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Mutations in the SPINK5 gene encoding the serine protease (SP) inhibitor, lymphoepithelial-Kazal-type 5
inhibitor (LEKTI), cause Netherton syndrome (NS), a life-threatening disease, owing to proteolysis of the stratum
corneum (SC). We assessed here the basis for phenotypic variations in nine patients with ‘‘mild’’, ‘‘moderate’’,
and ‘‘severe’’ NS. The magnitude of SP activation correlated with both the barrier defect and clinical severity, and
inversely with residual LEKTI expression. LEKTI co-localizes within the SC with kallikreins 5 and 7 and inhibits
both SP. The permeability barrier abnormality in NS was further linked to SC thinning and proteolysis of two
lipid hydrolases (b-glucocerebrosidase and acidic sphingomyelinase), with resultant disorganization of
extracellular lamellar membranes. SC attenuation correlated with phenotype-dependent, SP activation, and
loss of corneodesmosomes, owing to desmoglein (DSG)1 and desmocollin (DSC)1 degradation. Although
excess SP activity extended into the nucleated layers in NS, degrading desmosomal mid-line structures with loss
of DSG1/DSC1, the integrity of the nucleated epidermis appears to be maintained by compensatory
upregulation of DSG3/DSC3. Maintenance of sufficient permeability barrier function for survival correlated
with a compensatory acceleration of lamellar body secretion, providing a partial permeability barrier in NS.
These studies provide a mechanistic basis for phenotypic variations in NS, and describe compensatory
mechanisms that permit survival of NS patients in the face of unrelenting SP attack.
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INTRODUCTION
Netherton syndrome (NS) is an autosomal recessive disorder,
characterized by scaling ichthyosis, atopic dermatitis,
and a diagnostic hair shaft abnormality (‘‘bamboo hairs’’), a
phenotype that varies dramatically in severity (Griffiths et al.,
1989). The genetic defects in NS comprise a mutations in the
SPINK5 gene on chromosome 5q32 resulting in a reduction
or loss of expression of a serine protease (SP) inhibitor
(SPI), the lymphoepithelial Kazal-type-5 SPI (LEKTI) (Magert

et al., 1999; Chavanas et al., 2000; Sprecher et al., 2001),
expressed in keratinizing and non-keratinizing epithelia,
thymus (Hassall’s bodies), tonsils, parathyroid glands, and
trachea (Magert et al., 1999; Walden et al., 2002; Bitoun
et al., 2003). Decreased LEKTI activity in NS results in
unopposed SP activation that compromises stratum corneum
(SC) cohesion, resulting in SC thinning (Komatsu et al., 2002),
delayed growth, and hypernatremic dehydration, with some-
times fatal outcomes in affected infants (Stoll et al., 2001;
Moskowitz et al., 2004). Through elaboration of the
consequences of SP/SPI imbalance for disease expression,
NS therefore illustrates the critical importance of SP/SPI
balance for the regulation of normal epidermal function.

Both variations in disease severity and clinical outcomes
in NS relate to the severity of permeability barrier defect
(Moskowitz et al., 2004), which could correlate with the
extent of unopposed SP activation (Komatsu et al., 2002).
Excess SP activity is associated with SC thinning, abnormal-
ities in SC lamellar body (LB) generation, lamellar membrane
ultrastructure, and impaired barrier function (Fartasch et al.,
1999; Moskowitz et al., 2004). Yet, neither of these
observations per se provide a mechanistic link between
excess SP activity and the putative barrier abnormality.
Moreover, whether the variable phenotypes in NS reflect
differences in either SP/LEKTI balance or localization, and
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how SP/LEKTI imbalance affects permeability barrier function
and SC integrity remains unknown. Although an attempt to
address these questions was made by studies in SPINK5
knockout mice, where complete loss of LEKTI produces a
severe, NS-type phenotype that leads to death shortly after
birth (Descargues et al., 2005), these studies provided neither
insights into the basis for the variable clinical phenotypes in
NS nor into compensatory mechanisms that allow survival of
most NS patients.

SC contains several types of SP activities, including two
SC-specific SP, kallikrein (klk) 5 and klk7, known to regulate
desquamation (Caubet et al., 2004; Komatsu et al., 2005).
Whether LEKTI is an inhibitor of both klks, thereby regulating
one or both SP activities in SC, remains unknown. Moreover,
the described localization of LEKTI to the stratum granulosum
(SG), and its absence from the SC (Walden et al., 2002;
Bitoun et al., 2003), diverges from the SC localization of klk5
and klk7 (Hansson et al., 1994; Brattsand and Egelrud, 1999;
Bitoun et al., 2003; Ishida-Yamamoto et al., 2005). Thus, the
current view of klk versus LEKTI localization must be reconci-
led to reflect the putative enzyme–inhibitor relationships of
these proteins.

SP-mediated attenuation of the SC (Stoll et al., 2001;
Moskowitz et al., 2004) and abnormalities in SC lamellar
membrane organization (Fartasch et al., 1999) could con-
tribute to the barrier abnormality in NS. Yet, the mechanisms
whereby unrestricted SP activity produces such abnormalities
remains unknown. We have shown previously that prolonged,
experimental elevations in the pH of the SC activate SP,
resulting in progressive degradation of two key, extracellular,
lipid-processing enzymes, b-glucocerebrosidase (b-GlcCer’-
ase) and acidic sphingomyelinase (aSMase) (Hachem et al.,
2005b). As both of these enzymes are required to generate the
extracellular lamellar membrane system that mediates the
permeability barrier (Holleran et al., 1993; Mao-Qiang et al.,
1996), we hypothesized that an elevated pH would further
increase SP activity, providing a second mechanism that could
lead to membrane structural and barrier abnormalities in NS.

