On a Duality for Crossed Products of C^*-Algebras

HIROSHI TAKAI*

University of California, Los Angeles

Communicated by the Editors

Received April 12, 1974

Let \mathcal{A} be a C^*-algebra, and G be a locally compact abelian group. Suppose α is a continuous action of G on \mathcal{A}. Then there exists a continuous action $\hat{\alpha}$ of the dual group \hat{G} of G on the C^*-crossed product $C^*(\mathcal{A}; \alpha)$ of \mathcal{A} by α such that the C^*-crossed product $C^*(C^*(\mathcal{A}; \alpha); \hat{\alpha})$ is isomorphic to the tensor product $\mathcal{A} \otimes C(L^2(G))$ of \mathcal{A} and the C^*-algebra $C(L^2(G))$ of all compact operators on $L^2(G)$.

1. Introduction

In the study of the structure of von Neumann algebras of type III, M. Takesaki [11] obtained a duality theorem for crossed products of von Neumann algebras. At the same time, he also conjectured about its C^*-algebra version that given a C^*-algebra \mathcal{A} with a continuous action α of a locally compact abelian group G, the C^*-crossed product $C^*(\mathcal{A}; \alpha)$ of \mathcal{A} by α has a continuous action $\hat{\alpha}$ of the dual group \hat{G} of G such that the second C^*-crossed product $C^*(C^*(\mathcal{A}; \alpha); \hat{\alpha})$ is isomorphic to the tensor product $\mathcal{A} \otimes C(L^2(G))$ of \mathcal{A} and the C^*-algebra $C(L^2(G))$ of all compact operators on $L^2(G)$.

In this paper, it will be shown that the statement cited above is affirmative.

2. Crossed Products and Reduced Crossed Products of C^*-Algebras

Let G be a locally compact group, and \mathcal{A} be a C^*-algebra. We denote by Aut(\mathcal{A}) the group of all $*$-automorphisms of \mathcal{A}. A mapping α of G into Aut(\mathcal{A}) is said to be a continuous action if it is a strongly

* Chercheur Associé au CNRS—CPT/Marseille. On leave of absence from the University of California, Los Angeles.

Copyright © 1975 by Academic Press, Inc.
All rights of reproduction in any form reserved.
continuous homomorphism in the sense that for any \(x \in \mathfrak{A} \), and \(\epsilon > 0 \), there exists a neighborhood \(U \) of the unit \(e \) of \(G \) such that
\[
\| \alpha_g(x) - x \| < \epsilon \quad \text{for every} \quad g \in U.
\]

We now define the crossed product \(C^*(\mathfrak{A}; \alpha) \) of \(\mathfrak{A} \) with a continuous action \(\alpha \) of \(G \) in the following way: it is the enveloping \(C^* \)-algebra of the Banach \(\ast \)-algebra \(L^1(\mathfrak{A}; \alpha) \) of all Bochner integrable \(\mathfrak{A} \)-valued measurable functions on \(G \) with respect to the left Haar measure \(dg \) of \(G \) with the \(\ast \)-algebraic structure given by
\[
(xy)(g) = \int_G x(h) \alpha_h[y(h^{-1}g)] \, dh
\]
and
\[
x^*(g) = \Delta(g)^{-1} \alpha_g[x(g^{-1})]^*,
\]
for each \(x, y \in L^1(\mathfrak{A}; G) \), and \(g \in G \), where \(\Delta(g) \) is the modular function of \(G \).

Due to S. Doplicher, D. Kastler, and D. W. Robinson [2] there is a one-to-one correspondence between a covariant representation \((\rho, U) \) of \((\mathfrak{A}, G) \) and a \(\ast \)-representation \(\Pi \) of \(C^*(\mathfrak{A}; \alpha) \) which is determined by
\[
\Pi(x) = \int_G \rho(x(g))U(g) \, dg, \quad x \in L^1(\mathfrak{A}; G).
\] (2.1)

Let \(\text{Cov rep}(A, G) \) be the set of all covariant representations of \((A, G) \).

Following the construction in the discrete case due to Zeller-Meier [12], we shall next define the reduced crossed product \(C_{\gamma}^*(\mathfrak{A}; \alpha) \) of \(\mathfrak{A} \) by \(\alpha \) in the continuous case as follows.

Let \((\tilde{\rho}, \lambda) \in \text{Cov rep}(\mathfrak{A}, G) \) induced by the trivial one \((\rho, \iota) \in \text{Cov rep}(\mathfrak{A}, \{e\}) \) where \(\iota \) is the identity representation of \(\{e\} \) on \(\mathfrak{H}_\rho \) (cf. [9]). Let \(\text{Ind} \rho \) denote the representation of \(C^*(\mathfrak{A}; \alpha) \) corresponding to \((\tilde{\rho}, \lambda) \). Making use of \(\text{Ind} \rho \), we define a norm \(\| \cdot \|_\gamma \) on \(L^1(\mathfrak{A}; G) \) by
\[
\| x \|_\gamma = \sup\{\|(\text{Ind} \rho)(x)\| : \rho \in \text{Rep} \mathfrak{A}\},
\] (2.2)
for each \(x \in L^1(\mathfrak{A}; G) \), where \(\text{Rep} \mathfrak{A} \) is the set of all \(\ast \)-representations of \(\mathfrak{A} \). It is seen that the completion \(C_{\gamma}^*(\mathfrak{A}; \alpha) \) of \(L^1(\mathfrak{A}; G) \) with respect to \(\| \cdot \|_\gamma \) is a \(C^* \)-algebra, which is nothing but the quotient \(C^* \)-algebras of \(C^*(\mathfrak{A}; \alpha) \) by the kernel of \(\text{Ind} \rho \) \((\rho \in \text{Rep} \mathfrak{A}) \). We call \(C_{\gamma}^*(\mathfrak{A}; \alpha) \) the reduced crossed product of \(\mathfrak{A} \) by \(\alpha \), and \(\| \cdot \|_\gamma \), the reduced norm on \(C_{\gamma}^*(\mathfrak{A}; \alpha) \).
Now we extend some properties of C*-crossed products in the discrete case to the continuous case. One defines for a positive linear functional φ of a C*-algebra \mathcal{A}, and $f_i \in K(G)$ $(i = 1, z)$,

$$\tilde{\varphi}_{f_i, f_j}(x) = \int_{G \times G} f_i(g^{-1}h) \overline{f_j(h)} \varphi \circ \alpha^{-1}_g(x(g)) \, dg \, dh,$$

