
Process Algebraic Non-product-forms

P.G. Harrison1

Department of Computing
Imperial College London, England

Abstract

A generalization of the Reversed Compound Agent Theorem of Markovian process algebra is derived that
yields separable, but non-product-form solutions for collections of interacting processes such as arise in
multi-class queueing networks with Processor Sharing servers. It is based on an analysis of the minimal
cycles in the state space of a multi-agent cooperation, which can be simply identified. The extended
methodology leads to what we believe are new separable solutions and, more generally, the results represent
a viable practical application of the theory of Markovian process algebras in stochastic modelling.

Keywords: Markov processes, Reversed Compound Agent Theorem, non-product form, stochastic
modeling

1 Introduction

The quest for so-called product-form solutions for the equilibrium state probabilities

in stochastic networks has been a major research area in performance modelling for

over 30 years, e.g. [1,13,14]. As the name implies, such a solution is expressed as

a product of terms, each of which relates to only one of a collection of interacting

component processes. Most attention has been given to queueing networks and their

variants such as G-networks [5], but there have also been other significant examples.

The Reversed Compound Agent Theorem (RCAT) is a compositional result

that uses Markovian process algebra (MPA) to derive the reversed process of cer-

tain cooperations between two continuous time Markov chains at equilibrium. From

a reversed process, together with the given, forward process, the joint state prob-

abilities follow as a product of ratios of rates in these two processes, yielding a

product-form when one exists. RCAT thereby provides an alternative methodol-

ogy, with syntactically checkable conditions, which unifies many product-forms, far

beyond those for queueing networks.

1 Email: pgh@doc.ic.ac.uk

Electronic Notes in Theoretical Computer Science 151 (2006) 61–76

1571-0661 © 2006 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.03.012
Open access under CC BY-NC-ND license.

mailto:pgh@doc.ic.ac.uk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

This paper presents a significant generalisation that yields separable, but non-

product-form, solutions in other networks in which some transition rates depend on

the states of more than one synchronising process. This situation arises in multi-

class networks with processor sharing (PS) queues, for example. The generalisation

is based on an analysis of the minimal cycles in the state space of the multi-agent

cooperation. Specifically, it is shown that the ratio of the products of rates around

any cycle and its reversed cycle, required to establish Kolmogorov’s criteria [7,9],

is a product of such ratios around a set of minimal cycles. The extended method-

ology leads to what we believe are new separable, non-product-form solutions and

constiutes a major contribution to the mechanisation of stochastic modelling tools.

In the next section, the essential background material on Markov state transition

graphs and their relationship with MPA is reviewed; the basic definition of the MPA

PEPA and the defining property of a reversed stationary Markov process are given

in the Appendices. This section also includes a new result, which will be used in

our main analysis, that relates certain parallel and synchronising processes. The

main section 3 considers non-local state-dependence in multi-agent cooperations and

presents a weaker version of RCAT that relies on checking products of rates around

minimal cycles. This leads to the well known ‘BCMP’ result of Baskett, Chandy,

Muntz and Palacios [1] for processor sharing queues and new product-forms. The

paper concludes in section 4.

2 Preliminaries

2.1 State transition paths and split actions

Once a reversed process is known, a solution for a stationary Markov process’s

equilibrium probabilities follows as a product of ratios of forward and reversed

rates when an appropriate path has been found from a chosen reference state to the

state in question; see Appendx B.

An action α in a component that cooperates (with some action in another com-

ponent) may be only a part of a ‘complete’ action α+ (with higher rate) in that

component considered in isolation. In the cooperation, we say this ‘complete’ action

α+, which represents transitions between the same pair of states, is split into two

sub-actions, of which the one α synchronises (with a (sub-)action in the other com-

ponent) and the other one proceeds independently. For example, a service comple-

tion (α+) at a queue can cause either an external departure or the transfer of a

customer to another queue (α).

In general, an action can be split into more than two sub-actions, corresponding

to multiple synchronisations, and each sub-action has a well defined rate. The

reversed sub-actions are allocated rates in proportion to their forward transition

rates, their total being equal to the reversed rate of the complete action (in the

isolated component); see [7].

If every cooperation involves only a sub-action in each component, with another

sub-action of each respective complete action not participating, there will always be

a rectilinear path to every state (i, j) from any chosen reference state (0, 0). That is,

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–7662

considering a two-component cooperation for simplicity, just follow the path from

(0, 0) to i in the first component process with the second component in state 0, and

then follow the path from 0 to j in the second component with the first in state

i. Then a separable solution can be found by finding products of ratios in each

cooperating component separately, with the reparameterisation of the components

given by RCAT. Note that parallel (non-cooperating) agents are a special case with

a null reparameterisation.

2.2 Residual actions

We can guarantee that rectilinear paths do exist, which are identical to concatena-

tions of paths in the isolated component processes, by augmenting active synchronis-

ing actions with residual actions or ε-actions. These are parallel to the synchronising

actions but do not participate in the cooperation.

