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Abstract-This short note deals with the issue of existence of contingent epiderivatives for set- 
valued maps defined from a real normed space to the real line. A theorem of Jahn-Rauh [l], given 
for the existence of contingent epiderivatives, is used to obtain more general existence results. The 
strength and the limitations of the main result are discussed by means of some examples. @ 2003 
Elsevier Ltd. All rights reserved. 
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1. INTRODUCTION 

It has been long recognized that set-valued maps provide a very convenient framework for various 
problems arising in diverse fields as optimization, optimal control, stochastics, variational analy- 
sis, economics, etc. For various reasons, for example, for the formulation of optimality conditions 
in set-valued optimization, it is of importance to be equipped with a notion of a ‘derivative’ 
for set-valued maps. Motivated by this, various notions of a ‘derivative’ have been proposed 
and analyzed in recent years (see [2-41). 0 ne of these notions, which has attracted a great deal 
of attention, is the contingent derivative introduced by Aubin [2]. This concept of contingent 
derivatives revolves round the notion of a contingent cone and the graph of set-valued maps whose 
derivative is sought (cf. [2-81). H owever, when the notion of contingent derivative is employed in 
optimization theory, it turns out that there remains a gap in necessary and sufficient optimality 
conditions, under standard assumptions. Motivated by these facts, a notion of contingent epi- 
derivative for set-valued maps has been proposed in [I]. It has been shown that this notion of 
the contingent epiderivative is a fundamental concept for the formulation of optimality condi- 
tions in set-valued optimization. For instance, the well-known Lagrange multiplier rule can be 
given using contingent epiderivatives of the objective set-valued map and set-valued map defining 
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the constraints (see [1,5,6,9]). At this point, it should be remarked that a notion of contingent 
epiderivative for functionals was introduced by Aubin [2] (see [4, Chapter VI] for details). 

The aim of the present paper is to discuss the existence of the contingent epiderivative for 
set-valued maps defined from a real normed space to the real line. 

Let X and Y be real normed spaces where the space Y is partially ordered by a nontrivial convex 
cone C c Y (cf. [7]). Let F : X 3 Y be a given set-valued map. The domain and the graph of F 
are defined by dam(F) := {z E X : F(z) # 8) and graph(F) := {(z,y) 5 X x Y : y E F(z)}, 
respectively. Moreover, the epigraph of F is defined by 

epi(F) := {(z, y) E X x Y : z E dam(F), y E F(z) + C}. 

If F is a single-valued map, Y = lR and C = lR+ := {t E E ] t > 0}, then the above definition 
of epigraph collapses to the one known in convex analysis (see [&lo]). 

Next, we recall that given a set S in’a real normed space 2, the contingent cone T(S, z*) of S 
at a point z* E cl(S) is the set of all z E 2 such that there is a sequence (z,),ep[ c S with 
z, + .a* and a sequence (X,),e, c R+\(O), so that Xn(z, - z*) --+ z. 

It is known that the contingent cone is a nonempty closed cone possessing the isotony property, 
that is, T(A,z) & T(B,z) p rovided that A C B and 2 E A n B (see [l-lo]). 

In the following, we recall the notion of contingent epiderivative. 

DEFINITION 1.1. (See 111.) Let X and Y be real normed spaces and let C c Y be a proper 
convex cone. Let F : X =t Y be a set-valued map and let (3, jj) E graph(F). A single-valued 
map DF(3, &) : X + Y is called contingent epiderivative of F at (3, g), if the following holds: 

epi(DF(Z, 5)) = T(epi(F), (3, y)). (1) 

If (?,g) belongs to the interior of epi(F), then T(epi(F), (s, y)) coincides with the product 
space X x Y and in this case the contingent epiderivative DF(%, jj) does not exist. 

We emphasize that in the above definition the domain of DF(ji, jj) is X. However, it is possible 
that for (z, 9) E graph(F), (1) holds but the domain of DF(%, jj), say R, is a proper subset of X. 
In this case, we speak of the contingent epiderivative with restricted domain. But we keep the 
same notion for this derivative and represent it by DF(2, g) : R --+ Y. 

2. MAIN RESULTS AND EXAMPLES 

In the sequel, the notations int(A) and cl(A) will represent the interior and the closure of a 
nonempty set A, respectively. Let By be the unit ball of some space Y. 

Let X be a real normed space and let F : X 3 B be a given set-valued map. To the set-valued 
map F, we associate another set-valued map F+ : X * lR defined by F+(z) = cl(F(z) + II%+). 
Define a single-valued map fo : X --+ lR by 

fc(~) = {y E F+(z) : y 5 z for all z E F+(z)}. (2) 

Before any advancement, we would like to stress the involvement of F+. 