Therefore, we addressed here several unresolved issues
about how SP/LEKTI imbalance and localization determine
phenotype severity, as well as the pathogenic basis for the
abnormalities in SC integrity/cohesion and permeability
barrier function in NS. To gain further insights into the
consequences of excess SP activity, we also assessed a
transgenic murine model of increased SP activity (klk7
overexpression) that develops an NS-like dermatosis. Finally,
we identified two compensatory responses that explain the
survival of NS patients, despite the devastating consequences
of unopposed SP activity for epidermal homeostasis. These
studies provide new insights into the pathogenesis of NS and
the importance of maintenance of SP/SPI balance for survival
in a terrestrial environment.

RESULTS
SP activation and LEKTI expression are inversely related to
phenotype severity in NS

Nine NS subjects displayed ‘‘mild’’, ‘‘moderate’’, and
‘‘severe’’ disease phenotypes (see Table 1 for severity grading

based on the criteria described in Ganemo et al. (1999),
and Table 2 for genotyping). ‘‘Moderate’’ and ‘‘severe’’ NS
subjects displayed a severe permeability barrier abnorma-
lity, assessed as rates of transepidermal water loss.
Transepidermal water loss levels in the ‘‘mild’’ NS subject
were comparable to levels of subjects with other inflamma-
tory dermatoses, such as atopic dermatitis and psoriasis.
Pertinently, the ‘‘mild’’ NS subject displayed the lowest
levels of SP activity among all of the NS subjects by
in situ zymography, an observation that correlated
with immunohistochemical evidence of residual LEKTI
expression in the outer epidermis in this subject (Figure 1b
and f).

Conversely, ‘‘moderate’’ and ‘‘severe’’ NS cases demon-
strated a progressive increase in SP activity with low-to-
absent LEKTI expression (Figure 1c, d, g and h). Together,
these results demonstrate an inverse correlation between SP
activity and residual LEKTI expression that further predicts
clinical severity.

Co-localization of SP with LEKTI in normal epidermis, and
selective inhibition of both klk5 and klk7 by rLEKTI

As reported previously (Hansson et al., 1994; Brattsand and
Egelrud, 1999), SP activity predominated in the anucleated
SC layers of normal human epidermis (Figure 1e). Whereas
prior immunohistochemical studies claimed that LEKTI is
expressed primarily in SG (Bitoun et al., 2003; Ishida-
Yamamoto et al., 2005), our immunofluorescence studies
of normal human skin clearly show that LEKTI protein is
present not only in SG but also in SC (Figure 1a). Moreover,
en face images of SC, with merged images, show that LEKTI
protein co-localizes with klk7 to SC membrane domains
(Figure 1j and k). Further, definitive evidence for LEKTI
expression in SC is shown by Western immunoblotting of SC
protein extracts, where both full-length and processed LEKTI
are present in normal human subjects, but absent in the SC
of NS subjects (Figure 1i1+2 vs. i3). The specificity of the
anti-klk7 antibody was tested against 5- to 10-fold excess
recombinant klk5, klk8, and klk14, without detection of any
cross-reactivity. Because of its robust immunoreactivity in
immunoblotting (Raghunath et al., 2004), the monoclonal
1C11G6 anti-LEKTI antibody was subsequently used as the
detecting antibody for both immunohistochemistry and
Western immunoblotting.

To ascertain which SPs are the preferred substrates
of LEKTI, we next incubated three endogenous epidermal
SP (klk5, klk7, and cathepsin G), and one SP that is not
present in SC (chymotrypsin), with a range of concentrations
of recombinant human LEKTI (rLEKTI). rLEKTI inhibited klk5
and klk7, with less inhibitory activity against cathepsin G,
and no activity against chymotrypsin, as demonstrated
previously (Mitsudo et al., 2003) (Table 3). Finally, addition
of rLEKTI to in situ zymography sections demonstrated
complete suppression of all endogenous SP activity in the epi-
dermis of klk7-overexpressing mice (Figure 2a–c). Together,
these studies demonstrate that SP and LEKTI co-localize
within membrane domains of normal SC, and that rLEKTI
selectively targets both klk5 and klk7.
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Basis for loss of SC cohesion, with retention of epidermal
integrity, in NS

To assess the consequences of excess SP in NS, we
demonstrated by Western immunoblotting a phenotype-
and SP-dependent decline of the desmosomal cadherins,
desmoglein-1 (DSG1) and desmocollin-1 (DSC1) in SC
extracts from NS patients (Figure 3a–q, cf. Figure 1). Both
DSG1 and DSC1 were significantly reduced in the SC of
‘‘severe’’ NS (Figure 3a–q).

As excess SP activity extends downward into the nucleated
layers in ‘‘moderate’’ and ‘‘severe’’ NS, we next evaluated
desmosomal cadherins expression within the nucleated
layers of NS epidermis. Although neither DSG1 nor DSC1
levels appeared reduced in ‘‘mild’’ NS, DSG1 immuno-
labeling largely disappeared from all epidermal layers
in ‘‘moderate’’ and ‘‘severe’’ NS (Figure 3a–p), whereas
immunofluorescence showed additional patchy downregula-
tion of DSC1 in the outer nucleated layers (Figure 3a–p).
Together, these results demonstrate phenotype-dependent
degradation of both corneodesmosome and desmosomal
cadherins in NS.