Definition 2.1 Suppose (a, λ) is an action in some agent P . The agent P a+ε =

P{(a, λ) ← (a, (1 − ε)λ)} ∪ P{(a, λ) ← (aε, ελ)} for some real number ε, 0 < ε < 1,

where the action type aε does not occur in P . The residual action (aε, ελ) is called

an ε-action.

The agent P a+ε denotes the Markov process with the same generator matrix as

that of the Markov process underlying P , but with every element denoted by the

action type a interpreted as a sum of the quantities (1− ε)λ (the original action a)

and ελ (the ε-action). That is, the Markov process underlying P a+ε has the same

transitions as for P except that the rate of a is reduced by a factor of 1 − ε and

there are additional transitions of rate ελ parallel to (with the same source and

destination states) all those denoted by action type a. Clearly, limε→0 P a+ε = P .

We cannot assume anything about ergodicity and its preservation in this limit, but

this is not an issue here since all processes are assumed stationary. Ergodicity

conditions require a separate analysis.

Notice that a reversed residual action (aε, ελ) = (aε, ελ), i.e. its rate is the

product of ε and the reversed rate of the unsplit action a.

In a cooperation of agents with ε-actions, we must split a passive action into

residual and cooperating parts before making only the cooperating part passive – it

is not meaningful to split an unspecified rate, and no action can be passive until it

participates in a cooperation. For brevity, we denote an agent P , in which an action

type a is made passive, by P (a,�) ≡ P{(a, λ) ← (a,�)}, where λ is matched to

the rate of the action with type a in P (possibly different at each of its instances).

This notation is extended in the obvious way to multiple action types a ∈ S which

each become passive in the agent P{(a, λ) | a ∈ S}.

We can now write P a+ε(a,�) to define a modified agent P with passive action

type a, split to introduce a parallel residual action with rate ελ which does not

synchronise, where λ is the rate of a in P (possibly different at each instance).

We have the following simple but important property for certain cooperations

with residual actions.

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–76 63

Lemma 2.2 Consider agents R,S with no passive actions and let action type a in

R have rate λa, action type a in S have rate μa. Let ra and ra be the rates of a and

a at a particular instance of a in the cooperations

Ra+ε ��
L

Sa+ε(a,�) and Ra+ε(a,�) ��
L

Sa+ε

respectively, where a ∈ L. Then

ra

ra

=
λaμa

λaμa

if and only if μa = λa.

Proof. By definition of the cooperation combinator and the splitting of the action

with type a, ra = (1 − ε)λa and ra = (1 − ε)μa and so the result follows. �

This lemma means that paths including a cooperating action are equivalent to paths

that do not, in the sense of equilibrium state probabilities as follows.

Lemma 2.3 In the notation of the previous lemma, let rε
R, rε

S be the rates of the

residual action type aε in R, S respecively and let rε
R, rε

S be the respective reversed

rates of aε. Then, at a particular instance of a,

ra

ra
=

rε
R

rε
R

rε
S

rε
S

if and only if μa = λa.

Proof. rε
R = ελa and rε

R = ελa. Similarly, rε
S = εμa and rε

S = εμa so that the ε

factors cancel in the ratio and the result follows by lemma 2.2. �

Suppose, then, that a cooperating action type a denotes a transition between states

(i, j) and (i′, j′) in R ��
L

S; i.e. it also denotes transitions i → i′ in R and j → j′ in S.

Then, the paths (i, j) → (i′, j) → (i′, j′), (i, j) → (i, j′) → (i′, j′) (via residual tran-

sitions) and (i, j) → (i′, j′) (via the synchronised transition) are equivalent in the

sense that the products of the ratios of the forward and reversed rates of each transi-

tion in each path are equal. This is a necessary condition for Ra+ε(a,�) ��
L

Sa+ε to

be the reversed process of Ra+ε ��
L

Sa+ε(a,�), a property that yields a simple proof

for RCAT. Moreover, it can also be used to find simple separable solutions directly

for the equilibrium state probabilities of cooperations satisfying that theorem.

2.3 Multiple agent cooperations

In the PEPA cooperation P ��
L

Q, the subset of action types in a cooperation set

L which are passive (i.e. have unspecified rate �) with respect to an agent P is

denoted by PP and the subset of corresponding active action types by AP = L\PP ;

similarly for agent Q. For RCAT, it is also assumed that, in P ��
L

Q, any active action

in P has a corresponding passive action in Q, and vice versa; therefore, PP = AQ

and AP = PQ.

In an extension of PEPA, consider now a multiple-agent, pairwise cooperation
n
��

k=1
L

Pk (n ≥ 2), where L =
n⋃

k=1

Lk and Lk = Pk∪Ak is the set of synchronising action

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–7664

types that occur in agent Pk (abbreviating PPk
by Pk and APk

by Ak). Each of the

n agents cooperates with (at most) one other and so Pk ⊂
n⋃

j=1
j �=k

Aj and Ak ⊂
n⋃

j=1
j �=k

Pj .

We provide the semantics of multi-agent cooperation by defining it in terms of

PEPA’s cooperation combinator:

n
��

k=1
L

Pk = (. . . ((P1 ��
M2

P2) ��
M3

P3) ��
M4

. . . ��
Mn−1

Pn−1) ��
Mn

Pn

where Mk = Lk ∩

(
k−1⋃
j=1

Lj

)
. Note the subtle change in the bowtie symbol used for

multi-agent cooperations.

