now assume that we
have two elements ioj such that ieF and jAF ; and let G ¼ F � j,i: If the basis B
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contains i; then it contains G: Otherwise, B � j,i is also a basis: for any 1pkpn; its
kth smallest is less than or equal to the kth smallest element of B; which is less than
or equal to sk: This basis contains G: In both cases, we conclude that G is
independent. &

Klivans [8] characterizes shifted matroid complexes: shifted complexes which are
independence complexes of matroids. Her results and ours were discovered almost
simultaneously. When we sat down to discuss them, we realized that her shifted
matroid complexes were precisely the independence complexes of the matroids
SMðs1;y; snÞ: This is why these matroids were baptized ‘‘shifted matroids’’.

Proposition 4.3 (Klivans, [8]). If the independence complex of a loop-less matroid M

is a shifted complex, then MDSMðs1;y; snÞ for some positive integers s1o?osn:

Corollary 4.4. The independence complex of a matroid M is a shifted complex if and

only if M is a shifted matroid.

One of the main reasons to study shifted complexes is the simplicity of their
topology. For any simplicial complex G; one can construct a shifted simplicial
complex DðGÞ: This shifted complex preserves many combinatorial and topological
properties of G; but is much easier to study [7]. In particular, any shifted complex is
homotopically equivalent to a wedge of spheres. Therefore, its homology groups
have no torsion and its cohomology ring is trivial. We now use these facts to discuss
the topology of Catalan matroid complexes and, more generally, shifted matroid
complexes.
The Catalan matroid complex is contractible, since every basis contains 1: So is the

complex of any shifted matroid SMð1; s2;y; snÞ: Instead, consider the reduced

Catalan matroid complex: the independence complex of the Catalan matroid with the
coloop 1 deleted.

Proposition 4.5. The reduced Catalan matroid complex is homotopically equivalent to

a wedge of Cn�1 ðn � 2Þ-dimensional spheres.
Let 1os1o?osn be integers. The independence complex of SMðs1;y; snÞ is

homotopically equivalent to a wedge of ðn � 1Þ-dimensional spheres. The number of

spheres is equal to the number of bases of SMðs1 � 1;y; sn � 1Þ:

Proof. We use Lemma 3.1 of [7]. Any shifted complex is homotopically equivalent to
a wedge of spheres, possibly of different dimensions. In our case, since matroid
complexes are pure, the spheres must have the same dimension.
For the reduced Catalan matroid complex, the spheres are ðn � 2Þ-dimensional.

The number of them is equal to the number of maximal faces of the complex which
do not contain 2; that is, the number of Dyck paths of length 2n whose second step is
a down-step. There are Cn�1 such paths.
For the independence complex of SMðs1;y; snÞ; the spheres are ðn � 1Þ-

dimensional. The number of them is equal to the number of maximal faces of the
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complex which do not contain 1. Subtracting 1 from the labels of these faces puts
them in bijective correspondence with the bases of SMðs1 � 1;y; sn � 1Þ: &

Theorem 4.1 and Propositions 4.2 and 4.3 have a nice application to Young
tableaux. Recall that a partition l ¼ ðl1;y; lkÞ of n is a weakly decreasing sequence
of positive integers which add up to n: We associate to it a Young diagram: a left-
justified array of unit squares, which has li squares on the ith row from top to
bottom.3 A standard Young tableaux is a placement of the integers 1;y; n in the
squares of the Young diagram, in such a way that the numbers are increasing from
left to right and from top to bottom.
These definitions will be sufficient for our purposes. For a much deeper treatment

of the theory of Young tableaux, we refer the reader to [5].

Corollary 4.6. Let l be a partition. Define the first row set of a standard Young

tableau T of shape l to be the set of entries which appear in the first row of T : Then the

collection of first row sets of all standard Young tableaux of shape l is the collection of

bases of a shifted matroid.