An analogous loss of DSG1 occurs in human intra-
epidermal blistering disorders, such as pemphigus and
staphylococcal scalded skin syndrome (Amagai et al., 2000;

Wu et al., 2000). Yet, even though SC cohesion is perturbed
in NS, our patients did not display excess skin fragility such as
blisters formation (i.e., negative Nikolsky sign; Table 1).
Hence, we assessed whether other desmosomal cadherin(s)
are upregulated in NS, thereby providing compensatory
structural integrity. Although DSG3/DSC3 expression is
restricted to the basal and lower spinous layers in normal
human epidermis (Figure 3a–p), immunostaining for both
of these cadherins extended apically to all of the
suprabasal, nucleated layers in ‘‘moderate’’ and ‘‘severe’’
NS (Figure 3a–p). Moreover, an increase in the content
of both of these proteins was also shown by Western
immunoblotting (Figure 3a–q). Together, these results
show that compensatory upregulation of other desmosomal
cadherins could protect against intra-epidermal vesiculation
from excess SP activity in NS.

We next asked whether altered expression profiles of
desmosomal cadherins could have structural consequences
for desmosomes in NS. Within the epidermal nucleated
layers, desmosomes display typical, mid-line structures in
both mild NS and in normal controls (Figure 3r–y), as well as
in other acquired and inherited dermatoses; that is, atopic
dermatitis, psoriasis, and recessive X-linked ichthyosis
(not shown). But these central, mid-line core structures are

Table 1. Clinical characteristics of study group and summary of clinical/laboratory studies

Microscopy

No. Race Age Skin phenotype

Bamboo

hair

Nikolsky

or fragility Genotyped EM IHC Zymography SC ph

TEWL

forearm

1 Caucasian 16 Mild P � + + + + 5.0 10.3

2 Caucasian 13 Moderate P � + + + + 6.8 35.7

3 Caucasian 13 Severe P � +(NF) + + + 7.2 68.8

4 Caucasian 7 Moderate NF � + � + + NA 40.30

5 Caucasian 38 Severe P � NA + + � NA 58.80

6 Caucasian 39 Severe P � NA + � � NA NA

7 Asian 9 Severe P � +1 + � � NA 23.72

8 Asian 12 Severe P � +1 + � � NA 63.22

9 Caucasian 15 Severe P � +1 + � � NA 57.42

10 Caucasian 8 Normal subject NA NA NA � + + NA 6.5

11 Caucasian 30 Normal subject NA NA NA � + + 4.8 5.3

12 Caucasian 16 Normal subject NA NA NA + � � NA 4.8

13 Caucasian 24 Atopic dermatitis NA NA NA + � � NA �

14 Caucasian 27 Psoriasis NA NA NA + � � NA �

15 Caucasian 28 RXLI NA NA + + � � NA �

Patient ages 47 years came from the investigators’ practices as follows: nos. 1–3, 10+11+14 from Brussels; nos. 4–6+15 from Innsbruck; and nos. 7–9, 12+13
from San Francisco. Inclusion criteria included scaling dermatoses; bamboo hair shaft abnormalities; and severe atopic dermatitis-like rash. Skin biopsy
specimens were obtained from recently (7+ days) untreated sites (i.e., avoidance of corticosteroid application for at least 2 weeks) and processed for
immunohistochemical staining, in situ zymography (protease- and lipid-processing enzymes), light and electron microscopy, including ruthenium tetroxide
post-fixation, aSMase ultrastructural cytochemistry, and lanthanum staining. TEWL was measured on the ventral forearms using a Tewameter 210 (Courage
and Khazaka) and expressed as the mean of three measurements in mg/cm2/h (normal range: 2–5 mg/cm2/h). Scoring for disease severity was based on the
investigators’ assessment of erythema, scaling, pruritus, atopic features, growth failure, episodes of dehydration, and social consequences as follows: 0
(absent) to 4 (extremely severe). Severity score for ‘‘mild’’ NS was defined as o10, moderate X10 and p20, and severe as 420.NF=not found (see Table 2);
NA=not assessed; RXLI=recessive X-linked ichthyosis; P=present; +=available; �=not available; EM=electron microscopy; and IHC=immunohistochemistry.
1Courtesy of Dr Gabriela Richard.
2From Moskowitz et al. (2004).
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reduced or absent from most desmosomes in ‘‘moderate’’,
and ‘‘severe’’ NS (Figure 3v–y). Thus, while thinning of SC in
NS can be attributed to loss of corneodesmosome, excess SP
activity also modifies desmosomes within the epidermal
nucleated layers in NS.

Basis for permeability barrier abnormality in NS

Patients with NS can develop severe electrolyte abnormalities
(Stoll et al., 2001) and sufficient caloric loss to impair growth
(Moskowitz et al., 2004). As shown in Table 1, NS patients
displayed a permeability barrier abnormality, which largely,
but incompletely, correlates with clinical phenotype. In
addition to SC thinning, as one cause for the perme-
ability barrier abnormality (see above and Komatsu et al.,
2002), extracellular lamellar membranes that subserve
normal barrier function were disorganized in all NS subjects
(Figure 4a–e). Whereas ‘‘mild’’ NS displayed few changes in
membrane structure, the extracellullar lamellar membranes
were progressively disrupted in ‘‘moderate’’ and ‘‘severe’’ NS
(Figure 4a–e). As a similar spectrum of lamellar membrane
disorganization was also seen in the klk7-overexpressing
mice (Figure 5), excess SP activity clearly accounts for the
membrane structural abnormalities in NS.

We next explored the relationship between elevated SP
activity and membrane disorganization in NS. Our previous
studies showed that either experimentally induced elevations
of pH that activate SP, or incubations of normal SC extracts

with recombinant klk7, decrease the content of b-GlcCer’ase
and aSMase (Hachem et al., 2005b). As a consequence of
either or both increased pH (Table 1) and/or elevated SP
activity in NS, the content of both of these lipid-processing
enzymes decreased in the outer epidermis in NS, again in a
phenotype-dependent manner (shown by Western blotting
in Figure 6h, and by immunofluorescence in Figure 6).
Yet, aSMase protein, although lost from SC, increased in
the nucleated layers in NS (Figure 6f and g). Furthermore, a
complete absence of extracellular aSMase activity in the
outer SG and SC of ‘‘moderate’’ to ‘‘severe’’ NS, with a
potentially compensatory increase in the nucleated layers,
was demonstrated by ultrastructural cytochemistry (Figure
4f–j). These studies show that proteolytic degradation of lipid-
processing enzymes likely accounts for the membrane
structural abnormalities responsible for the barrier defects in
NS, with evidence for compensatory upregulation of lipid-
processing enzymes in the underlying nucleated layers.