2.4 Notation

We will use the following notation, generalising that of [10]:

Pi→
k denotes the set of action types in Lk that are passive in Pk and correspond to

transitions out of state i in the Markov process of Pk;

Pi←
k denotes the set of action types in Lk that are passive in Pk and correspond to

transitions into state i in the Markov process of Pk;

Ai→
k denotes the set of action types in Lk that are active in Pk and correspond to

transitions out of state i in the Markov process of Pk;

Ai←
k denotes the set of action types in Lk that are active in Pk and correspond to

transitions into state i in the Markov process of Pk;

Pi→ denotes the set of action types in L =
n⋃

k=1

Lk that are passive and correspond

to transitions out of state i = (i1, i2, . . . , in) in the Markov process of
n
��

k=1
L

Pk;

Pi← denotes the set of action types in L that are passive and correspond to tran-

sitions into state i in the Markov process of
n
��

k=1
L

Pk;

Ai→ denotes the set of action types in L that are active and correspond to transi-

tions out of state i in the Markov process of
n
��

k=1
L

Pk;

Ai← denotes the set of action types in L that are active and correspond to transi-

tions into state i in the Markov process of
n
��

k=1
L

Pk;

α
i
a denotes the instantaneous transition rate out of state i in the Markov process

of
n
��

k=1
L

Pk corresponding to active action type a ∈ L;

�a denotes the unspecified rate associated with the action type a in the action

(a,�a);

x denotes the vector (xa1 , . . . , xam) of positive real variables xai
when L =

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–76 65

{a1, . . . , am};

β
i
a(x) denotes the instantaneous transition rate out of state i in the reversed Markov

process of
n
��

k=1
L

Pk{�a ← xa | a ∈ L} corresponding to passive action type a ∈ L;

note that a is incoming to state i in the forwards process. We also write βik
k;a(x) ≡

β
i
a(x) where Pk is the component in which a is passive (incoming to state ik).

3 Non-local state dependence

The reversed process and product-form arising from RCAT requires conditions,

given in [7,10] and in theorem 3.7 below, that ensure Kolmogorov’s criteria are

satisfied. These criteria are that:

(i) the total outgoing rate from each state (reciprocal of mean state holding time)

is the same in both the forward and reversed processes;

(ii) The product of the rates around each cycle in the Markov state transition

graph is the same in both the forward and reversed processes.

Inspection of the proof of RCAT shows that, even with state-dependent rates (called

‘functional rates’ by Hillston [12]), the total outgoing rate is the same in both the

forward and reversed processes at every joint state of the cooperation. However,

the second of Kolmogorov’s criteria does not hold in general. Therefore, a weaker

form of RCAT for cooperations with functional rates would read exactly the same

but require that the products of rates around corresponding cycles in the forward

and reversed processes be checked for equality. To have the first of Kolmogorov’s

criteria, such a generalisation would still require that the reversed rate xa of an

active action a be the same at all its instances.

3.1 Minimal cycles

To show the equality of the products of rates around every pair of corresponding

cycles in the forward and reversed processes, it is actually only necessary to identify

the minimal cycles and prove the equality around these. Minimal cycles are defined

next and their number (also given below) is drastically less than the number of

all cycles, which may be infinite. Consequently, the prospect of checking cycles

individually is quite viable when the minimal cycles in the component processes are

small and few in number.

Definition 3.1 A cycle in a Markov process with generator matrix Q is a sequence

of transitions {i0 → i1, i1 → i2, . . . , in−1 → in}, abbreviated by i0 → i1 → . . . →

in−1 → in, where n ≥ 1 and in = i0. A cycle is proper if ij �= ik for j �= k, 1 ≤

j, k ≤ n − 1. A composition of cycles i0 → i1 → . . . → in−1 → i0 and j0 →

j1 → . . . → jm−1 → j0, where j0 = ik for some k, 0 ≤ k ≤ n − 1 is the cycle

i0 → i1 → . . . → ik → j1 → . . . → jm−1 → ik → ik+1 → . . . → in−1 → i0.

A minimal cycle is a proper cycle that cannot be expressed as a composition of

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–7666

smaller cycles.

We are concerned with cooperations that satisfy the condition that the reversed

rate of every active action is the same at all its instances. Consequently, the agents

Rk of theorem 3.7 pairwise satisfy lemmas 2.2 and 2.3. Consider now the ratios of

products of rates around cycles in the cooperations of agents with residual actions,
n
��

k=1
L

Rε
k{(a,�) | a ∈ Pk(Lk)} and

n
��

k=1
L

Rε
k{(a,�) | a ∈ Ak(Lk)} where Rε

k denotes

the agent Rk in which all actions have been split with residual actions according

to definition 2.1 2 Here, it is not necessary to take into account synchronising tran-

sitions; these may be replaced by the appropriate pair of rectilinear transitions in

single dimensions only, corresponding to the individual, synchronising components.