Proof. Let l0 ¼ ðl10;y; ln
0Þ be the conjugate partition of l; so li

0 is the number of
squares on the ith column of the Young diagram of l: Let si ¼ 1þ l10 þ?þ li�1

0

for 1pipn:
Let fb1o?obng be the first row set of a standard Young tableau T of shape l:

The first entry on the ith column of T is bi; it is smaller than every entry to its
southeast. There are only l10 þ?þ li�1

0 cells which are not to its southeast,
so bipsi:
Conversely, if B ¼ fb1o?obng is such that bipsi for 1pipn; then we can

construct a standard Young tableau with first row set B: To do it, we first put the
elements of B in order on the first row of l: Then we put the remaining numbers from
1 to jlj on the remaining cells going in order down the columns, starting with the
leftmost column. The inequalities bipsi guarantee that this process does indeed give
a Young tableau T :
It follows that the collection in question is simply the collection of bases of the

matroid SMðs1;y; snÞ: &

We might try to generalize Corollary 4.6, replacing the first row of l by any
partition mDl: Define the m-set of a standard Young tableau T of shape l to be the
set of entries which appear in the sub-shape m in T :
It is not too difficult to see that we do not always get the collection of bases of a

matroid with this construction. However, we can still say something interesting.

Proposition 4.7. Let mDl be partitions. Then the collection Blm of m-sets of all

standard Young tableau of shape l is a shifted family.
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In fact, as suggested by Stanley [15], this result still holds in the following more
general setting. Let P be a partially ordered set, or poset, of n elements. Recall that a
subset I of P is an order ideal of P if, for any pair of elements x; yAP with xoPy and
yAI ; we also have xAI : Also recall that a linear extension of P is a bijection
f : P-½n� such that ioPj implies that f ðiÞof ð jÞ: For more information on posets,
we refer the reader to [13, Chapter 3].
Define the I-set of a linear extension f of P to be the set f f ðiÞ : iAIg:

Proposition 4.8. Let P be a finite poset, and let I be an order ideal of P: Then the

collection BP;I of I-sets of all linear extensions of P is a shifted family.

Proof of Proposition 4.8. We need to check that if we have a set BABP;I and a pair of

numbers aob such that aeB and bAB; then B � b,aABP;I : It is enough to show

this for a ¼ b � 1; the general case will then follow by induction on b � a:
So let f be a linear extension of P with I-set B; and let bAB be such that b � 1eB:

Let b ¼ f ðiÞ and b � 1 ¼ f ð pÞ where iAI and pAP � I : Let g : P-½n� be defined by
switching the values of f at i and p; i.e.,

gðxÞ ¼
f ðxÞ if xefi; pg;
b � 1 if x ¼ i;

b if x ¼ p:

8><
>:

ð2Þ

We claim that g is also a linear extension for P: An important observation is that i

and p are incomparable in P: If we had iop; then we would have b ¼ f ðiÞof ð pÞ ¼
b � 1: If we had i4p; then iAI would imply pAI :
Since f is a linear extension, we know that f ðiÞ ¼ b satisfies several inequalities: it

must be greater than all the values that f takes on Poi; and less than all the values
that f takes on P4i: But b is never compared to b � 1 here, since p and i are
incomparable. Therefore, b � 1 also satisfies all those inequalities that b needs to
satisfy.
Similarly, b � 1 is greater than all the values that f takes on Pop and less than all

the values that f takes on P4p: The number b also satisfies these inequalities.

So we can switch the values of f ðiÞ and f ð pÞ; and the resulting function g defined
by (2) will also be a linear extension of P: Also, the I-set of g is B � b,ðb � 1Þ: This
concludes the proof. &

Proof of Proposition 4.7. The cells of l can be given a partial order Pl:
cell i is less than cell j in Pl if and only if cell i is northwest of cell j in l:
The cells of m define an order ideal Im of Pl; and Blm ¼ BPl; Im : Now use

Proposition 4.8. &

In view of Corollary 4.6 and Proposition 4.8, a natural problem, suggested by
Richard Stanley, is the following.
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Problem 4.9. Characterize the pairs ðP; IÞ of a finite poset P and an order ideal I for

which BP;I is the set of bases of a matroid.

5. Representability

Piff and Welsh [12] showed that every transversal matroid is representable over
fields of every characteristic. We use ideas essentially equivalent to theirs to give
vector representations for the Catalan and shifted matroids, which are transversal.
To write down an explicit representation, we will use the notion of a generic

collection of numbers. There are many different approaches that we could follow;
one that is sufficient for our purposes is the following. Given a collection of real
numbers x1;y; xN ; let xS ¼

Q
iAS xi for each subset SD½N� with jSj ¼ n: Form all

the 2ð
N
n Þ possible sums of some of the xS’s. If these sums are all distinct, we will say

that the initial collection of numbers is n-generic. Most N-tuples of real numbers are
n-generic. A specific example is a set of algebraically independent real numbers.
Another example is any sequence of positive integers which increases quickly
enough; for example one such that, for each 1pipN; we have xi4