Could upregulated LB secretion partially compensate for the
defective barrier in NS?
Abnormal or decreased lamellar membranes could result
from degradation of lipid-processing enzymes and impaired
LB secretion. Yet, we show instead that LB production
accelerates in NS (Figure 4a–j), as described previously
(Fartasch et al., 1999). Furthermore, accelerated LB secretion
is found in klk7-overexpressing mice (Figure 5), suggesting a
link between increased SP activity and premature (accelera-
ted) organelle secretion. Finally, to ascertain whether
accelerated LB secretion comprises a compensatory mechan-
ism that allow survival of NS patients, we assessed whether
accelerated LB secretion in NS provides a partial permeability
barrier. Specifically, we assessed the pathways of colloidal
lanthanum tracer egress and blockade across NS epidermis.
Externally applied water-soluble tracer moved freely through
the SC interstices in ‘‘severe’’ NS (Figure 4k and l). However,
inward-to-outward movement of tracer was impeded within
the nucleated layers at sites of premature LB secretion (Figure
4k and l), well beneath the normal site of tracer blockade, at
or just under the SG–SC interface. These results demonstrate
that accelerated LB secretion occurs in NS, and that these
prematurely deposited, extracellular contents provide an
initial (partial) barrier to transcutaneous water loss.

DISCUSSION
In this study, we attempted first to address important,
unresolved issues related to the variable phenotype and
pathogenesis of NS. Second, we utilized NS as a model to
ascertain how SP/SPI interactions are modulated to allow
normal life in a terrestrial environment. Prior studies have
shown that LEKTI mutations can result in relatively un-
opposed SP activity in the SC of affected individuals (Komatsu
et al., 2002). Increased SP activity, in turn, correlates with
attenuation of SC, which has been invoked as one explana-
tion for the permeability barrier abnormality (Komatsu et al.,
2002). Although the structure of LEKTI predicts activity
primarily against tryptic SP (Mitsudo et al., 2003), rLEKTI
exhibited relatively selective, inhibitory activity not only

Table 2. SPINK5 genotyping

No. Type of mutation Genotyping Level

1 c.209+1G4T Intron 3 Altered splicing

c.1302+4A4T Intron 14 Altered splicing

2 c.1732C4T Exon 19 p.Arg578X

c.1732C4T Exon 19 p.Arg578X

3 c.-19C4T (?) Exon 1 ?

4 c.316_317delAG Exon 5 p.Asp106ArgfsX6

c.2240+1G4A Intron 23 Altered splicing

5 c.462insGT Exon 6 Frame-shift

c.462insGT Exon 6 Mutation

6 c.882+1_882+3del Intron 10 Splice site

mutation

Not found Not found

7 Available at the National

Registry of Ichthyosis and

Related Disorders,

confidential

8 Complete gene deletion

9 Complete gene deletion

SPINK5 mutations were found in all NS subjects except patient no. 4. This
patient is a carrier of a C to T substitution in front of the ATG translation
initiation codon; second potential mutation was not found. It is not yet
known whether this substitution represents a polymorphism or a mutation.
Patient nos. 7–9 were genotyped ‘‘positive’’ by Dr G. Richards and patient
nos. 8 and 9 are siblings.
Underscore indicates three deleted bases.
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against the epidermal tryptic SP, klk5, but also equipotent in
vitro activity against the SC chymotryptic enzyme, klk7.
Together, the highly selective activity of LEKTI against klk5
and klk7, the variable levels of resident LEKTI expression in
NS, and the co-localization of LEKTI with klk7 explain the
phenotypic variability in NS. In contrast to prior predictions
(Komatsu et al., 2002), the type of mutation and disease
severity did not correlate well, but information about specific
mutations was not available for some of our patients.
Moreover, the relatively small sample size of our study limits
assertions about genotype–phenotype relationships. Yet,
complete gene deletion in sibling patients 8 and 9, leading
to a complete loss of residual LEKTI protein, correlated with
disease severity, and the level of deletion in patient no. 1,
categorized as ‘‘mild’’ and patient no. 4 categorized as
‘‘moderate’’, correlated with the presence of five and 10
residual, inhibitory domains, respectively. The variations
between the ‘‘moderate’’ and ‘‘severe’’ in these cases could

be explained by either different potencies in the LEKTI
inhibitory domains or the added environmental stress that
could result in the atopic manifestations in these and other
NS patients.

Whereas Bitoun et al. (2003) described LEKTI localization
to the SG, and absence from SC, their observations can be
ascribed either to artifactual extraction of secreted extra-
cellular proteins, along with lipids during tissue processing,
or to the inaccessibility of their anti-LEKTI antibodies to
protein epitopes in the SC. Here, we localized LEKTI in
normal SC both by immunohistochemistry, using antigen
enhancement techniques, and, further, by its prominence in
Western immunoblots of protein extracts from normal SC.
LEKTI has also been described to localize to the hair follicle
(Bitoun et al., 2003) and presumably its absence causes the
diagnostic bamboo hair phenotype. But how the absence of
LEKTI impacts hair morphology is still unknown and remains
to be determined.