Definition 3.2 A rectilinear cycle in a Markov process defined by a cooperation is

cycle in which every transition is denoted by an action with type a /∈ L; i.e. by an

action that occurs independently in a single component and does not synchronise.

A trivial (rectilinear) cycle is one in which all transitions are in the same dimension,

i.e. are denoted by actions that all occur in just one component, the states of the

other component processes remaining constant. In a cooperation of n components,

let C1, . . . , Cn be minimal cycles in each distinct component process. A basic cycle

(with respect to C1, . . . , Cn) is a non-trivial rectilinear cycle in which every transition

is denoted by an action with type in one of the minimal cycles Ck, 1 ≤ k ≤ n.

By the preceding observations, it is sufficient to consider only rectilinear minimal

cycles in RCAT-cooperations when checking the second of Kolmogorov’s criteria.

Notice that rectilinear cycles are products of cycles in each of the component pro-

cesses. Some of these component cycles may be null, i.e. have no transitions; when

all but one of the component cycles are null the rectilinear cycle is trivial. It is

straightforward to construct the basic cycles of a cooperation from the given min-

imal cycles in the component processes, using a combinatorial algorithm that is

easily mechanised. Their number is given by the following result.

Proposition 3.3 The maximum number of basic cycles in a cooperation of n com-

ponents with m1, . . . ,mn minimal cycles respectively, starting at a given state in the

state space, is
(m1 + . . . + mn)!

m1! . . . ,mn!

of which m1 + . . . + mn are trivial.

Proof. Consider a 2-component cooperation and assume that all (the actions denot-

ing) the transitions in each cycle are enabled in every state of the cooperation. Then,

if a cycle starts on a given one of its transitions, the number of basic cycles, which

cannot be exceeded when some actions are disabled, is the number of distinguish-

able ways of arranging m1 +m2 objects of which m1 are white and m2 are black, i.e.

2 Strictly it is defined recursively by Rε
k

= R
|L|ε
k

where Rmε
k

=
“
R

(m−1)ε
k

”amε

for 1 ≤ m ≤ |L|, R0ε
k

=

Rk , L = {a1, . . . , a|L|}.

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–76 67

⎛
⎝ m1 + m2

m1

⎞
⎠. These include m1 + m2 arrangements in which all black or all white

occur consecutively in the cycle—corresponding to trivial rectilinear cycles. The

argument extends simply to n-component cooperations with n ≥ 2 by induction.�

The main result of this section identifies the minimal cycles of a cooperation as

its basic cycles. We first define the corners that may occur in a cycle.

Definition 3.4 A corner at a state i is a pair of successive state transitions which

occur in two different component processes Pj , Pk of a cooperation, e.g. one ‘hor-

izontal’ and one ‘vertical’. A top-right corner, denoted by
, consists of successive

transitions ij:−a → i → ik:−b or ik:−c → i → ij:−d for some integers a, b, c, d ≥ 1,

where ij:−a = (i1, . . . , ij−1, ij − a, ij+1, . . . , in) in an n−component cooperation. A

bottom-left, denoted �, bottom-right, denoted � and top-left, denoted �, corner are

defined similarly to the
-corner.

Proposition 3.5 The basic cycles are the minimal cycles of a cooperation.

Proof. First, a trivial basic cycle is clearly minimal. Next, in a non-trivial basic

cycle, consider the transitions denoted by actions in one of the cooperating com-

ponents. These must comprise a minimal cycle in that component’s process, by

definition of basic. Hence every basic cycle is minimal.

To prove the converse, consider an arbitrary finite cycle A in a cooperation of

two components. We show that if this is not a basic cycle, it is a composition of

simpler, ultimately basic, cycles. We enumerate the states of each compponent of the

cooperation by the non-negative integers, so that the state space of the cooperation

is in the upper right quadrant in two-dimensional space. We define the size z(A) of

a cycle A by z(A) =
∑

(i,j)∈A i + j.

In passing around any cycle, the direction of the successive transitions changes

by a non-zero multiple of 2π. Each corner contributes a change of ±π/2 and so each

type of corner must occur in the cycle the same number c > 0 times. Consider a

corner (say), comprising (without loss of generality) transitions (i, j−1) → (i, j) →

(i − 1, j), say, i, j > 0. Suppose that the transition i → i − 1 in component process

1 is in cycle C1 in that process and, similarly, that the transition j − 1 → j is in

cycle C2 in component process 2. Now let a rectilinear cycle C contain the
 corner

and consist of precisely all the transitions (denoted by actions) in cycles C1 and C2.

Then A is a composition of some cycle A′ and C. Moreover, z(A′) < s(A). This

procedure cannot be repeated indefinitely since z(A′) > 0 and so must ultimately

lead to a trivial cycle A′. But by hypothesis, a trivial cycle is a composition of

minimal cycles in one component process, which are basic cycles with the other

component process’s cycle being null.

This completes the proof for two-component cooperations. The result now fol-

lows by induction for cooperations of n ≥ 2 components by the inductive definition

of a multiple cooperation itself in terms of cooperations of two components. �

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–7668

Kolmogorov’s second criterion always holds for trivial cycles by the hypothesis

that the reversed component processes Rk are given. Hence any rectilinear cycle is a

composition of minimal (rectilinear) cycles and so, to verify the weaker theorem 3.7

with state-dependent rates, it is only necessary to consider the basic cycles directly;

contrast the state-independent case where these automatically satisfy the second of

Kolmogorov’s criteria.

