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Abstract We demonstrate that neuronal nitric-oxide synthase
(nNOS) is directly inhibited through the phosphorylation of
Thr1296 in NG108-15 neuronal cells. Treatment of NG108-15
cells expressing nNOS with calyculin A, an inhibitor of protein
phosphatase 1 and 2A, revealed a dose-dependent inhibition of
nNOS enzyme activity with concomitant phosphorylation of
Thr1296 residue. Cells expressing a phosphorylation-deficient mu-
tant in which Thr1296 was changed to Ala proved resistant to
phosphorylation and suppression of NOS activity. Mimicking
phosphorylation mutant of nNOS in which Thr1296 is changed
to Asp showed a significant decrease in nNOS enzyme activity,
being competitive with NADPH, relative to the wild-type en-
zyme. These data suggest that phosphorylation of nNOS at
Thr1296 may involve the attenuation of nitric oxide production
in neuronal cells through the decrease of NADPH-binding to
the enzyme.
� 2005 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Neuronal nitric-oxide synthase (nNOS) is a Ca2+/calmodulin

(CaM)-dependent enzyme, catalyzing the oxidation of LL-argi-

nine to generate nitric oxide (NO) and LL-citrulline [1]. The

N-terminal oxygenase domain contains binding sites for heme,

(6R)-5,6,7,8-tetrahydro-LL-biopterin (H4B), and LL-arginine and

is the location where oxidative catalysis takes place. The C-ter-

minal reductase domain contains binding sites for FMN,

FAD, and NADPH, as found in NADPH-cytochrome P450

oxidoreductase (CYPOR) [1], and functions to transfer reduc-

ing equivalents from NADPH to the oxygenase domain. It is

homologous to ferredoxin NADP+ reductase (FNR). Protein

kinase-dependent phosphorylation events in nNOS also exert

effects, phosphorylation at Ser741 or Ser847 by CaM-K I or II

leading to a reduction in enzyme activity in cells [2–4]. It has
Abbreviations: CaM, calmodulin; nNOS, neuronal nitric-oxide syn-
thase; NO, nitric oxide; CL-A, calyculin A; OA, okadaic acid; PP,
protein phosphatase
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been reported that CaM-K II-phosphorylates nNOS at

Ser847 in rat hippocampus after transient forebrain ischemia

[5] and that this is promoted by post-synaptic density 95 [6].

In the present study, we investigated the effects of protein

phosphatase (PP) inhibitors on nNOS enzyme activity using

NG108-15 cells and found that Thr1296 residue of nNOS is a

key determinant for transducing the nNOS–NADPH interac-

tion via its phosphorylation.
2. Materials and methods

2.1. Materials
The cDNA for rat brain nNOS, the pME18s-FLAG vector, and

NG108-15 neuroblastoma · glioma hybrid cells were generous gifts
from Dr. Solomon H. Snyder (Johns Hopkins University School of
Medicine, Baltimore, MD) [1], Dr. Tadashi Yamamoto and Dr. Toh-
ru Tezuka (Department of Oncology, Institute of Medical Science,
University of Tokyo, Tokyo, Japan) [7], and Dr. Haruhiro Higashida
(Department of Biophysical Genetics, Kanazawa University Gradu-
ate School of Medicine, Kanazawa, Japan) [8], respectively. Recom-
binant rat CaM was expressed in Escherichia coli BL21 (DE3)
using pET-CM, kindly provided by Dr. Nobuhiro Hayashi (Fujita
Health University, Toyoake, Japan) [9]. A mouse anti-nNOS mono-
clonal antibody was obtained from Sigma. LL-[3H]arginine, [c-32P]ATP
(6000 Ci/mmol), and ECL Western blotting detection reagents were
from Amersham Pharmacia Biotech. Restriction enzymes and
DNA-modifying enzymes were obtained from Takara Shuzo. Electro-
phoresis reagents were products of Bio-Rad. All other materials and
reagents were of the highest quality available from commercial
suppliers.

2.2. Plasmid construction
The pME18s-nNOS and pME18s-FLAG-tagged nNOS were gener-

ated as described previously [3,6]. The nNOS mutants, 1296TA and
1296TD (i.e., a mutant bearing Ala in place of Thr1296) were subclo-
ned into pME18s. The nucleotide sequences of each mutant were
confirmed.