(2.3)

for any $x \in L^1(\mathcal{A}; G)$, where $K(G)$ is the set of all continuous functions on G with compact support. Identifying $L^2(\mathcal{H}_\varphi; G)$ with $L^2(G) \otimes \mathcal{H}_\varphi$ the right hand side of (2.3) is nothing but $\langle (\text{Ind } \pi_\varphi)(x) f_1 \otimes \xi_\varphi \mid f_2 \otimes \xi_\varphi \rangle$ where $(\pi_\varphi, \xi_\varphi)$ is the cyclic representation of \mathcal{A} on a Hilbert space \mathcal{H}_φ corresponding to φ. Hence we have that

$$\| (\text{Ind } \pi_\varphi)(x) \| = \sup \{ \langle \tilde{\varphi}_{f_i, f_j}(y^*x^*xy) \rangle^{1/2} / \tilde{\varphi}_{f_i, f_j}(y^*y) \}^{1/2} : y \in K(\mathcal{A}; G), \ f \in K(G) \},$$

(2.4)

for any $x \in L^1(\mathcal{A}; G)$, where $\tilde{\varphi}_{f_i, f_j}(y^*y) \neq 0$, and $K(\mathcal{A}; G)$ is the set of all \mathcal{A}-valued continuous functions on G with compact support. Let $\Omega(y; f)$ for $y \in K(\mathcal{A}; G)$, $f \in K(G)$ be the set of all positive linear functionals φ of \mathcal{A} with $\tilde{\varphi}_{f_i, f_j}(y^*y) = 0$. Then one easily gets by (2.4) that

$$\| x \|_\varphi = \sup \{ \langle \tilde{\varphi}_{f_i, f_j}(y^*x^*xy) \rangle^{1/2} / \tilde{\varphi}_{f_i, f_j}(y^*y) \}^{1/2} : y \in K(\mathcal{A}; G), \ f \in K(G), \ \varphi \in \Omega(y; f) \},$$

(2.5)

for $x \in L^1(\mathcal{A}; G)$. Let $\mathcal{M}(\rho)$ be the set of all positive linear functional φ of \mathcal{A} such that π_φ is weakly contained in $\rho \in \text{Rep } \mathcal{A}$. Then the same way as in the discrete case gives us that for $\rho \in \text{Rep } \mathcal{A}$, $x \in L^1(\mathcal{A}; G)$,

$$\| (\text{Ind } \rho)(x) \| = \sup \{ \langle \tilde{\varphi}_{f_i, f_j}(y^*x^*xy) \rangle^{1/2} / \tilde{\varphi}_{f_i, f_j}(y^*y) \}^{1/2} : y \in K(\mathcal{A}; G), \ f \in K(G), \ \varphi \in \Omega(y; f) \cap \mathcal{M}(\rho) \},$$

(2.6)

(cf., [12, Theor. 4.8]).

Remark. In the discrete case, it is clear that $\tilde{\varphi}_{\pi_\varphi, \pi_\varphi} = \varphi$, where $\tilde{\varphi}(x) = \varphi[x(e)]$ for $x \in L^1(\mathcal{A}; G)$.

We now state the following proposition.

Proposition 2.1. Let G be a locally compact group, and \mathcal{A} be a C*-algebra with a continuous action α of G. Then given a $\rho \in \text{Rep } \mathcal{A}$, the following properties are equivalent;

(i) $\sum_{g \in G} \alpha_g \cdot \rho$ is faithful on \mathcal{A};

(ii) $\| (\text{Ind } \rho)(x) \| = \| x \|_\varphi$ for any $x \in L^1(\mathcal{A}; G)$ where $(\alpha_g \cdot \rho)(a) = \rho \cdot \alpha^{-1}_g(a)$ for $a \in \mathcal{A}$, $g \in G$.

(Compare with [12, Theor. 4.11].)
Proof. Since (ii) implies that \(\text{Ind} \rho \) is faithful on \(L^1(\mathfrak{A}; G) \), (i) is obtained by direct computation. Conversely, suppose \(\sum_{g \in G} \alpha_g \cdot \rho \) is faithful. Then it follows that \(\bigcap_{g \in G} \ker \alpha_g \cdot \rho = 0 \), which implies that any positive linear functional of \(\mathfrak{A} \) is a weak limit of some linear combinations of positive linear forms of \(\mathfrak{A} \) which are associate with \(\alpha_g \cdot \rho \) \((g \in G) \). On the other hand, since \((\alpha_g \cdot \rho, \lambda) \in \text{Cov rep}(\mathfrak{A}, G) \) induced by \((\alpha_g \cdot \rho, \lambda) \in \text{Cov rep}(\mathfrak{A}, \{e\}) \) is unitarily equivalent to \((\bar{\rho}, \lambda) \in \text{Cov rep}(\mathfrak{A}, G) \) induced by \((\rho, \iota) \in \text{Cov rep}(\mathfrak{A}, \{e\}) \) (cf. [9, Theor. 8.1]), it is verified that \(\text{Ind}(\alpha_g \cdot \rho) \) is unitarily equivalent to \(\text{Ind} \rho \) for every \(g \in G \). Hence one gets that

\[
\| (\text{Ind} \rho)(x) \| = \sup \{ \| (\text{Ind} \alpha_g \cdot \rho)(x) \| : g \in G \}, \ x \in L^1(\mathfrak{A}; G). \quad (2.7)
\]

By (2.5)-(2.7), we have that

\[
\| (\text{Ind} \rho)(x) \| = \sup \{ (\tilde{\alpha}, f(x^*x)\tilde{f})^{1/2}/\tilde{\alpha}, f(x^*x)\tilde{f})^{1/2} : y \in K(\mathfrak{A}; G), f \in K(G), \varphi \in \Omega(y; f) \cap \mathfrak{W}(\alpha_g \cdot \rho), g \in G \}
\geq \sup \{ (\tilde{\alpha}, f(x^*x)\tilde{f})^{1/2}/\tilde{\alpha}, f(x^*x)\tilde{f})^{1/2} : y \in K(\mathfrak{A}; G), f \in K(G), \varphi \in \Omega(y; f) \}
= \| x \|_y.
\]

The following proposition gives a condition on the group under which reduced crossed products coincide with crossed products.

Proposition 2.2. Let \(G \) be a locally compact group, and \(\mathfrak{A} \) be a \(C^* \)-algebra with a continuous action \(\alpha \) of \(G \). If \(G \) is amenable as a topological group, then

\[
C^*(\mathfrak{A}; \alpha) = C^*_r(\mathfrak{A}; \alpha).
\]

(Compare with [12, Theor. 5.1].)