EXAMPLE 2.1. Let F : R =t R be a set-valued map defined by F(z) :=]z, m[. Observe that the 
map fc(z) given in the above assumption is not even well defined if F+(z) is replaced by F(z) 
(or by F(z) + a+). M oreover, (x,x) E graph(fc), but (2,~) @ graph(F), Vx E IR. 

Observe that by introducing the set-valued map F+, we circumvent the situations depicted in 
the above example. Furthermore, it should also be clear that the function fs, though defined via 
cl(F(z) + R+), need not have a closed epigraph. 

We begin with the following result concerning the existence of contingent epiderivatives. 
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PROPOSITION 2.1. Let X be a real normed space and let F : X =t Iw be a set-valued map. Let the 
function fs defined via (2) be convex and lower semicontinuous. Assume that 3 E int(dom(F)) 
and (3, fs(~)) E graph(F). Set g = fc(~). Then the following holds. 

(a) The contingent epiderivative DF(%, jj) of F at (z, jj) exists and is given by 

DF(e, y)(x) = Fyo f”(z + xx) - fo(z), 
x vx E x. 

(b) There exists r] > 0 such that 

v’z E @x, fo@) - fo(Z - x) I DF(%$(x) 5 fo(z + x) - J)(3). 
(c) For some a > 0 and 5 E X, 

PROOF. It is evident from (2) that the epigraph of F+ is essentially characterized by fs and we 
have cl(epi(F)) = cl(graph(F+)) = cl(epi(fc)). K ee m in mind the lower semicontinuity of fo, p’ g 
we obtain epi(fa) = cl(epi(fs)) = cl(epi(F)). By a well-known feature of the contingent cone 
stating that T(A, o) = T(cl(A), a), with A := epi(F) and a := (cE,~), we obtain 

T(epi(.foL(% Y)) = T(cl(epi(F)), @:,!d) = T(epi(F), (3, Y>). 

Since the function fc is convex and lower semicontinuous and a: E int(dom(fc)), it follows that 
the contingent epiderivative Dfc(~, k)(x) of th e single-valued functional fe exists for all x E X 
(cf. [4, pp. 198-1991). This amounts to say that 

D.f0(% T?)(X) = inf{y : (x7 Y) E T(epU0), (5, Y))l 

is finite for all x E X. Since the contingent cone is closed, the above identity implies 

epi(D.fo(%$) = T(epi(fo), (3, Y)). 

By virtue of the definition of contingent epiderivative DF(z, fj), we have 

epi(DF(% Y)) = T(epi(F), (%I?)) 
= T(epi(fo), (2, $1 

= epi(Dfo(& $1, 

and hence, the existence of DF(z,$(x) f 11 o ows from the existence of Dfo(~, G)(Z). Finally, 
the characterization in (a), and Parts (b) and (c) follow from the corresponding results for the 
contingent epiderivative of fc as given in [4, pp. 198-1991. The proof is complete. I 

Now we improve the above result by relaxing the assumption of convexity to ‘local convexity’. 
For this purpose, the following result given will be instrumental. 

THEOREM 2.1. (See 111.) Let F : X 3 IR be a set-valued map and let (z,$ E graph(F). 
Assume that there are functionals fr, f2 : dom(fi) = dom(f2) = X ---f JR such that epi(fr) > 
T(epi(F), (3, 5)) > epi(fi). Then the contingent epiderivative DF(z, jj) is given by 

DW, G)(x) = mink E 18 I (x1 Y) E T(epW), (%9)), VXEX. 

It is clear that the above theorem assures that dom(DF(z, y)) = X. In fact, it is a consequence 
of the assumptions T(epi(F), (Z, y)) 2 epi(fs) and dom(fs) = X. Here the domain of F is of less 
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relevance. The following example shows that if dom(fi) is a proper subset of X, then DF(2, &) 
might not be well defined in some directions. 

EXAMPLE 2.2. Let F : lR =t Iw be a set-valued map defined as follows: 

F(x) = { 
l&$4, ifx#O, 
[O, co[, ifx=O. 

Let (3,~) = (0,O). Th en we have T(epi(F), (?,?j)) = ((0,~) E lR2 : y > 0). Now let us choose 
a function pr :lR-+lRdefinedbypr(x)=] ]f x or all x E R, and another function ps : (0) -+ R 
defined by p2(0) = 0. It is easy to check that if the contingent epiderivative of pi at (z, y) is 
denoted by fi, where i = 1,2, then the required condition epi(fr) > T(epi(F), (3,~)) 2 epi(fs) 
holds. However, the contingent epiderivative DF(Z,?j) exists only with the restricted domain 
(0) c LR and is given by DF(s, y)(O) = 0. 

Let 2 be a real normed space and let w E s1 c 2 be arbitrary. We reserve the notation U(Q, w) 
to represent the set N(w) n R, where N(w) is an arbitrary neighborhood of w. 

Our next result for the existence of contingent epiderivative is as follows. 