2.3. Anti-phosphopeptide-specific antibodies
A rabbit polyclonal antibody (pAb) raised against phosphopeptide

based on the amino acid sequence of rat nNOS Cys-Ile-Tyr-Arg-
Glu-Glu-phospho-Thr1296-Leu-Gln-Ala-Lys (NP1296) was purified
from immunized rabbit sera by tandem column chromatography using
phosphopeptide and dephosphopeptide-coupled Cellulofine (seikagaku
Corp.).
2.4. Cell culture, transfection
Human embryonic kidney 293 cells were maintained in Dulbecco�s

modified Eagle medium (DMEM) containing 10% fetal calf serum
and NG108-15 cells in DMEM containing 10% fetal calf serum and
HAT (100 lM hypoxanthine, 1 lM aminopterin, and 16 lM thymi-
ation of European Biochemical Societies.
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Fig. 1. Dose-dependent effects of CL-A and OA on nNOS enzyme
activity in NG108-15 cells. NG108-15 cells expressing nNOS were
pretreated with indicated concentrations of CL-A or OA for 20 min.
Proportional amounts (70 ll of lysates) were subjected to NOS assay.
Data were normalized to the control value, defined as the NOS activity
obtained without PP inhibitors. The means ± S.E. of three experiments
are shown. The lower panel is a representative immunoblot prepared
from cells used for the activity assays.
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dine). Transient transfection procedures were performed using Lipo-
fectAMINE with PLUS reagent (Invitrogen), according to the manu-
facture�s instructions.

2.5. Preparation of lysates and purification of expressed nNOS
For preparation of lysates, cells were sonicated with 0.3 ml of TNE

buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1 mM PMSF, 10 lg/
ml leupeptin, 1 lg/ml pepstatin A, 1 lg/ml aprotinin, 1 mM sodium
orthovanadate, 50 mM sodium fluoride, 2 mM sodium pyrophosphate,
and 1% Nodiet P40). After centrifugation at 15000 · g for 15 min, a
15 ll anti-FLAG M2-agarose or ADP-agarose gel (50% slurry) was
added to the supernatant, and the mixture was incubated for 1 h at
4 �C. After precipitation by centrifugation and removal of the superna-
tant, the resin was washed 3 times with 300 ll of TNE buffer and
boiled with 50 ll of SDS–PAGE sample buffer, and then analyzed
by SDS–PAGE followed by Western blot analyses.

2.6. NOS activities assay
NOS activity in vitro was determined by measuring the conversion

of LL-[3H]arginine to LL-[3H]citrulline as described previously [10,11],
and nNOS activity in cultured cells was quantified as the formation
of LL-[3H]arginine to LL-[3H]citrulline [12]. Briefly, transfected NG108-
15 cells in a 60 mm dish were incubated in 1 ml of buffer containing
25 mM HEPES, 109 mM NaCl, 5.4 mM KCl, 0.9 mM CaCl2, 1 mM
MgSO4, and 25 mM glucose (pH 7.3) for 1 h at 37 �C. nNOS activity
was assayed by adding a mixture of unlabeled LL-arginine (10 lM), LL-
[3H]arginine (5 lCi/ml) and A23187 (10 lM) or vehicle to the culture.
Following incubation at 37 �C for 10 min, cells were washed with ice-
cold phosphate-buffered saline and scraped into 2 ml of solution con-
taining 20 mM sodium acetate, 2 mM LL-citrulline, 2 mM EDTA, and
2 mM EGTA (pH 5.5) followed by sonication. An aliquot was with-
drawn for determination of total protein, expressed nNOS contents
and total cellular 3H incorporation, and the remaining sample was ap-
plied to Dowex 50W-X8 resine (Bio-Rad) to separate LL-[3H]citrulline.
A23187-stimulated LL-[3H]citrulline formation in cells was expressed as
the increase in LL-[3H]citrulline formation following subtraction of the
levels in non-stimulated cells.

2.7. Statistical analysis
The significance of variability between the results from each group

and the corresponding control was determined by unpaired t test.
The means ± S.E. were calculated. A value of P < 0.05 was considered
statistically significant.
3. Results

3.1. Effects of CL-A and OA on nNOS activity

The initial objective was to determine whether PP inhibitors

could alter nNOS activity in cells. We transfected NG108-15

cells with nNOS and assayed for NOS enzyme activity either

with or without PP inhibitors pretreatment using cell lysates.