Proof. Let \(\Phi \) be a positive linear functional on \(C^*(\mathfrak{A}; \alpha) \) with \(\| \Phi \| \leq 1 \). It suffices to show that \(\Phi \) is continuous with respect to \(\| \cdot \|_\tau \)-norm. Since \(G \) is amenable, the function \(1 \) on \(G \) is a limit point of \(f \ast f \) \((f \in K(G)) \) with respect to compact open topology, where \((\varphi \ast \psi)(g) = \int_G \varphi(h) \psi(h^{-1}g) \, dh \) and \(\tilde{\varphi}(g) = \overline{\varphi(g^{-1})} \) for \(\varphi, \psi \in K(G) \) (cf. [1, Sect. 8]). Let \((\Pi_\varphi, \xi_\varphi) \) be the cyclic representation of \(C^*(\mathfrak{A}; \alpha) \) on a Hilbert space \(\mathcal{H}_\varphi \) corresponding to \(\Phi \). Then there is a unique \((\rho, U) \in \text{Cov rep}(\mathfrak{A}, G) \) such that

\[
\Pi_\varphi(x) = \int_G \rho(x(g)) U(g) \, dg \quad \text{for} \ x \in L^1(\mathfrak{A}; G).
\]
Let us define a positive linear functional Φ_f on $L^1(\mathfrak{A}; G)$ by

$$
\Phi_f(x) = \int_G (f^*f)(g) \langle \rho[x(g)] U(g)\xi_\phi \mid \xi_\phi \rangle \, dg.
$$

In fact, since $(\rho, U) \in \text{Cov rep}(\mathfrak{A}, G)$, one has that

$$
\Phi_f(x) = \int_{G \times G} f(h^{-1}g) f(h^{-1}g) \langle \rho \circ \alpha_\lambda^{-1}[x(g)] U(h^{-1}) U(g)\xi_\phi \mid U(h^{-1})\xi_\phi \rangle \, dh \, dg
$$

for each $x \in L^1(\mathfrak{A}; G)$, where $(\tilde{\rho}, \lambda) \in \text{Cov rep}(\mathfrak{A}, G)$ induced by $(\rho, i) \in \text{Cov rep}(\mathfrak{A}, \{e\})$, and $\xi(g) = f(g^{-1}) U(g^{-1})\xi_\phi \in L^2(\mathfrak{A}; G)$.

Since $\|\Phi\| \leq 1$, we may assume that $\|\tilde{\rho}\| \leq 1$. Then we have by (2.8) that

$$
\|\Phi_f(x^*x)\| \leq \|x^*x\|_\gamma,
$$

for $x \in L^1(\mathfrak{A}; G)$. Since Φ_f weakly converges to Φ on $K(\mathfrak{A}; G)$, it follows by (2.9) that

$$
\Phi(x^*x) \leq \|x^*x\|_\gamma,
$$

for any $x \in K(\mathfrak{A}; G)$. Since $K(\mathfrak{A}; G)$ is dense in $C^*(\mathfrak{A}; \alpha)$ the inequality (2.10) also holds for $x \in C^*(\mathfrak{A}; \alpha)$. Therefore, Φ is continuous with respect to the reduced norm, which means that $C^*(\mathfrak{A}; \alpha) = C_{\gamma^*}(\mathfrak{A}; \alpha)$.

Q.E.D.

Remark. If $\mathfrak{A} = \mathbb{C}$, the above proposition says that

$$
C^*(G) = C_{\gamma^*}(G) \quad (\text{cf. [1, Sect. 18]}).
$$

Finally we state here the following two observations without proof for a later use though both are more or less known.

Proposition 2.3. Let G be a locally compact group, and \mathfrak{A} (respectively \mathfrak{B}) be a C^*-algebra with a continuous action α (respectively β) of G on \mathfrak{A} (respectively \mathfrak{B}). Suppose there exists a isomorphism Φ of \mathfrak{A} onto \mathfrak{B} such that

$$
\beta_g = \Phi \circ \alpha_\gamma \circ \Phi^{-1} \quad \text{for} \ g \in G,
$$

then $C^*(\mathfrak{A}; \alpha)$ is isomorphic to $C^*(\mathfrak{B}; \beta)$.
Remark. The above statement is also true for reduced crossed products.

Proposition 2.4. Let G (respectively H) be a locally compact group, and \mathcal{A} (respectively \mathcal{B}) be a C^*-algebra with a continuous action α (respectively β) of G (respectively H). Then $C^*(\mathcal{A} \otimes_\alpha \mathcal{B}; \alpha \otimes \beta)$ is isomorphic to $C^*(\mathcal{A}; \alpha) \bar{\otimes} C^*(\mathcal{B}; \beta)$, where ν is the greatest C^*-cross norm (cf. [4, 5]).

Remark. It is true that given \mathcal{A}, \mathcal{B}, G, H, α, β as above, $C^*_\nu(\mathcal{A} \otimes_\alpha \mathcal{B}; \alpha \otimes \beta)$ is isomorphic to $C^*_\nu(\mathcal{A}; \alpha) \bar{\otimes} C^*_\nu(\mathcal{B}; \beta)$, where $*$ is Turumaru’s cross norm.

3. **Duality**

In this section, we show a duality for crossed products of C^*-algebras by a locally compact abelian group. Let G be a locally compact abelian group, and \mathcal{A} be a C^*-algebra with a continuous action α of G. First of all, we define a continuous action δ_α of the dual group \hat{G} of G on $L^1(\mathcal{A}; G)$ by

$$\delta_\alpha(x)(g) = \langle g, p \rangle x(g),$$

for $x \in L^1(\mathcal{A}; G)$, $p \in \hat{G}$, and $g \in G$. Indeed, one can compute by definition that

$$(\delta_\alpha(x) \delta_\alpha(y))(g) = \int_G \delta_\alpha(x)(h) \alpha_h(\delta_\alpha(y)(h^{-1}g)) \, dh$$

$$= \int_G \langle h, p \rangle x(h) \langle h^{-1}g, p \rangle \alpha_h(y(h^{-1}g)) \, dh$$

$$= \langle g, p \rangle \int_G x(h) \alpha_h(y(h^{-1}g)) \, dh$$

$$= \delta_\alpha(xy)(g)$$

and

$$\delta_\alpha(x^*)(g) = \langle g, p \rangle x^*(g) = \langle g, p \rangle \alpha_p[x(g^{-1})]^*$$

$$= \alpha_p[\langle g^{-1}, p \rangle x(g^{-1})]^* = \alpha_p[\delta_\alpha(x)(g^{-1})]^*$$

$$= \delta_\alpha(x)^*(g),$$

for each $x, y \in L^1(\mathcal{A}; G)$, $p \in \hat{G}$, and $g \in G$. So δ_α is a $*$-homomorphism on $L^1(\mathcal{A}; G)$.
Moreover, we have that

\[\|A_\rho(x)\| = \sup \{ \|P[A_\rho(x)]\| : P \in \text{Rep } L^1(\mathcal{A}; G) \} \]

\[= \sup \left\{ \left\| \int_{\sigma} \rho([A_\rho(x)](g)) \ U(g) \ dg \right\| : (\rho, U) \in \text{Cov rep } (\mathcal{A}, G) \right\} \]

\[= \sup \left\{ \left\| \int_{\sigma} \langle g, \tilde{p} \rangle \ \rho[x(g)] \ U(g) \ dg \right\| : (\rho, U) \in \text{Cov rep } (\mathcal{A}, G) \right\}. \]