SC SC SC
SC

SG

SC

SG

SG

SC

SG

SG

SC

SG
SC

SG

SG
Normal

Normal

Mild

Mild

Moderate

Moderate

Severe

Severe

klk 7 LEKTI klk 7+LEKTI1

FL LEKTI

120 kDa

71 kDa

40 kDa

2 3

a b c d

e f g h

i j k l

Figure 1. LEKTI localizes to both the SG and SC in normal skin; residual expression correlates with serine protease activation and phenotypic severity in NS.

(a–h) LEKTI immunofluorescence staining was performed on paraffin sections of skin biopsies using anti-LEKTI monoclonal mouse anti-human in both (a) normal

control, and (b) ‘‘mild’’, (c) ‘‘moderate’’, (d) ‘‘severe’’ NS. NS patients show a significant decrease with patchy LEKTI immunostaining in (b) mild and

(c) moderate to complete absence in (d) severe forms of NS. In situ zymography for SP activity was performed on frozen sections (5 mm) from punch biopsies

taken from the forearms of three patients with NS (mild: f; moderate: g; and severe: h) and (e) a normal control. (e) NS patients show a phenotype-dependent

increase in proteolytic activity, extending to the lower levels of epidermis in comparison to normal controls. Sections were counterstained with propidium

iodide and visualized under a confocal microscope at an excitation wavelength of 485 nm and an emission wavelength of 530 nm. Arrows show residual

LEKTI in mild and moderate NS. SC: stratum corneum; SG: stratum granulosum. Bar¼ 10 mm. (i) Western immunoblotting for LEKTI protein performed

on extracts from SC of normal subjects (1 and 2) and NS control (3) show the presence of pro- and processed forms of LEKTI in isolated SC. (j–l) SC

paraffin-embedded extracts from normal human skin were used to assess the co-expression of klk7 (green) and LEKTI (red). Both enzyme and inhibitor

colocalize to the membrane domains of the SC.
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Human SC contains other SP inhibitors (Alkemade et al.,
1994; Pfundt et al., 1996), including secretory leukocyte
protease inhibitor; elafin/SKALP, and plasminogen activator
inhibitor (type 2), which could in theory compensate for
reduced LEKTI in NS, but in reality do not. The inability of

these SPI to restrict klk5 and klk7 activity may be attributed
to their localization within the cornified envelope (these SPI
all possess substrates for transglutaminase 1-induced cross-
linking; (Alkemade et al., 1994; Pfundt et al., 1996). Knowing
that SLPI is a potent inhibitor of klk7 (Franzke et al., 1996), its
restriction to the cornified envelope would make it unavail-
able to interact with extracellular SP. Alternatively, elafin
would not suffice to restrict increased SP activity in NS, even
if upregulated, because it displays no inhibitory activity
against klk7 (Franzke et al., 1996). Thus, LEKTI could
represent the principal, extracellular SPI available to interdict
klk5 and klk7 within the SC interstices.

Prior work has established a link between increased SP
and SC thinning in NS (Komatsu et al., 2002; Descargues
et al., 2005). We show further that the SP-induced thinning of
SC is owing to degradation of corneodesmosome, also shown
in SPINK5 knockout mice (Yang et al., 2004; Descargues
et al., 2005). DSG1 is a key constituent of corneodesmosome,
and a known target of endogenous SP activity (Caubet et al.,
2004). In other experimental models, where proteolysis is
activated within SC by an increase in pH, we have shown
that the murine homolog, dsg1, is also a target of unrestricted
SP activity (Hachem et al., 2003; Fluhr et al., 2004; Hachem
et al., 2005b).

In NS, the extraordinary increase in SP activity extends
beneath the SC into the nucleated cell layers, where DSG1
and DSC1 are degraded in an SP- and phenotype-dependent
manner. In ‘‘moderate’’ and ‘‘severe’’ NS, where SP activity
extends deeper into the epidermis, DSG1, and to a lesser
extent, DSC1, are progressively degraded. In contrast, in
‘‘mild’’ NS, less SP activity appears within the epidermis, and
both DSG1 and DSC1 immunolabeling persist. In two,
unrelated human bullous disorders, pemphigus foliaceus
(Wu et al., 2000) and staphylococcal scalded skin syndrome
(Amagai et al., 2000), DSG1 is targeted specifically by an
antibody and a bacterial exotoxin, respectively, which
disrupt epidermal integrity, resulting in vesiculation and
bulla formation. Yet, in contrast to these bullous disorders,
the nucleated epidermis retains its structural integrity in
NS, apparently owing to a compensatory upregulation of
DSG3 and DSC3 in suprabasal epidermal layers, where these
proteins normally are expressed minimally (Arnemann et al.,
1993; Legan et al., 1994). Although DSG3/DSC3 upregula-
tion appears to be protective, the normal mid-line structure of
intra-epidermal desmosomes is largely lost in ‘‘severe’’ and
‘‘moderate’’ NS. Pertinently, forced, suprabasal expression of
DSG3 in transgenic mice both alters phenotype and produces
abnormal desmosomal structure (Elias et al., 2001), whereas
conversely, DSG1 overexpression can compensate for loss
of DSG3 in another transgenic mouse model (Merritt
et al., 2002). Thus, suprabasal overexpression of DSG3/
DSC3 appears to represent one compensatory response that
contributes to the survival of NS patients in the face of a
concerted proteolytic attack.

‘‘Moderate’’ and ‘‘severe’’ NS display a thin SC (Bitoun
et al., 2002), which we propose is due not only to reduced
LEKTI but also attributable to the increased pH of SC.
Klk5 and klk7 both display neutral-to-alkaline pH optima

klk7-tg

wt

SC

SG

SC

SG

SC

SG

klk7-tg + in situ rLEKTI

a

b

c

Figure 2. LEKTI specifically inhibits SP activity in klk7-overexpressing mice.

(a) In situ zymography of SP activity in untreated klk7-overexpressing mice.