3.2 A weaker, more general, multi-agent RCAT

Before stating the main theorem, RCAT extended to multiple agents and functional

rates, we first make the notion of a state-dependent rate more rigorous.

Definition 3.6 An action (a, λ) in a component Pk (1 ≤ k ≤ n) of a cooperation
n
��

k=1
L

Pk has a functional rate if λ depends on at least one of the derivatives of {Pj |

j �= k}.

The action type a may or may not be in the cooperation set L. In the Markov

process denoted by a cooperation with functional rates, the transitions correspond-

ing to an action with a functional rate are state-dependent. Some such cooperations

still have separable equilibrium state probabilities, as given by the following:

Theorem 3.7 (WMARCAT)

Suppose that the cooperation
n
��

k=1
L

Pk of agents Pk, with functional rates, has a deriva-

tion graph with an irreducible subgraph G and that, for 1 ≤ k ≤ n,

• Rk = Pk{�a ← xa | a ∈ Pk(Lk)} ;

• every instance of a reversed action, type a, of an active action type a ∈ Ak(Lk)

has the same rate ra in Rk ;

• {xa} are the unique solutions of the rate equations xa = ra, a ∈ L.

Then the agent
n
��

k=1
L

Rk{(a,�) | a ∈ Ak(Lk)}

with derivation graph containing the reversed subgraph G, is the reversed agent
n
��

k=1
L

Pk, provided that

(i) every instance of each reversed action has the same rate (as noted above);

(ii)
∑

a∈Pi→

xa −
∑

a∈Ai←

xa =
∑

a∈Pi←\Ai←

β
i
a(x) −

∑
a∈Ai→\Pi→

α
i
a ;

(iii) The product of the transition rates around every non-trivial basic cycle C in

the Markov process denoted by
n
��

k=1
L

Pk is equal to the product of the transition

rates around the corresponding reversed cycle C in the Markov process denoted

by
n
��

k=1
L

Rk{(a,�) | a ∈ Ak(Lk)}.

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–76 69

Furthermore, assuming the cooperation set L is finite, the cooperation has sepa-

rable solution

π(i) ∝
n∏

k=1

πk(i1, . . . , ik, 0, . . . , 0)

for the equilibrium probability of state i = (i1, . . . , in), where πk(i) is proportional

to the equilibrium probability of state ik in the process denoted by Rk when the state

of each other component process j �= k is fixed at ij .

Proof. The proof that the first of Kolmogorov’s criteria is satisfied is essentially

the same as for RCAT in the extended form of [10]—the functional rates are not

significant since we only consider one joint state and the reversed rates of active

actions are constant. The second criterion is satisfied by the analysis in the preced-

ing section—note that we need not consider trivial (basic) cycles since these satisfy

it by the hypothesis that each agent Rk is known.

For the second part of the theorem, we consider rectilinear paths from state

0 to state i, following the state-space dimensions in the order 1, 2, . . . , n. In the

path segment in dimension k, the ratio of forward to reversed rates is then (by

hypothesis) πk(i1, . . . , ik, 0, . . . , 0) and the result follows. �

3.3 Queueing networks with state-dependent rates

Consider an M -node Jackson network in which the service rate at each queue may

depend on the lengths of any of the queues. Let the M nodes have respective

constant external arrival rates λ1, . . . , λM , state-dependent service rates μ1(i), . . .,

μM (i) in state i = (i1, . . . , iM), and routing probability pij from node i to node

j (1 ≤ i �= j ≤ M), where pii = 0. Tasks leave the network from node i with

probability pi0 = 1−
∑M

j=1 pij. We do not consider departures from a node back to

itself as this is considered part of the definition of the component process for that

node. Such departures can be included easily with more complex components.

This network is easily specified in PEPA with functional rates as:
M
��

k=1
L

Pk,0 (start-

ing with an empty network), where, for 1 ≤ k ≤ M :

Pk,n = (ek, λk)Pk,n+1 n ≥ 0

Pk,n = (ajk,�jk)Pk,n+1 n ≥ 0, 1 ≤ j �= k ≤ M

Pk,n = (dk, pk0μk(i))Pk,n−1 n > 0

Pk,n = (akj , pkjμk(i))Pk,n−1 n > 0, 1 ≤ j �= k ≤ M

with Lk = {akj | j �= k} ∪ {ajk | j �= k}. The functional rates imply that

the service rate of server k is μk(i) when component Pj of the cooperation is at

derivative Pj,ij , i.e. when its underlying Markov process is in state ij or the queue

length at node j is ij , 1 ≤ j ≤ M .

Every occurrence of the reversed action of an active action, type akj say, in Ak

is a constant fraction of the constant net arrival rate λk, since each component is

an M/M/1 queue. Hence, condition 1 of WMARCAT is satisfied and we obtain the

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–7670

following rate equations for agent Pj,0 (j = 1, . . . ,M):

xij = pij

(
λi +

M∑
k=1

xki

)
(i = 1, . . . ,M)

(We use the abbreviation xij for xaij
, 1 ≤ i �= j ≤ M .)