Treatment of calyculin A (CL-A) or okadaic acid (OA) re-

sulted in decreased NOS enzyme activity. The effects of CL-

A and OA on the catalytic activity of nNOS are compared

in Fig. 1. There were obvious differences between the dose–

response effects of CL-A and OA with an approximately 100-

fold difference in inhibitory sensitivity. Immunoblots analysis

revealed that PP inhibitors pretreatment does not alter the

amounts of total nNOS expression in cells. From these data,

we conclude that PP inhibitors-induced phosphorylation of

nNOS results in attenuation of its catalytic activity in cells.

Interestingly, the attenuation of NOS enzyme activity was

not observed when purified nNOS using ADP-agarose affinity

chromatography was used for the NOS activity assay (data not

shown). The residue of Thr1296 is within the NADPH-binding

domain of nNOS and a consensus phosphorylation site for

protein kinases [13–15]. Therefore, we suspected that this resi-
due might be the PP inhibitors-induced phosphorylation site in

cells.

3.2. Effects of mimicking phosphorylation of nNOS at Thr1296on

nNOS catalytic activity

We tested whether Thr1296 phosphorylation exerts similar

effects on NOS activity as observed in PP inhibitors treatment

cells using phosphorylation-mimicking and -deficient mutants.

We made single mutants by introducing Ala or Asp residue in

place of Thr1296 (1296TA or 1296TD). Wild-type and mutant

enzymes were expressed using the E. coli system and purified

on ADP-agarose as described under Section 2. The

recombinant nNOSs were at least 90% pure as analyzed by

densitometric scanning and gave a major band at 160 kDa

on SDS–PAGE with Coomassie Brilliant Blue staining

(Fig. 2A). The activities of equal quantities of equally purified

wild-type and mutants of nNOS were then determined by

monitoring the rate of conversion of LL-[3H]arginine to

LL-[3H]citrulline. As shown in Fig. 2A, mimicking the phos-

phorylation at Thr1296 resulted in a large reduction in nNOS

activity. 1296TA nNOS, in contrast, did not significantly affect

nNOS activity under the same conditions. The inhibition of en-

zyme activity with 1296TD nNOS was competitive with

NADPH but not with the substrate LL-arginine (Fig. 2B). In vi-

tro activity assays measuring the conversion of arginine to cit-

rulline in the presence of optimal concentration of Ca2+/CaM

and cofactors do not always accurately reflect the NOS cata-

lytic activity in endogenous nNOS-containing living cells such

as NG108-15 neuronal cells. Therefore, we examined the effect

of mutating Thr1296 to Ala or Asp on the ability of nNOS to

catalyze formation of LL-[3H]citrulline from LL-[3H]arginine in

NG108-15 cells transfected with the wild-type, 1296TA, or

1296TD nNOS. Immunoblots analysis revealed that wild-type

and the mutant constructs to yield similar amounts of total



Fig. 2. Effects of Thr1296 phosphorylation-mimicking or phosphorylation-deficient mutant of nNOS on enzyme activity in vitro. (A) equal amounts
(0.5 lg) of wild-type nNOS (WT) and the indicated mutants in E. coli were separated by 7.5% SDS–PAGE and stained by Coomassie Brilliant (left
panel). Equivalent amounts (50 nM) of purified recombinant nNOSs were used for the NOS enzyme activity assay, measuring the conversion of
arginine-to-citrulline in the presence of 1 mM CaCl2, 1 lM CaM, 30 lM LL-[3H]arginine, 0.1 mM NADPH, 20 lM BH4, 4 lM FAD, and 4 lM FMN
(right panel). The means ± S.E. of three experiments are shown. (B) kinetic analysis of wild-type (s), 1296TA (·), or 1296TD (d) nNOS. NOS
enzyme activity was assayed under the same conditions as described in panel A except for the concentration of arginine and NADPH. For titration of
NADPH (left panel), 30 lM LL-[3H]arginine and 30–1000 lM NADPH were used. For titration of arginine (right panel), 1000 lM NADPH and
5–30 lM arginine were used. The assays were performed in duplicate for each point and results are presented as double-reciprocal plots (Lineweaver–
Burk).
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nNOS (Fig. 3). Cells were then incubated with LL-[3H]arginine

and treated with calcium ionophore A23187 or vehicle for

10 min, harvested, and lysates were analyzed for LL-[3H]citrul-

line formation as described in Section 2. When cells were trans-

fected with wild-type or 1296TA nNOS, A23187 treatment led

to a similar increase in nNOS activity (Fig. 3). However,

A23187 induction of 1296TD nNOS enzyme activity was

significantly lower than that with the other nNOSs.