THEOREM 2.2. Let X be a real normed space and let F : X =t ll% be a set-valued map. Assume 
that 1 E int(dom(F)) and (~,fs(?)) E graph(F), where the functional fc is defined via (2). Set 
g = fc(%). Assume that there exist functionals fi : X --+ R, i = 1,2 satisfying 

(a) (2, g) E graph(fr) f’ graph(f2) and z E int(dom(fr)) n int(dom(fs)); 

(b) U(epi(fd, (5, Y)) 2 U(epi(fo), @:,Y)) 2 U(epi(fd, (%9); 
(c) the functionals fl and f2 are convex and lower semicontinuous. 

Then the contingent epiderivative DF(z, g)(z) of F at (3, ?j) exists for all x E X. 

PROOF. In view of (a) and (b), and the isotony property of the contingent cone, we have 

T(U(epi(fl), (&ii)), (3, $1 2 WJ(W(fo), (&id), (%G)) 2 WJ(epi(fd, (%Y)), (%Q)). 

Moreover, from the local approximation nature of the contingent cone, it follows that 

T(U(epi(f& (5, ~7))~ (3, $) = T(epi(f& (5, Y)), i = 0, 1,2. 

Combining this with the preceding set of inclusions yields 

T(epi(fl), (2, g)) 2 T(+(fo), (5, id> 2 T(wi(fd, (%Y)). (3) 

Since fi is convex and lower semicontinuous, we have the existence of function pi : X -+ IR, 
i = 1,2, such that 

wQ-4 = T(edf4, (2, G)), i = 1,2. 

The above identity, when combined with (3), yields 

epi(pl) 2 T(epi(fo), (% Y)) 2 Eli. 

The existence of DF(%, y)(z) f or all z E X now follows from Theorem 2.1. I 

REMARK 2.1. In the above result, if we use the so-called lower semicontinuous regularization 
(cf. [lo]) of fi t o g enerate pi, then we can dispense with the assumption that fi is lower semicon- 
tinuous. Of course, it is also possible to impose other conditions on fi which assure the existence 
of pi. 

The following example highlights the use of the above result. 
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EXAMPLE 2.3. Consider a set-valued map F : [-1, l] =t I[$ given by (cf. Figure la) 

1 
ifO<x(z, 

F(z) 1 = < 22, 
if -z<x<O, 

7 2 1 
x- -, 

6 
if -3<x<--, 

3 

s ---- x 2 2'O 1 1 ' 

In the present case, the single-valued selection function fo (cf. (2)) of F is given by 

5 
x - -, 

8 
ifi<x<l, 

3 

0, ifO<x<l 
3' 

fo(x) = < 2x7 if -i<x<O, 

7 2 1 
x- -, 

6 
if --<xi---, 

3 3 
x 1 2 

\-T-Yj> if-15x<--,. 
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

(a) The set-valued map F. 

Figure 1. 
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: E(-l/3,72/3) : 

-1 I I 1 I I I I I I 
-1 -0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.6 1 

(b) The functions fi, i = 0, 1,2. 

Figure 1. (cont.) 

The map fo is discontinuous with dom(fc) = [-1, l] (cf. Figure lb). Let us consider the point 
(-l/3, -2/3) E graph(.fe). Define two functions fi : [-l,l] + IR, i = 1,2, as follows: 

fi(z)= (~)x2+x--~, forallzE[-l,l], 1 ( 11 
- fi(~) 4 > 1 

x+-, 4 if 
1 

-,<x<l, = 

-2x - ;, if -l<x<--j!j. 

The functions fi, i = 1,2, are convex and satisfy the following conditions (see Figure lb). 

(I) U(epi(fd, (-l/3, -2/3)) 3 U(epi(f0), (-l/3, -2/3)) 3 U(epU2), (-l/3, -2/3)). 
(II) (-l/3, -2/3) E graph(fr) n graph(f2) and -l/3 E int(dom(fi)) n int(dom(f2)). 

Therefore, all the hypotheses of Theorem 2.2 are satisfied, and hence, the existence of the 
contingent epiderivative is assured at (-l/3, -2/3). Note that the epigraph of the set-valued 
map fe is not convex, but only convex around (-l/3, -213). 

However, Theorem 2.2 does not provide any information for the existence of the contingent 
epiderivative at (-2/3, -l/6) as there does not exist any convex map satisfying the hypotheses 
on the function fr. Though the contingent epiderivative exists at (-2/3, -l/6). 

In order to illustrate the importance of the assumption 1 E int(dom(fr)) n int(dom(fs)), let us 
consider the point (l/3,0) E graph(fc). S ince T(epi(F), (l/3,0)) = ((5, y) E EP ] 0 2 5, y 2 0}, 
the contingent epiderivative of F at (l/3,0) with restricted domain is given by DF( l/3,0) (x) = 0, 
Vx < 0. Consequently, dom(DF(l/S,O)) = {x E II%. ] IC 2 O}. 
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