Let \(U_p(g) = \langle g, \tilde{p} \rangle \ U(g) \) for \(\tilde{p} \in \tilde{G}, g \in G \). Then it is easily seen that \((\rho, U_p) \in \text{Cov rep } (\mathcal{A}, G) \) for \((\rho, U) \in \text{Cov rep } (\mathcal{A}, G) \). This implies that \(\|A_\rho(x)\| \leq \|x\| \). Since \(A_\rho^{-1}(x)(g) = \langle g, \tilde{p} \rangle \ x(g) \), the inequality \(\|A_\rho^{-1}(x)\| \leq \|x\| \) holds similarly. So \(\hat{A}_\rho \) is isometric on \(L^1(\mathcal{A}; G) \) with respect to the enveloping \(C^* \)-norm, which means that \(\hat{A}_\rho \) can be extended to an automorphism on \(C^*(\mathcal{A}; \alpha) \). Denoting it by the same symbol \(\hat{A}_\rho \) (\(\tilde{p} \in \tilde{G} \)), one can show that \(\hat{A}_\rho \) is a continuous action of \(\mathcal{A} \) on \(C^*(\mathcal{A}; \alpha) \). In fact, one estimates the following:

\[\| \hat{A}_\rho(x) - x \| \leq \| \hat{A}_\rho(x) - x \|_1 = \int_{\tilde{G}} |\langle g, \tilde{p} \rangle - 1| \|x(g)\| \ dg, \]

for any \(x \in K(\mathcal{A}; G) \), where \(\| y \|_1 = \int_{G} \|y(g)\| \ dg \ (y \in L^1(\mathcal{A}; G)) \). Since \(\text{supp } x \) is equicontinuous as a family of functions on \(G \) by compactness, given an \(\epsilon > 0 \), there exists a neighborhood \(W \) of the unit 1 of \(G \) such that

\[|\langle g, \tilde{p} \rangle - 1| < \epsilon \quad \text{for } g \in \text{supp } x, \tilde{p} \in W. \]

Therefore, one gets that

\[\| \hat{A}_\rho(x) - x \| \leq \epsilon \int_{\text{supp } x} \|x(g)\| \ dg \]

\[= \epsilon \| x \|_1 \quad \text{for } \tilde{p} \in W. \]

Since \(K(\mathcal{A}; G) \) is dense in \(C^*(\mathcal{A}; \alpha) \), \(\hat{A}_\rho \) is a continuous action of \(\mathcal{A} \) on \(C^*(\mathcal{A}; \alpha) \). Thus we can construct the crossed product \(C^*(C^*(\mathcal{A}; \alpha) \otimes \mathcal{A}) \) of \(C^*(\mathcal{A}; \alpha) \) by \(\hat{A}_\rho \).

We shall show that \(C^*(C^*(\mathcal{A}; \alpha) \otimes \mathcal{A}) \) constructed above is isomorphic to \(\mathcal{A} \otimes \mathcal{C}(L^2(G)) \), the tensor product of \(\mathcal{A} \) and the \(C^* \)-algebra \(\mathcal{C}(L^2(G)) \) of all compact operators on \(L^2(G) \). Let \(\Pi \) be a faithful representation of \(\mathcal{A} \) on a Hilbert space \(\mathcal{H} \), and let \(\Pi \Pi \) be the representation of \(C^*(\mathcal{A}; \alpha) \) induced by \(\Pi \). Since \(G \) is abelian, Proposition 2.2 tells us that \(C^*(\mathcal{A}; \alpha) = C^*(\mathcal{A}; \alpha) \). Moreover, we consider
the representation \(\text{Ind}(\text{Ind} \, \Pi) \) of \(C^*_{\gamma}(C^*(\mathcal{A}; \alpha); \alpha) \) induced by \(\text{Ind} \, \Pi \), which will be denoted by \(\tilde{\Pi} \). Then it can be verified that

\[
\| \tilde{\Pi}(x) \| = \| x \|, \quad \text{for} \quad x \in L^1(C^*(\mathcal{A}; \alpha); \mathcal{G}).
\] (3.2)

Actually, since \(\Pi \) is faithful, \(\sum_{g \in G} \alpha_g \cdot \Pi \) is also faithful. Hence it follows from Proposition 2.1 that \(\text{Ind} \, \Pi \) is faithful on \(C^*_{\gamma}(\mathcal{A}; \alpha) \). Thus it is faithful on \(C^*(\mathcal{A}; \alpha) \). Similarly applying Proposition 2.1 to \(C^*(\mathcal{A}; \alpha) \) and \(\text{Ind} \, \Pi \), the equality (3.2) holds. So \(\tilde{\Pi} \) is a faithful representation of \(C^*_{\gamma}(C^*(\mathcal{A}; \alpha); \alpha) \). By applying Proposition 2.2 again to \(\mathcal{A} \) and \(\alpha \), we conclude that \(C^*_{\gamma}(C^*(\mathcal{A}; \alpha); \alpha) = C^*_{\gamma}(C^*(\mathcal{A}; \alpha); \alpha) \).