(b) Abolition of SP activity in sections of klk7-overexpressing mice, treated

with rLEKTI. (c) Low SP activity in wild-type (wt), control mice. Bar¼ 10 mm.

Table 3. Inhibitory activity of recombinant LEKTI
against various serine proteases

Protease LEKTI1 (nM) I/E2 Inhibition (%) Substate (mM)

Cathepsin G 100 43 81 0.75

klk7 40 B0.6–0.5 82 1

klk5 50 B0.6–0.4 84 1

Chymotrypsin 150 22 0 1

LEKTI inhibits klk7 and klk5, but has lesser activity and no activity against
cathepsin G and chymotrypsin, respectively. All proteases were human
recombinant, except chymotrypsin, which was bovine.
1I/E is the rLEKTI concentration/proteinase concentration ratio.
2Percent inhibition=100[1�velocity in the presence of LEKTI/velocity of
uninhibited control)].
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(Brattsand et al., 2005), and the surface pH in ‘‘moderate’’
to ‘‘severe’’ NS, as in other inflammatory dermatoses
(Eberlein-Konig et al., 2000; Rippke et al., 2002), approaches
neutrality (Table 1), which would further activate SP

(Hachem et al., 2003). In other studies, experimental barrier
disruption has been shown not only to increase surface pH
(Hachem et al., 2005a) but also to enhance SP activity
(Hachem et al., 2005c). This pH increase is detrimental to the
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Figure 3. Decreased DSG1, DSC1 in the SC is paralleled by overexpression of DSG3, DSC3, accounting for corneodesmosome/desmosome structural

abnormalities in NS. (a–p) Immunofluorescence (IF) staining for DSG1, DSC1, DSG3, and DSC3 were performed on paraffin and frozen sections, respectively, in

both normal control subjects and three patients with NS. Extent of disorganization and decrease of both DSG1 and DSC1 correlates strongly with the extent of SP

activity and clinical severity. Unlike normal control skin, DSG3 and DSC3 are observed in the upper nucleated layers of the epidermis in parallel with the

decrease in DSG1 and DSC1. All sections were counterstained with propidium iodide and visualized under a confocal microscope (Leica TCS SP, Heidelberg,

Germany) at an excitation wavelength of 485 nm and an emission wavelength of 530 nm. Bar¼ 10 mm. (q) Western immunoblot analysis was performed on SC

protein extracts from (1) normal control and (2) ‘‘mild’’, (3) ‘‘moderate’’, and (4) ‘‘severe’’ NS. Immunoblotting for either DSG1, DSC1, b-GlcCer’ase, and

aSMase show a phenotype-dependent decrease with the presence of degradation bands for DSC1. In contrast, DSG3 and DSC3, normally basal cell-localized

epidermal cadherins, are highly expressed in the SC. (r–y) Compared to (r) normal, corneodesmosomes from the (s–u) SG–SC interface (arrows) were shortened in

all NS patients. (u) The degradation of desmosomal midline structures is more pronounced in NS. In the deeper nucleated layers, (w) ‘‘mild’’, (x) some

‘‘moderate’’ NS, and (v) control subjects show typical midline structure, with alterations of electron-lucent and electron-dense midline structures. In most

‘‘moderate’’ and ‘‘severe’’ NS, the (y: arrows) electron dense midline is absent. Bar¼ 100 nm.
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however, show compensatory increase in aSMase activity (arrowheads) in the nucleated layers that correlates with premature secretion of LBs within the

epidermal nucleated layers. (k and l) Water-soluble tracer traverses the SC interstices, butTracer egress is blocked by prematurely secreted LB. Lanthanum tracer

freely moves between corneocytes within SC in (l, white arrows) NS, whereas tracer is excluded from (k) normal SC. Outward egress of tracer is blocked by

secreted LB contents within (l, arrowheads) lower SG. Black arrow showing the direction of Lanthanum movement. Bar¼ 0.5 mm.
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permeability barrier, even in normal skin, as shown by the
ability of topical SPI to accelerate barrier recovery in normal
rodent skin after experimental perturbations (Denda et al.,
1997; Hachem et al., 2005c). Hence, an extraordinary
vicious cycle could amplify both the extent of SP activation
and its functional consequences in NS.

# LEKT1! " SP! Thin SC
"

" pH # Barrier

2
4

3
5

Yet, SP-mediated loss of SC integrity/cohesion alone is
unlikely to form the basis for the permeability barrier
abnormality in NS. Extensive mechanical removal of normal
SC has minimal consequences for the permeability barrier
(Bashir et al., 2001), because this critical function becomes
largely established at, and just above, the SG–SC interface
(Menon et al., 1992; Elias et al., 1998). Instead, we show here
that the sustained proteolytic attack in NS prevents the
remodeling and organization of secreted lipid precursors into
the hydrophobic species that form the extracellular lamellar
membranes that mediate normal permeability barrier func-
tion (Elias and Friend, 1975). Normally, LB secrete a mixture
of polar lipid precursors, including large quantities of
glucosylceramides and sphingomyelin (Vielhaber et al.,
2001), which then are ‘‘processed’’ by co-secreted lipid
hydrolases, including b-GlcCer’ase, aSMase, secretory phos-
pholipase A2, and steroid sulfatase, into their more non-polar
products (i.e., ceramides, free fatty acids, and cholesterol)
that form these unique, extracellular lamellar membranes

(Holleran et al., 1991, 1993; Mao-Qiang et al., 1996). We
show here that two key, extracellular hydrolases, b-GlcCer’-
ase and aSMase, are degraded in NS, indubitably from an
unrestricted proteolytic attack (Hachem et al., 2005b).
Similarly, SP activation, if prolonged by sustained increases
in the pH of the SC, would degrade these enzymes (Hachem
et al., 2005b). The net result is a phenotype-dependent loss of
lamellar membrane architecture in NS, which correlates
with both the severity of the clinical phenotype and barrier
abnormality. The barrier abnormality, in turn, likely underlies
most of the clinical consequences of severe NS; that is,
growth failure, electrolyte disturbances, and dehydration
(Griffiths et al., 1989).