Now let vi = λi +
∑M

k=1 xki for 1 ≤ i ≤ M so that:

xij = vipij 1 ≤ i, j ≤ M

These are precisely the traffic equations for the internal flows, where xij is the

internal traffic rate from node i to node j. A solution therefore always exists in an

irreducible network. In fact, summing over i we obtain

vj − λj =

M∑
i=1

vipij

which are the usual traffic or ‘visitation rate’ equations for the network, vi being

the average number of visits made to node i in unit time at equilibrium in an open

network—and proportional to this quantity in a closed network.

The second condition of WMARCAT holds trivially, because all passive actions

are enabled in every state in both the forward and reversed processes. For the

third condition, relating to minimal cycles, we have to check the non-trivial basic

cycles formed from every pair of component processes. Each component denotes an

M/M/1 queue and so has just one minimal cycle of the form i − 1 → i → i − 1

for i ≥ 1. There are therefore only two (parameterised) basic cycles, squares of the

form:

Anti-clockwise: (i− 1, j − 1) → (i, j − 1) → (i, j) → (i− 1, j) → (i− 1, j − 1) and

Clockwise: (i − 1, j − 1) → (i − 1, j) → (i, j) → (i, j − 1) → (i − 1, j − 1)

where i, j ≥ 1 are states in the respective component processes. Furthermore, since

the reversed process of an M/M/1 queue is the same M/M/1 queue (easily checked

since this queue satisfies detailed balance [14]), the clockwise and anticlockwise

squares are reversed cycles of each other. Hence it is sufficient to prove that the

products of the rates around these two squares are equal. Now, the rate i − 1 → i

in the queue denoted by component Rk in WMARCAT is the constant traffic rate

vk defined above—it does not depend on the service rate function. Hence we have

to show, for the basic cycles derived from components h and k, 1 ≤ h �= k ≤ n, that

vhvkμh(i)μk(ih) = vkvhμk(i)μh(ik)

where ik = (i1, . . . , ik−1, ik − 1, ik+1, . . . , in)—ik:−1 in previous notation. This sim-

plifies to
μk(ih)

μk(i)
=

μh(ik)

μh(i)
(1)

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–76 71

for 1 ≤ h �= k ≤ n and valid states i. Thus, any set of service rate functions

that satisfy these equations will also validate the third condition of WMARCAT.

The reversed PEPA agent of
M
��

k=1
L

Pk,0 now follows directly as
M
��

k=1
L

Xk,0, where, for

1 ≤ j, k ≤ M :

Xk,n = (ek,
λk

vk

μk(i))Xk,n−1 n > 0

Xk,n = (ajk,
xjk

vk

μk(i))Xk,n−1 n > 0

Xk,n = (dk, (1 −
∑
j �=k

pkj)vk)Xk,n+1 n ≥ 0

Xk,n = (akj ,�)Xk,n+1 n ≥ 0

with Lk = {akj | j �= k} ∪ {ajk | j �= k}.

The rates for the reversed actions are easily calculated using the rule for appor-

tioning rates to reversed sub-actions; see section 2. For example, consider the

reversed external arrivals at node 1, which have type e1. The total departure rate

of node 1 is μ1(i) and the proportion of e1 in the forward process is λ1
v1

. Hence the

rate for the reversed action e1 is λ1
v1

μ1.

A separable solution for the network’s equilibrium probabilities follows similarly.

This is a very general result, but what suitable service rate functions exist, if any?

3.3.1 Network-load dependent servers

Suppose that the service rate at node k is modified multiplicatively according to

both the global state of the network and the local state of node k. That is,

μk(i) = g(i)μ′
k(ik)

for certain functions g and μ′
k—g being the same for all component nodes. Equa-

tion 1 then implies, for all i with ih, ik > 0, g(ih) = g(ik). Applying this equation

repeatedly therefore leads to

g(i) = g(i1 + 1, i2 − 1, i3, . . . , in)

= g(i1 + i2, 0, i3, . . . , in)

= g(i1 + i2 + . . . + in, 0, . . . , 0)

which is a function only of the total population of the network, which we abbreviate

to g(i1 + i2 + . . . + in). Applying WMARCAT we obtain the following separable

state probabilities when equilibrium exists:

Proposition 3.8 A steady state Markovian queueing network with constant arrival

rates and state-dependent service rates of the form μk(i) = g(N)μ′
k(ik) at node k =

1, . . . ,M in state i, where N =
∑n

k=1 ik is the network population, has equilibrium

probabilities

π(i) ∝

n∏
k=1

(
vik
k /

∏ik
j=1 μ′

k(j)
)

∏N
j=1 g(j)

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–7672

Proof. Applying WMARCAT, we find

π(i) ∝

M∏
k=1

⎛
⎝vik

k /

ik∏
j=1

g(i1 + . . . + ik−1 + j)μ′
k(j)

⎞
⎠

and the result follows. �

3.3.2 Generalised processor sharing in Coxian queues

It is fairly well known that a node with a global resource-sharing queueing disci-

pline contributes a separable factor in a product-form solution for the equilibrium

probabilities in a network containing that node. This factor is duly given by the

result of the previous section, with g(i) = 1/
∑M

k=1 ik. However, it is not so well

known that the functional service rate dependence can be any function of the cur-

rent network population, not just inverse proportion. For example, the rate might

decrease less rapidly as the population increases, such as inversely with its square

root or logarithm, or perhaps increase linearly or quadratically, or more exotically,

as would be given by g(i) = sin
(∑M

k=1 ik

)
.