We shall study the structure of \(\tilde{\Pi}[C^*(C^*(\mathcal{A}; \alpha); \alpha)] \). First of all, we compute an operator \(\tilde{\Pi}(x) \) for \(x \in K(\mathcal{A}; \mathcal{G} \times \mathcal{G}) \). By construction, the operator \(\tilde{\Pi}(x) \) is acting on \(L^2(\mathcal{G}_\Pi; \mathcal{G} \times \mathcal{G}) \). Then we have that

\[
(\tilde{\Pi}(x)\xi)(g, p) = \int_G (\text{Ind} \, \Pi \, [\xi(q)]) \lambda(q) \xi(g, p) \, dq
\]

\[
= \int_G (\text{Ind} \, \Pi \circ \gamma_q^{-1}[\xi(q)]) \xi\, (g, q^{-1}p) \, dq
\]

\[
\int_G \left\langle \Pi(\gamma_q^{-1}[\xi(q)](h)) \lambda(h) \xi\, (g, q^{-1}p) \right\rangle \, dh \, dq
\]

\[
= \int_{\mathcal{G} \times \mathcal{G}} \left\langle h, p \right\rangle \Pi \circ \gamma_q^{-1}[\xi(h, q)] \xi(h^{-1}g, q^{-1}p) \, dh \, dq,
\] (3.3)

for \(x \in K(\mathcal{A}; \mathcal{G} \times \mathcal{G}) \), \(\xi \in L^2(\mathcal{G}_\Pi; \mathcal{G} \times \mathcal{G}) \), \(p \in \mathcal{G} \), and \(g \in \mathcal{G} \), where \((\text{Ind} \, \Pi, \lambda) \in \text{Cov rep}(C^*(\mathcal{A}; \alpha), \mathcal{G}) \) induced by \((\text{Ind} \, \Pi, \iota) \in \text{Cov rep}(C^*(\mathcal{A}; \alpha), \{1\}) \), and \((\Pi, \lambda) \in \text{Cov rep}(\mathcal{A}, \mathcal{G}) \) induced by \((\Pi, \iota) \in \text{Cov rep}(\mathcal{A}, \{e\}) \). So \(\tilde{\Pi}(x) \) can be described as follows:

\[
\tilde{\Pi}(x) = \int_{\mathcal{G} \times \mathcal{G}} x(g, p) \, u(g) \, v(p) \, dg \, dp,
\] (3.4)

where

\[
(a\xi)(g, p) = \Pi \circ \gamma_q^{-1}(a) \xi(g, p) \quad (a \in \mathcal{A}),
\]

\[
(u(h)\xi)(g, p) = \left\langle h, p \right\rangle \xi(h^{-1}g, p) \quad (h \in \mathcal{G}),
\]

\[
(v(q)\xi)(g, p) = \xi(g, q^{-1}p) \quad (q \in \mathcal{G}),
\] (3.5)

for \(\xi \in L^2(\mathcal{G}_\Pi; \mathcal{G} \times \mathcal{G}) \), \(p \in \mathcal{G} \), and \(g \in \mathcal{G} \). Define a unitary operator \(J \) of \(L^2(\mathcal{G}_\Pi; \mathcal{G} \times \mathcal{G}) \) onto \(L^2(\mathcal{G}_\Pi; \mathcal{G} \times \mathcal{G}) \) by

\[
(J\xi)(g, p) = \overline{\xi(g, p)}.
\]
for \(\xi \in L^2(\mathcal{H}; G \times \hat{G}) \), \(\rho \in \hat{G} \), and \(g \in G \). Since \((J^* \eta)(g, \rho) = \langle \rho, g \rangle \eta(\rho, g) \) for \(\eta \in L^2(\mathcal{H}; \hat{G} \times G) \), we have by (3.4), (3.5) that

\[
J \tilde{\Pi}(x)^* = \int_{G \times G} x(g, \rho) u(g) v(\rho) \, dg \, d\rho, \quad (3.6)
\]

where

\[
(a') \eta)(g, \rho) = \Pi \circ \alpha^\rho_\rho (a) \eta(\rho, g) \quad (a \in \mathfrak{A}),
\]

\[
(u(h)' \eta)(g, \rho) = \eta(p, \rho^{-1}g) \quad (h \in G), \quad (3.7)
\]

\[
(v(\xi)' \eta)(p, \rho) = \overline{\xi(p^{-1} \rho, g)} \quad (\xi \in \hat{G}),
\]

for \(\eta \in L^2(\mathcal{H}; \hat{G} \times G) \), \(\rho \in \hat{G} \), and \(g \in G \).

Keeping (3.6) and (3.7) in mind, we shall discuss another crossed product based on the trivial action \(\iota_G \) of \(\hat{G} \) on \(\mathfrak{A} \). Namely, let us consider the crossed product \(C^*(\mathfrak{A}; \iota_G) \) of \(\mathfrak{A} \) by \(\iota_G \). Then it can be defined a continuous action \(\beta \) of \(G \) on \(C^*(\mathfrak{A}; \iota_G) \) by

\[
\beta_\rho(x)(\rho) = \langle \rho, \rho \rangle \alpha_\rho[x(\rho)] \quad (3.8)
\]

for \(x \in L^1(\mathfrak{A}; \hat{G}) \), \(\rho \in \hat{G} \), and \(g \in G \). In fact, one has that

\[
(\beta_\rho(x) \beta_\rho(y))(\rho) = \int_G \beta_\rho(x)(\rho) \beta_\rho(y)(\rho^{-1}g) \, dq
\]

\[
= \langle \rho, \rho \rangle \int_G \alpha_\rho[x(\rho)] \alpha_\rho[y(\rho^{-1}g)] \, dq
\]

\[
= \beta_\rho(xy)(\rho)
\]

and

\[
\beta_\rho(x^*)(\rho) = \langle \rho, \rho \rangle \alpha_\rho[x^*(\rho)] = \langle \rho, \rho \rangle \alpha_\rho[x(\rho^{-1})]^*
\]

\[
= \langle \rho, \rho \rangle \alpha_\rho[x(\rho^{-1})]^* = \beta_\rho(x)(\rho^{-1})^*
\]

\[
= \beta_\rho(x)^*(\rho),
\]

for each \(x, y \in L^1(\mathfrak{A}; \hat{G}) \), \(\rho \in \hat{G} \), and \(g \in G \). Moreover, the norm estimation for \(\beta_\rho \) is given as follows:

\[
\| \beta_\rho(x) \| = \sup \{ \| \rho[\beta_\rho(x)] \| : \rho \in L^1(\mathfrak{A}; \hat{G}) \}
\]

\[
= \sup \left\{ \left\| \int_G L[\beta_\rho(x)(\rho)] \, dp \right\| : (L, \nabla) \in \text{Cov rep} (\mathfrak{A}, \hat{G}) \right\}
\]

\[
= \sup \left\{ \left\| \int_G \langle \rho, \rho \rangle L \circ \alpha_\rho[x(\rho)] \, dp \right\| : (L, \nabla) \in \text{Cov rep} (\mathfrak{A}, \hat{G}) \right\}
\]
Let $V_g(p) = \langle g, p \rangle \in V(p)$. Since $(L, \nabla) \in \text{Cov rep}(\mathcal{A}, \hat{G})$, it follows that $(\alpha^{-1}_g \cdot L, \nabla_g) \in \text{Cov rep}(\mathcal{A}, \hat{G})$. This implies that $||\beta^*_g(x)|| \leq ||x||$ for $g \in G$. Since $\beta^*_g = \beta^*_g (g \in G)$, $||\beta^*_g(x)|| = ||x||$ for $x \in L^1(\mathcal{A}, \hat{G})$, $g \in G$. By a similar reasoning as for \hat{e}, \hat{e}^* is a continuous action of G on $C^*(\mathcal{A}; \tau_0)$. Then we can also construct the crossed product $C^*(C^*(\mathcal{A}; \tau_0); \beta)$ of $C^*(\mathcal{A}; \tau_0)$ by β. We now show the following proposition which is essential to prove the duality.