Despite the potentially devastating epidermal abnormal-
ities, most NS patients survive into adulthood. Our studies
demonstrate a second, compensatory mechanism that could
facilitate survival in NS. Although accelerated LB secretion is
useful as a diagnostic morphological marker in NS (Fartasch
et al., 1999), the secreted contents, although not effectively
re-organized into lamellar membranes, appear to provide
bulk hydrophobic constituents that partially restrict transcu-
taneous water loss in the extracellular spaces, as shown by
the lanthanum perfusion studies (Figure 4k and l).

In summary, in this limited cohort of patients, we show
here how SP and LEKTI activity/expression and co-localiza-
tion determine phenotype in NS. We show further that
LEKTI inhibits two epidermis-localized SP (klk5 and klk7).
The extent of SP activation also correlates with the degree
of barrier dysfunction, attributable both to phenotype-
dependent loss of desmosomal cadherins and secreted
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Figure 6. Extent of proteolytic activation correlates with degradation of lipid-processing enzymes in NS. (a–g) Immunofluorescence staining for b-GlcCer’ase

and aSMase was performed on paraffin and frozen skin sections, respectively. Decrease expression of both lipid-processing enzymes within the SC correlates

with the extent of the barrier abnormality in NS. (f–g vs. e). Increased aSMase expression, but not b-GlcCer’ase, is found in the deeper nucleated layers in

‘‘moderate’’ and ‘‘severe’’ NS SC: stratum corneum; SG: stratum granulosum, SS: stratum spinosum. Bar¼10 mm. (h) Immunoblotting for both b-GlcCer’ase and

aSMase show a phenotype-dependent decrease in moderate and severe NS patients.

www.jidonline.org 1617

J-P Hachem et al.
LEKTI/Serine Protease Balance Determine Phenotype in NS



lamellar hydrolases. But compensatory upregulation of both
DSG3–DSC3 and LB secretion appear to protect against
fragility and provide a partial barrier to water loss. Elucidation
of the pathogenesis of NS has further illuminated how SP
activity is restricted by LEKTI in normal epidermis to allow
formation of a functional permeability barrier.

MATERIALS AND METHODS
Patient inclusion

Patients were recruited from the investigators’ practices from

Brussels, Innsbruck, and San Francisco, as summarized in Table 1.

Inclusion criteria included a diagnosis of NS based on: (1) scaling

dermatoses, with atopic dermatitis-like features; (2) diagnostic

bamboo hair shaft abnormalities, atopic dermatitis, and (3)

genotyping and phenotyping (LEKTI immunolocalization). Control

subjects included age-matched normals, and subjects with atopic

dermatitis, psoriasis, and recessive X-linked ichthyosis. The ethical

committees from all three institutions approved the study protocol.

Patients or parents (if under-aged) provided informed consent.

The study was conducted according to the Declaration of Helsinki

Principles. Clinical scoring was performed using previously

published criteria (Ganemo et al., 1999), with the addition of two

supplementary criteria; that is, prior documented episodes of

dehydration and social consequences.

Skin biopsies from NS patients and control individuals were

obtained from recently untreated sites (i.e., avoidance of cortico-

steroids for at least 2 weeks before study; however, some subjects

continued to use emollients), and processed as summarized in

Table 1. Transepidermal water loss was measured on the ventral

forearms of all subjects using a Tewameter (Courage and Khazaka,

Köln, Germany). SPINK5 genotyping was performed according to

the method described by Sprecher et al. (2001). The University of

California, San Francisco patients were genotyped by Dr Gabriela

Richard (Thomas Jefferson University, Philadelphia, PA).

Materials

Human neutrophil cathepsin G was purchased from Calbiochem

(Nottingham, UK) and pancreatic bovine chymotrypsin was from

Roche (Bromma, Sweden). Chromogenic substrates for proteases

were as follows: klk7 and chymotrypsin substrate S-2586 (MeO-Suc-

Arg-Pro-Tyr-pNA-HCl, 10 mM in deionized water) and klk5 substrate

S-2288 (7.1 mM in deionized water, H-D-Ile-Pro-Arg-pNA-2HCl)

were from Chromogenix (Milan, Italy), and cathepsin G substrate

(20 mM in DMSO, Suc-Ala-Ala-Pro-Phe-pNA) was from Calbiochem

(Nottingham, UK). Tris-buffered saline buffer (NaCl, 137 mM; Tris-

HCl, 20 mM; pH 7.6) was used as assay buffer in inhibition studies.

Human recombinant pro-klk7, klk5, and full-length rLEKTI were

purified as described previously (Hansson et al., 1994; Brattsand and

Egelrud, 1999; Mitsudo et al., 2003). The primary and secondary

antibodies utilized in this study are summarized in Table 4.

EnzCheks Protease Assay Kit containing BODIPY-FL-Casein (green

fluorescence) was obtained from Invitrogen (Merelbeke, Belgium).

Transgenic klk7-overexpressing mice were generated as pre-

viously described by Hansson et al. (2002). Tissue specimens were

collected from adult mice (older than 5 month) showing obvious

signs of clinical dermatitis and excess scale.