An S-phase Coxian random variable is usually thought of as the truncated sum

of a finite series of S ≥ 1 exponential delays. The probability of truncating after s

delays is a1a2 . . . as−1(1− as), where aS = 0. Thus, a queueing node with processor

sharing (PS) queueing discipline and S-phase Coxian service times can be modelled

as a standard, tandem, Jackson network of S nodes in which departures from the

network after service at node s occur with probability 1 − as, 1 ≤ s ≤ S. All

customers receive service concurrently at a rate inversely proportional to the number

at the Coxian node, i.e. to the number in the S-node Jackson network. Any number

of customers can be in each stage at the same time since there is no blocking of

customers. Each customer at stage s receives service at rate μs/(i1+. . .+iS) in state

i, giving a service rate function at that stage of isμs/(i1 + . . . + iS). However, the

dependence on the global state could be any function of the Coxian node population,

not just inverse proportion, giving a service rate function isμsg(i1 + . . .+ iS) for the

chosen function g. In this way, we obtain the queue length distribution at a Coxian

node of:

π(i) ∝
λN

i1! . . . iS !
∏N

j=1 g(j)

S∏
k=1

(
a1 . . . ak−1

μi

)ni

where N = i1 + . . . + iS . In the special case of conventional PS discipline, this

becomes

π(i) ∝
N !λN

i1! . . . iS !

S∏
k=1

(
a1 . . . ak−1

μi

)ni

Summing over i1, . . . , iS such that
∑S

k=1 ik = N then yields the equilibrium queue

length probability (by a routine application of the multinomial theorem)

π(N) ∝ ρN

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–76 73

where ρ = λ/μ and μ−1 =
∑S

k=1 a1 . . . ak−1μ
−1
k is the mean service time of the

coxian server.

We can now apply theorem 3.7 to obtain a product-form, cf. [1], for a network

of queues with either FCFS queueing discipline and exponential service time or

GPS discipline and Coxian service time. Last come first served (LCFS) queueing

discipline with Coxian service times can also be included in the RCAT framework

as described in [10], and also infinite servers (IS) analogously to PS. In every case,

all passive actions are enabled in every state of both the forward and reversed

cooperations, the required reversed rates xa are given by the traffic equations and

so WMARCAT can be applied, giving the known product-form. Extension to the

multi-class case is also straightforward, as discussed in [10].

4 Conclusion

The Weak Multiple Agents Reversed Compound Agent Theorem (WMARCAT)

greatly simplifies the use of its predecessor, RCAT, for cooperations of an arbitrary

number of agents. More significantly, allowing global state dependence in synchro-

nised actions’ rates, i.e. functional rates, leads to the weaker form of WMARCAT,

based on direct analysis of the minimal cycles in state transition graphs. This ben-

efits from a simple proof using residual actions and directly yields separable, but

non-product, forms when reversed processes can be found. The main application

of this result is a new, mechanisable derivation of the multiclass BCMP theorem

for networks of queues with PS servers, which generalises to a wider class of queue-

ing networks with subnetworks of globally state-dependent servers. New separable

solutions were also found, to the authors’ best knowledge.

The methodology can be automated and its newly generalised, multi-agent form

facilitates the uniform derivation of many diverse separable solutions, as considered

just for two-component cooperations in [9,10]. These applications range from multi-

class queueing networks, through the numerous variants of G-networks, to networks

with mutual exclusion and blocking in critical sections.

References

[1] F. Baskett, K. M. Chandy, R. R. Muntz and F. Palacios, Open, Closed and Mixed Networks of Queues
with Different classes of Customers, J. ACM, 22(2):248-260, 1975.

[2] M. Bernardo, L. Donatiello and R. Gorrieri. Integrating performance and functional analysis of
concurrent systems with EMPA, Proc. of the 1st Workshop on Distributed Systems: Algorithms,
Architectures and Languages, pp. 5-6, Levico (Italy), June 1996.

[3] R.J. Boucherie. A Characterisation of Independence for Competing Markov Chains with Applications
to Stochastic Petri Nets. IEEE Transactions on Software Engineering, 20(7):536–544, July 1994.

[4] X. Chao, M. Miyazawa and M. Pinedo. Queueing networks: customers, signals and product form
solutions. Wiley, 1999

[5] E. Gelenbe, The first decade of G-networks, European Journal of Operational Research, 126(2): 231-232,
October 2000.

[6] William J. Gordon and Gordon F. Newell, Closed Queueing Systems with Exponential Servers,
Operations Research, 15(2): 254-265, Mar-Apr 1967.