The above results demonstrated that mimicking phosphory-

lation of nNOS at Thr1296 resulted in attenuation of NOS en-

zyme activity in vitro as well as in transfected cells through the

decrease of NADPH-binding to the enzyme. Therefore, we fo-

cused on whether mimicking phosphorylation of nNOS at

Thr1296 might alter the ADP-agarose association relative to

the wild-type enzyme. When human embryonic kidney HEK-

293 cells were transfected with the wild-type, 1296TA, or

1296TD nNOS, immunoblots revealed similar amounts of to-

tal nNOS expression (Fig. 4). However, mutation of Thr1296 to

Asp resulted in decrease of ADP-agarose binding ability rela-

tive to wild-type or 1296TA nNOS by measuring the expressed

nNOSs on partial purification using ADP agarose, elution with

NADPH and analysis by Western blotting using anti-nNOS

antibody (Fig. 4).
3.3. Detection of Thr1296-phosphorylated nNOS in NG108-15

cells

To directly demonstrate that nNOS can be phosphorylated at

Thr1296 in cells, we transfected NG108-15 cells with the FLAG-

tagged nNOS and partially purified expressed nNOS using

either ADP-agarose or anti-FLAG M2-agarose chromatogra-

phy and quantified the phosphorylation state at Thr1296 with

or without CL-A (1 lM) for 20 min (Fig. 5A). In the absence

of treatment, phosphorylation at Thr1296 residue was only faint,

or undetectable. CL-A-induced phosphorylation of nNOS at

Thr1296 was only observed when nNOS was purified using

anti-FLAG M2-agarose chromatography. We next examined

whether phosphorylation of nNOS at Thr1296 on nNOS could

directly influence the NOS enzyme activity in NG108-15 cells,

transfected with FLAG-tagged wild-type, 1296TA, or

1296TD nNOS and assayed for NOS enzyme activity either

with or without CL-A pretreatment (Fig. 5B). Treatment of

CL-A resulted in decreased NOS enzyme activity when wild-

type nNOS was transfected as observed in Fig. 1. Cells express-

ing a phosphorylation-deficient mutant, 1296TA nNOS, proved

to resistant to the decrease in NOS enzyme activity. Mimicking

the phosphorylation at Thr1296 resulted in a large reduction in

nNOS activity either with or without CL-A treatment.



Fig. 4. ADP-agarose binding ability of wild-type, 1296TA, or 1296TD
nNOS. HEK-293 cells were transfected with wild-type (WT), 1296TA
(1296TA), or 1296TD (1296TD) mutant and 48 h thereafter, cell
lysates (lysates) were immunoblotted with anti-nNOS antibody.
Expressed nNOS was also affinity-purified from transfected cells using
the ADP-agarose chromatography technique (ADP) and similarly
subjected to immunoblotting. The data are representative of at least
two independent experiments.

Fig. 5. Effects of CL-A-induced phosphorylation of nNOS at Thr1296

on NOS activity in NG108-15 cells. (A) NG108-15 cells expressing
FLAG-nNOS were pretreated with (+) or without (�) 1 lM CL-A for
20 min. Expressed nNOS was partially purified from transfected cells
using either ADP-agarose (ADP) or anti-FLAG M2-agarose (FLAG)
chromatography and subjected to Western blotting with anti-nNOS
(nNOS) or anti-phospho Thr1296 on nNOS (NP1296). The data are
representatives of at least two independent experiments. (B) NG108-15
cells expressing FLAG-wild-type, FLAG-1296TA, or FLAG-1296TD
nNOS were treated with (+) or without (�) 1 lCL-A for 20 min.
Expressed nNOS was partially purified from transfected cells using
anti-FLAG M2-agarose (FLAG) chromatography and similarly sub-
jected to immunoblotting. Proportional amounts (70 ll of lysates) were
subjected to NOS assay (lower panel). Note that NP1296-immunore-
activity against 1296TD nNOS was evident when it was transfected.
The means ± S.E. of three experiments using three independent
transfections are shown; the asterisk represents significant difference
(*P < 0.01).