Proposition 3.1. Let G be a locally compact abelian group, and \mathcal{A} be a C^*-algebra with a continuous action α of G. Then there exists a continuous action $\hat{\alpha}$ (respectively, β) of \hat{G} (respectively, G) on $C^*(\mathcal{A}; \alpha)$ (respectively $C^*(\mathcal{A}; \tau_0)$) such that $C^*(C^*(\mathcal{A}; \alpha); \hat{\alpha})$ is isomorphic to $C^*(C^*(\mathcal{A}; \tau_0); \beta)$.

Proof. Let $\hat{\Pi}$ be the representation of $C^*(C^*(\mathcal{A}; \alpha); \beta)$ induced by Π, where Π is as before. By the same argument as $\hat{\Pi}$, $\hat{\Pi}$ is faithful on $C^*(C^*(\mathcal{A}; \tau_0); \beta)$. Moreover, the similar computation as (3.3) gives us that

\[
(\hat{\Pi}(x)\xi)(p, g) = \int_G \left(\text{Ind } \Pi \left[x(h) \right] \lambda(h) \xi(p, g) \right) dh \\
= \int_G \left(\text{Ind } \Pi \circ \beta^{-1}_g [x(h)] \xi(\cdot, h^{-1}g) \right) (p) dh \\
= \int_G \int_G \left\{ \Pi(\beta^{-1}_g [x(h)](q)) \lambda(q) \xi(\cdot, h^{-1}g) \right\} (p) dq dh \\
= \int_{\mathcal{G} \times G} \left\langle g, q \right| \Pi \circ \alpha^{-1}_g [x(q, h)] \xi(q^{-1}p, h^{-1}g) dq dh \\
= \int_{\mathcal{G} \times G} \left\langle g, q \right| \Pi \circ \alpha^{-1}_g [x(q, h)] \xi(q^{-1}p, h^{-1}g) dq dh,
\]

for $x \in K(\mathcal{A}; \hat{G} \times G)$, $\xi \in L^2(\mathcal{G}; \hat{G} \times G)$, $p \in \mathcal{G}$, and $g \in G$, where $(\text{Ind } \Pi, \lambda) \in \text{Cov rep}(C^*(\mathcal{A}; \tau_0), \hat{G} \times G)$ induced by $(\text{Ind } \Pi, \iota) \in \text{Cov rep}(C^*(\mathcal{A}; \tau_0), \{e\})$, and $(\Pi, \lambda) \in \text{Cov rep}(\mathcal{A}, \hat{G})$ induced by $(\Pi, \iota) \in \text{Cov rep}(\mathcal{A}, \{1\})$. Therefore, one can describe the operator $\hat{\Pi}(x)$ as follows:

\[
\hat{\Pi}(x) = \int_{\mathcal{G} \times G} x(q, h) \varphi(q) u(h) df dq, \quad (3.9)
\]

for $x \in K(\mathcal{A}; \hat{G} \times G)$, where $\varphi, \varphi(q)$, $u(h)$ is as (3.7) ($a \in A$, $q \in \hat{G}$,
Since \(v(q') u(h') = \langle h, q \rangle u(h') v(q') \) for \(q \in \hat{G}, h \in G \), it follows by (3.9) that

\[
\hat{I}(x) = \int_{G \times G} \langle h, q \rangle x(q, h) u(h') v(q') \, dh \, dq
\]

\[
= \int_{G \times G} \langle h, q \rangle (x(q, h))' u(h') v(q') \, dh \, dq
\]

\[
= \int_{G \times G} y(h, q) u(h') v(q') \, dh \, dq,
\]

where \(y(h, q) = \langle h, q \rangle x(q, h) \) \((h \in G, q \in \hat{G})\). Comparing (3.10) with (3.6), we obtain that

\[
\hat{I}(x) = J\hat{I}(y)J^*,
\]

which implies that

\[
\hat{I}[C^*(C^*(\mathfrak{A}; \iota_G); \beta)] = J\hat{I}[C^*(\mathfrak{A}; \alpha); \varnothing]]J^*.
\]

This means that \(C^*(C^*(\mathfrak{A}; \alpha); \varnothing) \) is isomorphic to \(C^*(C^*(\mathfrak{A}; \iota_G); \beta) \).

Q.E.D.

Now we can see without difficulty what is the structure of \(C^*(C^*(\mathfrak{A}; \iota_G); \beta) \). Actually, let us first define a Banach *-algebra which is isomorphic to \(L^1(\mathfrak{A}; \hat{G}) \) with the trivial action \(\iota_G \) as follows: consider the algebraic tensor product \(\mathfrak{A} \otimes L^1(\hat{G}) \) of \(\mathfrak{A} \) and \(L^1(\hat{G}) \) with a *-algebraic structure defined by

\[
\left(\sum_{i=1}^{n} a_i \otimes f_i \right) \left(\sum_{j=1}^{m} a'_j \otimes f'_j \right) = \sum_{i,j=1}^{n,m} a_ia'_j \otimes (f_i \ast f'_j)
\]

and

\[
\left(\sum_{i=1}^{n} a_i \otimes f_i \right)^* = \sum_{i=1}^{n} a_i^* \otimes f_i^*,
\]

for each \(a_i, a'_j \in \mathfrak{A}, \) and \(f_i, f'_j \in L^1(\hat{G}). \) Then, the completion \(A \otimes_\gamma L^1(\hat{G}) \) of \(\mathfrak{A} \otimes L^1(\hat{G}) \) with respect to the greatest cross norm \(\gamma \), is a Banach *-algebra which is isomorphic to \(L^1(\mathfrak{A}; \hat{G}) \) with \(\iota_G \) (cf. [3]). The isomorphism \(\Phi \) between them is determined by