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–7674

[7] Peter G Harrison. Turning Back Time in Markovian Process Algebra. Theoretical Computer Science,
290(3):1947-1986, January 2003.

[8] Peter G Harrison. Mechanical Solution of G-networks via Markovian Process Algebra. In Proc.
International Conference on Stochastic Modelling and the IV International Workshop on Retrial Queues,
Cochin, India, December 2002, Notable Publications, 2002.

[9] P.G. Harrison. Compositional reversed Markov processes, with applications to G-networks.
Performance Evaluation, to appear, 2004.

[10] Peter G. Harrison. Reversed processes, product forms and some non-product forms. J. Linear Algebra
Applications, to appear, 2004.

[11] H. Hermanns, M. Rettelbach, and T. Wei. Formal Characterisation of Immediate Actions in SPA with
Nondeterministic Branching. The Computer Journal, 38(7):530-541, 1995.

[12] Jane Hillston. A Compositional Approach to Performance Modelling. PhD thesis, University of
Edinburgh, 1994.

[13] J. R. Jackson. Jobshop-like queueing systems. Management Science, 10(1):131-142, 1963.

[14] Frank P. Kelly. Reversibilities and Stochastic Networks. John Wiley & Sons Ltd, 1979.

Appendix A: A PEPA-based MPA

We use a Markovian process algebra language that defines agents, which denote con-

tinuous time Markov chains. Agents evolve through the execution of actions, which

have exponentially distributed durations. An action is a pair, the first component

of which is its type (or name) and the second of which is its rate. Thus, agents

and actions in an MPA specification correspond to states and transitions respec-

tively in the underlying Markov process. MPA describes systems at a higher level

than explicit state-transition diagrams. In particular, the cooperation combinator

of PEPA defines precisely how agents interact in a concise manner, using generic

descriptions of their actions’ rates. The precise semantics of the original PEPA

language is given in [12], and defines the Markov process denoted by a PEPA agent.

Notice that the term ‘agent’ is syntactic, part of the MPA, whereas ‘process’ is a

semantic entity with a well defined value in the domain of continuous time Markov

chains. However, the terms are essentially isomorphic.

In this paper, we use only the prefix and cooperation combinators of the MPA

PEPA (generalised straightforwardly in the body of the paper to multiple coopera-

tions):

(i) The prefix combinator defines an agent (a, λ).P that carries out action (a, λ)

of type (or ‘name’) a at rate λ and subsequently behaves as agent P ;

(ii) The agent describing the cooperation of two agents P and Q, which synchronise

over actions with types in a specified set L, is written P ��
L

Q .

In the cooperations considered in this paper, every action type in L is active, i.e.

has a specified real valued rate, in exactly one of the agents P , Q and is passive, i.e.

‘waits’, in the other. The rate of the joint action in the cooperation is then that

specified for the active action. A passive action is indicated by an unspecified rate,

denoted �, essentially infinite in the sense that the action will proceed instantly

once its synchronising action is ready. Any action with type in L can only proceed

simultaneously in both of the cooperating agents. The Markov process denoted

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–76 75

by a cooperation has a state space with two dimensions, corresponding to each

component of the cooperation respectively; relating to WMARCAT (theorem 3.7 in

section 3.2) where n ≥ 2 components cooperate, the state space has n dimensions,

similarly corresponding to each component.

New agents are defined using an assignment combinator, A = P , and the rela-

beling, P{y ← x}, denotes the process P in which all occurences of the symbol y are

changed to x, which may be an expression. Thus, for example, ((a, λ).P){λ ← μ}

denotes the agent (a, μ).P{λ ← μ}. Choice is denoted by multiple assignments to a

process name rather than the separate combinator symbol + of conventional PEPA.

Reversed entities (agents, actions, action types, action rates) are denoted with an

overbar.

Appendix B: Reversed processes

A stochastic process’s reversed process is simply the process obtained by looking

‘backwards in time’. Its key property is that the reversed Markov process of a sta-

tionary Markov process {Xt} with state space S, generator matrix Q and stationary

probabilities π has generator matrix Q′ defined by

q′ij = πjqji/πi (i, j ∈ S)

and the same stationary probabilities π.

This result is standard, see for example [14], and immediately yields a product-

form solution for π. This is because, in an irreducible Markov process, we may

choose a reference state 0 arbitrarily, find a sequence of connected states, in either

the forward or reversed process, 0, . . . , j (i.e. with either qi,i+1 > 0 or q′i,i+1 > 0 for

0 ≤ i ≤ j − 1) for any state j and calculate

πj = π0

j−1∏
i=0

qi,i+1

q′i+1,i

= π0

j−1∏
i=0

q′i,i+1

qi+1,i

P.G. Harrison / Electronic Notes in Theoretical Computer Science 151 (2006) 61–7676

	Introduction
	Preliminaries
	State transition paths and split actions
	Residual actions
	Multiple agent cooperations
	Notation

	Non-local state dependence
	Minimal cycles
	A weaker, more general, multi-agent RCAT
	Queueing networks with state-dependent rates

	Conclusion
	References