Fig. 3. nNOS enzyme activity in NG108-15 cells transfected with wild-
type, 1296TA, or 1296TD mutant nNOS. A. NG108-15 cells were
transfected with wild-type nNOS (WT) or the indicated mutants. 48 h
after transfection, LL-[3H]arginine was added with or without A23187
(10 lM) and after 10 min cells were harvested and lysed, and nNOS
enzyme activity was measured with reference to the formation of LL-
[3H]citrulline following subtraction of the levels in un-stimulated cells.
Data were normalized to the control value, defined as the NOS activity
obtained with transfection of wild-type enzyme. The means ± S.E. of
three experiments are shown. The lower panel is a representative
immunoblot prepared from cells used for the activity assays, either
with (+) or without (�) A23187 treatment.
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Expressed nNOS was partially purified from transfected cells

using anti-FLAG M2-agarose chromatography and quantified

the phosphorylation at Thr1296. CL-A treatment led to an in-

crease in nNOS phosphorylation when cells were transfected

with wild-type but not with 1296TA nNOS. Either with or

without CL-A treatment, the NP1296-immunoreactivity

against 1296TD nNOS was evident when it was transfected.
4. Discussion

This study provides the first evidence, to our knowledge,

that the Thr1296 residue of nNOS is an important regulator
of its enzyme activity via its phosphorylation in neuronal cells.

NG108-15 cells possess nNOS as determined by Western blot-

ting (data not shown), but endogenous expression was found

to be normally too low for analysis and Thr1296-phosphory-

lated nNOS showed decrease of ADP-agarose binding ability

relative to un-phosphorylated enzyme (Fig. 5A). Therefore,

we employed cells transfected with FLAG-tagged nNOS for

the study of in situ phosphorylation of the enzyme. An approx-

imately 100-fold difference in inhibitory sensitivity of OA and

CL-A in cells (Fig. 1) would mean that OA has a 50–100-fold

weaker effect than CL-A on PP1. OA and CL-A are reported

to inhibit PP2A with similar potency [16,17].

Phosphorylation of nNOS at Thr1296 can be thought of as

physiological, given the catalysis by endogenous kinases asso-

ciated with decrease in nNOS enzyme activity in NG108-15

cells. The phosphorylation of nNOS at Thr1296 was evident

only after PP inhibitors treatment. Thus, dephosphorylation

activity of PP1 at Thr1296 on nNOS is thought to be higher

than the phosphorylation activity by endogenous kinases in

cells. Anti-phospho Thr1296 on nNOS antibody recognizes

1296TD nNOS (Fig. 5), indicating that the mutant is structur-

ally resemble to phospho-nNOS at Thr1296 residue. Treatment

with CL-A or OA also lead to increase in nNOS phosphoryla-

tion at Ser847 but not at Ser741 under the conditions employed

here in Fig. 5. Cells expressing 847SA nNOS also exhibited the

decrease in NOS enzyme activity when CL-A was treated (data
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not shown), indicating a low stoichiometry of nNOS phos-

phorylation at Ser847 in the condition in Fig. 5.

From the sequence alignments and the mutation studies of

nNOS, endothelial NOS, inducible NOS, CYPOR, and

FNR, it has been concluded that the Phe1395 residue in nNOS

regulates its catalytic activity by controlling NADP+ [18,19].

The Thr1296 residue found in nNOS is absent in endothelial

NOS, inducible NOS, CYPOR, and FNR. Thus, the results

of the present study shed new light on mechanism for trans-

ducing the nNOS–NADPH interaction through the phosphor-

ylation of Thr1296 residue in nNOS. A major concern is

whether nNOS is actually phosphorylated in vivo in the brain

at Thr1296 and determination of possible physiological out-

comes in neuronal cells, as well as which protein kinases might

participate, awaits future elucidation.
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