\[
\Phi \left[\sum_{i=1}^{n} f_i(\cdot) a_i \right] = \sum_{i=1}^{n} a_i \otimes f_i,
\]
for \(a_\in \mathfrak{A}, f_i \in L^1(\hat{G}) \), where \((f_i(\cdot) a_\in)(p) = f_i(p) a_\in (p \in \hat{G})\). Furthermore, \(\Phi \) can be extended to a isomorphism of \(C^*(\mathfrak{A}; \iota_G) \) onto the enveloping \(C^\ast \)-algebra \(C^*(\mathfrak{A} \otimes L^1(\hat{G})) \) of \(\mathfrak{A} \otimes L^1(\hat{G}) \) which is also denoted by \(\Phi \). Then, one can easily check that

\[
\Phi \circ \beta_g \circ \Phi^{-1} = \alpha_g \otimes L_{\tau_g}, \quad \text{for } g \in G,
\]

where \((L_{\tau_g}f)(p) = \chi_g(p)f(p) = \langle g, p \rangle f(p) (f \in L^1(\hat{G}), p \in \hat{G})\). On the other hand, due to Guichardet–Okayasu (cf. [4, 7]),

\[
C^*(\mathfrak{A} \otimes L^1(\hat{G})) = \mathfrak{A} \otimes_v C^\ast(\hat{G})
\]

where \(v \) is the greatest \(C^\ast \)-norm. By applying Proposition 2.3, one gets that \(C^*(C^*(\mathfrak{A}; \iota_G); \beta') \) is isomorphic to \(C^*(\mathfrak{A} \otimes_v C^\ast(\hat{G}); \alpha \otimes L_\tau) \) where \((\alpha \otimes L_{\tau_g})_g = \alpha_g \otimes L_{\tau_g} (g \in G)\). Denoting by \(C_0(G) \) the \(C^\ast \)-algebra consisting of all continuous functions vanishing at infinity, it easily follows that there exists an isomorphism \(\Psi \) of \(\mathfrak{A} \otimes_v C^\ast(\hat{G}) \) onto \(A \otimes_v C_0(G) \) such that

\[
\Psi \circ (\alpha \otimes L_\tau)_g \circ \Psi^{-1} = \alpha_g \otimes \tau_g, \quad \text{for } g \in G,
\]

where \((\tau_g f)(h) = f(g^{-1}h) (f \in C_0(G))\). Applying Proposition 2.3 again, we obtain that \(C^*(\mathfrak{A} \otimes_v, C^\ast(\hat{G}); \alpha \otimes \tau) \) is isomorphic to \(C^*(\mathfrak{A} \otimes_v C_0(G); \alpha \otimes \tau) \) where \((\alpha \otimes \tau)_g = \alpha_g \otimes \tau_g (g \in G)\). By a reasoning similar to the one above, there is an isomorphism \(\Phi' \) of \(\mathfrak{A} \otimes_v C_0(G) \) onto the \(C^\ast \)-algebra \(C_0(\mathfrak{A}; G) \) consisting of all continuous \(\mathfrak{A} \)-valued functions vanishing at infinity such that

\[
\Phi' \circ (\alpha \otimes \tau)_g \circ (\Phi')^{-1} = \beta'_g, \quad \text{for } g \in G,
\]

where \(\beta'_g(x)(h) = \alpha_g[x(g^{-1}h)] \), for \(x \in C_0(\mathfrak{A}; G) \). So we have that \(C_0(\mathfrak{A} \otimes_v C_0(G); \alpha \otimes \tau) \) is isomorphic to \(C^*(C_0(\mathfrak{A}; G); \beta') \). However, since \(C_0(G) \) is abelian, \(\mathfrak{A} \otimes_v C_0(G) = \mathfrak{A} \otimes_v C_0(G) \) (cf. [8]). Therefore, \(C^*(\mathfrak{A} \otimes_v C_0(G); \alpha \otimes \tau) \) is isomorphic to \(C^*(C_0(\mathfrak{A}; G); \beta') \). Let \(\Psi'(x)(g) = \alpha^{-1}_g[x(g)] \) for \(x \in C_0(\mathfrak{A}; G) \). Then it is verified that \(\Psi' \) is an isomorphism on \(C_0(\mathfrak{A}; G) \) such that

\[
\Psi' \circ \beta'_g \circ (\Psi')^{-1} = \tau'_g, \quad \text{for } g \in G,
\]

where \(\tau'_g(x)(h) = x(g^{-1}h) \), for \(x \in C_0(\mathfrak{A}; G) \). This means that \(C^*(C_0(\mathfrak{A}; G); \beta') \) is isomorphic to \(C^*(C_0(\mathfrak{A}; G); \tau') \). Using \(\Phi' \) again, one gets that

\[
(\Phi')^{-1} \circ \tau'_g \circ \Phi' = \iota_{\mathfrak{A}} \otimes \tau_g, \quad \text{for } g \in G,
\]
where \(\psi \) is the trivial automorphism of \(\mathcal{A} \). Thus, we have that
\[
C^*(\mathcal{A}, C_0(G); \tau') \text{ is isomorphic to } C^*(\mathcal{A} \otimes \mathcal{A}, C_0(G); \psi \otimes \tau),
\]
where \(\psi \) is the trivial action of \(\{ e \} \) on \(\mathcal{A} \). Summing up the argument discussed above, we get the following.

Proposition 3.2. Let \(G \) be a locally compact abelian group, and \(\mathcal{A} \) be a \(C^* \)-algebra with a continuous action \(\alpha \) of \(G \). Then \(C^*(\mathcal{A} \otimes \mathcal{A}, C_0(G); \alpha \otimes \tau) \) is isomorphic to \(C^*(\mathcal{A}, C_0(G); \psi \otimes \tau) \), where \(\psi \) is the trivial action of \(\{ e \} \) on \(\mathcal{A} \).

Applying now Proposition 2.4 to \(C^*(\mathcal{A} \otimes \mathcal{A}, C_0(G); \psi \otimes \tau) \), one obtains that it is isomorphic to \(C^*(\mathcal{A}, C_0(G); \psi \otimes \tau) \) which is equal to \(\mathcal{A} \otimes \mathcal{A} \).

Finally we prove the following which is of independent interest.

Proposition 3.3. Let \(G \) be a locally compact group, and \(C_0(G) \) be the \(C^* \)-algebra of all continuous functions on \(G \) vanishing at infinity. Then the crossed product \(C^*(C_0(G), \tau) \) of \(C_0(G) \) by the translation \(\tau \) of \(G \) is isomorphic to the \(\mathcal{C}(L^2(G)) \) of all compact operators on \(L^2(G) \).