P
xS summing

over all n-subsets S of ½i � 1�:

Theorem 5.1. Let v1;y; v2n be the columns of a matrix

A ¼

a11 0 0 0 0 0 ? 0 0

a21 a22 a23 0 0 0 ? 0 0

a31 a32 a33 a34 a35 0 ? 0 0

^ ^ ^ ^ ^ ^ & ^ ^

an1 an2 an3 an4 an5 an6 ? an;2n�1 0

0
BBBBBB@

1
CCCCCCA

where the aij ’s with 1pipn and 1pjp2i � 1 are n-generic integers. Then the vector

matroid of fv1;y; v2ng is isomorphic to the Catalan matroid Cn:

Theorem 5.2. Let s1o?osn be arbitrary positive integers. Let v1;y; vsn
be the

columns of a matrix A ¼ ðaijÞ1pipn;1pjpsn
; where the aij ’s with 1pipn and 1pjpsi

are n-generic, and the remaining aij’s are equal to 0: Then the vector matroid of

fv1;y; vsn
g is isomorphic to the shifted matroid SMðs1;y; snÞ:

The above two theorems are not difficult to prove directly. Columns c1;y; cn of
the matrix are a basis for Rn if and only if the determinant of the corresponding n � n

matrix Mc is non-zero. This determinant is a sum of n! terms with plus and minus
signs; by the n-genericity condition, if any of these terms is non-zero then det Mca0:
Since Mc has its non-zero entries on the bottom left, det Mca0 if and only if all the
diagonal entries of Mc are all non-zero; this is equivalent to fc1;y; cng being a basis
of the shifted matroid. For more details, we refer the reader to [12].
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Theorem 5.1 shows that the Catalan matroid is representable over Q; or even over
a sufficiently large finite field. In the other direction, we now show a negative result
about representing Cn over finite fields.

Proposition 5.3. The Catalan matroid Cn is not representable over the finite field Fq

if qpn � 2:

Proof. It is known ([10, Proposition 6.5.2]) and easy to show that the uniform
matroid U2;k is Fq-representable if and only if qXk � 1: A matroid containing it as a

minor is not representable over Fq for qpk � 2: This suggests that we should find the

largest k for which U2;k is a minor of Cn:
We can use the Scum theorem (Higgs, [10, Proposition 3.3.7]), which essentially

says that, if a matroid has a certain minor, then it must have that same minor
hanging from the top of its lattice of flats. Our question is then equivalent to finding
the largest k for which there exists a rank-ðn � 2Þ flat which is contained in k

rank-ðn � 1Þ flats.

Lemma 5.4. Let A be a rank-ðn � 2Þ flat, and let x be the smallest integer such that

htAðxÞ ¼ �1: Then there are exactly xþ3
2 rank-ðn � 1Þ flats containing A:

Proof of Lemma 5.4. We know from Propositions 2.3 and 2.4 that minhtA ¼ �3 and
that, once the path A reaches height �3; say at htAðyÞ; it only takes up-steps. We
want to add elements to A to obtain a path which reaches a minimum height �1; and
only takes up-steps after that.
Say that we add one element a to A: This new up-step at a comes before

the yth, so htA,aðyÞ ¼ �1: If we do not want to add any more elements to A; we
have to make sure that A,a only reaches height �1 at y: For this to be true, we

need the new up-step a to occur on or before the xth step. In A; there are xþ1
2
down-

steps up to the xth to choose from. Each one of these gives a rank-ðn � 1Þ flat
containing A:
On the other hand, if we are to add more elements to A to obtain a rank-ðr � 1Þ

flat B; they will all be less than y so we will have htBðyÞ40: The minimum height in B

must then be achieved at some z for which htAðzÞ ¼ �1: In fact, for this z to be
unique, it must be the leftmost one; i.e., it must be x: So the only possibility is that
B ¼ Apx,fx þ 1;y; 2ng; which is indeed a rank-ðn � 1Þ flat. This concludes the
proof of Lemma 5.4. &

Having shown Lemma 5.4, the rest is easy. The rank-ðn � 2Þ flat
which is contained in the largest number of rank-ðn � 1Þ flats, is the latest
one to arrive to height �1: This flat is clearly f1; 2;y; n � 3; n � 2; 2ng; which
arrives to height �1 after 2n � 3 steps. It is contained in exactly n rank-ðn � 1Þ
flats.
Therefore Cn contains U2;n as a minor, and thus it is not representable over a field

Fq with qpn � 2: &
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