Proof. Let \(\Pi \) be an irreducible representation of \(C^*(C_0(G); \tau) \) and \((\rho, \mathcal{V}) \in \text{Cov rep}(C_0(G), G) \) corresponding to \(\Pi \). Then \(\rho \) is faithful. In fact, let \(F \) be the closed subset of \(G \) corresponding to \(\ker \rho \). Since \((\rho, \mathcal{V}) \in \text{Cov rep}(C_0(G), G) \), it follows that \(gF = F \) for any \(g \in G \). Hence \(F = G \), which implies that \(\rho \) is faithful. Consider a bounded linear functional \(F_{\xi, \eta}(f) = \langle \rho(f) \xi | \eta \rangle \) on \(C_0(G) \) for each \(\xi, \eta \in \mathcal{S}_G \). By Riesz–Markov’s theorem, there exists a unique regular Borel measure \(\mu_{\xi, \eta} \) which represents \(F_{\xi, \eta} \). Let \(\Sigma_G \) be the set of all Baire sets of \(G \). Since \((\xi, \eta) \mapsto \mu_{\xi, \eta}(E) \) is a bounded sesquilinear form on \(\mathcal{S}_{\rho} \times \mathcal{S}_{\rho} \) for each \(E \in \Sigma_G \), there is a unique bounded linear operator \(P(E) \) on \(\mathcal{S}_{\rho} \) such that \(\langle P(E) \xi | \eta \rangle = \mu_{\xi, \eta}(E) \). Since \(\rho \) is a faithful representation on \(C_0(G) \), \(P(E) \) is a projection and \(P(E) \neq 0 \) for every non-empty open set \(E \in \Sigma_G \). Moreover, the mapping \(E \mapsto P(E) \) is a Boolean \(\sigma \)-homomorphism from \(\Sigma_G \) onto an abelian family of projections on \(\mathcal{S}_{\rho} \). Since \((\rho, \mathcal{V}) \in \text{Cov rep}(C_0(G), G) \), the uniqueness of \(P(E) \) gives us that \(\mathcal{V}(g) P(E) \mathcal{V}(g)^* = P(gE) \) for \(E \in \Sigma_G \), and \(g \in G \). Therefore, since \((P, \mathcal{V}) \) is irreducible, it follows by Loomis [6] that \((P, \mathcal{V}) \) is unitarily equivalent to \((L, \lambda) \), where \((L, \lambda)(f)(g) = \lambda_{\xi, \eta}(g)f(g) \) and \((L, \lambda)(h)f)(g) = f(h^{-1}g) \) for \(f \in L^2(G) \), \(E \in \Sigma_G \). Then the pair \((\rho, \mathcal{V}) \) is unitarily equivalent to \((L, \lambda) \). This implies that \(\Pi \) is unitarily equivalent to \(\text{Ind} \delta \), where \(\delta \) is the character of \(C_0(G) \) given
by \(\delta(f) = f(e) \). Thus, \(\text{Ind} \delta \) is faithful on \(C^*(C_0(G); \tau) \). Computing \((\text{Ind} \delta)(x) \) for \(x \in K(G \times G) \), one has that

\[
[(\text{Ind} \delta)(x)\xi](g) = \int_G x(g, h) \xi(h^{-1}g) \, dh
\]

\[
= \int_G x(g, gh^{-1}) \Delta(h)^{-1} \xi(h) \, dh
\]

\[
= \int_G y(g, h) \xi(h) \, dh, \quad \xi \in L^2(G),
\]

where \(y(g, h) = x(g, gh^{-1}) \Delta(h^{-1}) \). Since \(y \) is square integrable on \(G \times G \), \((\text{Ind} \delta)(x) \) is an operator of Hilbert–Schmidt class. So \((\text{Ind} \delta)(x) \in \mathcal{B}(L^2(G)) \). Therefore, since \(K(G \times G) \) is dense in \(C^*(C_0(G); \tau) \), \((\text{Ind} \delta)[C^*(C_0(G); \tau)] \subset \mathcal{B}(L^2(G)) \). Since \(\text{Ind} \delta \) is irreducible, we have by [1, Cor 4.1.11] that \((\text{Ind} \delta)[C^*(C_0(G); \tau)] = \mathcal{B}(L^2(G)) \). Thus, \(C^*(C_0(G); \tau) \) is isomorphic to \(\mathcal{B}(L^2(G)) \). Q.E.D.

We shall now state our main theorem as follows.

Theorem 3.4. Let \(G \) be a locally compact abelian group, and \(\mathcal{A} \) be a \(C^* \)-algebra with a continuous action \(\alpha \) of \(G \). Then there exists a continuous action \(\delta \) of the dual group \(\hat{G} \) of \(G \) on the crossed product \(C^*(A; \alpha) \) of \(\mathcal{A} \) by \(\alpha \) such that the crossed product \(C^*(C^*(\mathcal{A}; \alpha); \delta) \) of \(C^*(\mathcal{A}; \alpha) \) by \(\delta \) is isomorphic to the tensor product \(\mathcal{A} \otimes \mathcal{L}(L^2(G)) \) of \(\mathcal{A} \) and the \(C^* \)-algebra \(\mathcal{L}(L^2(G)) \) of all compact operators on \(L^2(G) \).

Proof. By Propositions 3.1–3.3, \(C^*(C^*(\mathcal{A}; \alpha); \delta) \) is isomorphic to \(\mathcal{A} \otimes \mathcal{L}(L^2(G)) \). However, since \(\mathcal{L}(L^2(G)) \) is of type I, \(\mathcal{A} \otimes \mathcal{L}(L^2(G)) = \mathcal{A} \mathcal{L}(L^2(G)) \) (cf. [8]). Q.E.D.

Remark. Let \(G_n \) be the cyclic group of order \(P_n \) for \(n = 1, 2, \ldots, \) and \(G \) denote the product group \(\prod_{n=1}^\infty G_n \) with the weak product topology. Then the dual group \(\hat{G} \) of \(G \) can be identified as the restricted product group \(\bigcup_{n=1}^\infty G_n \) with the discrete topology. Consider the action \(\tau \) of \(\hat{G} \) on \(C(G) \) by \((\tau f)(g) = f(gs) \) where \(C(G) \) is the \(C^* \)-algebra of all continuous functions on \(G \); Then, the above theorem says that there exists a continuous action \(\tilde{\tau} \) of \(\hat{G} \) on \(C^*(C(G); \tau) \) such that \(C^*(C^*(C(G); \tau); \tilde{\tau}) \) is isomorphic to \(C(G) \mathcal{L}(L^2(G)) \) which is exactly the theorem in [10].
ACKNOWLEDGMENTS

The author would like to express his hearty thanks to Professor D. Kastler for his constant encouragement and invitation to C.N.R.S., Marseille, which enabled him to complete this work, and to Professor M. Takesaki for his many valuable suggestions.

REFERENCES