Immunofluorescence

Immunofluorescence was performed on either paraffin or cryo-

preserved frozen sections from NS patients and normal controls,

Table 4. Sources and specifications of antibodies

Reactivity Origin Usage Source

Primary antibodies

LEKTI (Clone 1C11G6) h m IF, WB Raghunath et al. (2004)

b-GlcCer’ase h, m rb IF, WB Gift from Dr Ellen Sidransky, NIH, Bethesda, MD

aSMase h, m, r rb IF, WB Santa Cruz Biotechenology, Santa Cruz, CA

DSG 1 (Clone P124) h m IF, WB Biodesign International, Brussels, Belgium

DSG 3 (Clone 5G11) h m IF, WB Cell Science, Canton, MA

DSC 1 h m IF, WB Progen, Heidelberg, Germany

DSC 3 h m IF, WB Progen, Heidelberg, Germany

Klk7 h, rb IF Arexis AB, Göteborg, Sweden

Secondary antibodies

Alexas Fluor 488 m g IF Invitrogen, Merelbeke, Belgium

Alexas Fluor 488 m d IF Invitrogen, Merelbeke, Belgium

Alexas Fluor 488 rb d IF Invitrogen, Merelbeke, Belgium

Alexas Fluor 657 m c IF Invitrogen, Merelbeke, Belgium

HRP conjugated rb g WB Biochain, Brussels, Belgium

HRP conjugated m g WB Biochain, Brussels, Belgium

Sources and specifications of antibodies: h, human; m, mouse; r, rat; rb, rabbit; g, rabbit; d, donkey, c, chicken; IF, immunofluorescence; WB, Western blot.
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using the antibodies indicated in Table 4. After deparaffinization,

paraffin sections were re-hydrated to distilled water, and boiled for

1 minute in a Prestos-containing, antigen-unmasking buffer solution

(Vectorlabs, Brussels, Belgium). For cryo-preserved biopsies, sec-

tions were first fixed in 95% ethanol chilled at �201C for 5 minutes.

Both paraffin and cryo-sections were washed in phosphate-buffered

saline (pH¼ 7.5), incubated first for 30 minutes in blocking buffer

(1% bovine serum albumin, 0.1% cold-water fish gelatin in

phosphate-buffered saline), and then for 24 hours at 41C with the

primary antibody in blocking buffer. Tissue sections then were

washed with phosphate-buffered saline, and incubated for 1 hour at

room temperature with Alexas Fluor 488 secondary antibody, in

blocking buffer, counterstained with propidium iodide (Sigma-

Aldrich, Bornem, Belgium), and visualized under a confocal

microscope (Leica TCS SP, Heidelberg, Germany) at an excitation

and emission wavelength of 485 and 530 nm.

Zymographic assays

In situ SP activity. Frozen sections (5 mm) from the forearms of NS

patients, normal control, klk7-overexpressing mice, and wild-

type control incubated at 371C for 2 hours with BODIPY-Fl-casein

(1mg/ml) in deionized water (2 ml/ml). For klk7-overexpressing

mice protease assay, rLEKTI (0.01 mg/ml) was added to the reaction

milieu. All sections then were rinsed with phosphate-buffered

saline, mounted, and visualized under a confocal microscope as

described above.

Inhibition studies with rLEKTI. The inhibitory effects of rLEKTI on

the SPs, klk5, klk7, cathepsin G, and chymotrypsin were tested in a

spectrophotometric assay with the corresponding chromogenic

substrates as described above. Different concentrations of rLEKTI

were pre-incubated with each protease for 2 minutes in 50ml assay

buffer. Proteolysis reaction was initiated by the addition of 150 ml of

the appropriate chromogenic substrate in Tris-buffered saline buffer,

and the reaction was followed in a spectrophotometer (Spectramax

250, Molecular Devices, Sunnyvale, CA) by measuring absorbance

at 405 nm at 251C for 20 minutes.

Western immunoblotting

SC was isolated from NS patients and normal control subjects using

sequential D-squame tape strippings (20 D-squames per individual;

Cuderm, Dallas, TX). Tapes then were incubated overnight at 41C in

1% Triton X-100 and a protease inhibitor cocktail (Complete Mini,

Roche, Brussels, Belgium) in phosphate-buffered saline, and then

sonicated for 5 minutes at room temperature to extract proteins from

the tapes, followed by measurement of protein content (Bio-Rad

Protein Assay kit). Equal amounts of protein from NS and control

subjects were loaded onto 10% Tris-glycine polyacrylamide gels

(Invitrogen, Merelbeke, Belgium). After electrophoresis, proteins

were transferred onto nitrocellulose membranes and immunoblotted

with the primary antibodies (Table 4) using the Attoglow Western

Blot System (Biochain, Brussels, Belgium).

Electron microscopy

Ultrastructural analysis of LBs and lamellar membranes.
Biopsy samples were minced to o0.5 mm3, fixed in modified

Karnovsky’s fixative overnight, and post-fixed in either 0.2%

ruthenium tetroxide or 1% aqueous osmium tetroxide, containing

1.5% potassium ferrocyanide. Whereas osmium tetroxide post-

fixation method optically depicts LBs, ruthenium tetroxide post-

fixation permits visualization of extracellular lamellar membranes in

the SC. After post-fixed fixation, all samples were dehydrated in

graded ethanol solutions, and embedded in an Epon–epoxy mixture.

Ultrathin sections were examined in an electron microscope (Zeiss

10A; Carl Zeiss, Thornwood, NY).

Ultrastructural cytochemistry for aSMase and lipase. aSMase

was detected in samples from NS patients and control subjects as

described previously (Rassner et al., 1997, 1999). As ultrastructural

cytochemical markers for LB in klk7-overexpressing mice, we

utilized neutral lipase known to be concentrated in this organelle

as described previously (Rassner et al., 1999).

Lanthanum perfusion. To depict pathways of water movement

through epidermis, biopsy samples from two patients with ‘‘severe’’

NS were immersed in 4% colloidal lanthanum, the smallest electron-

dense tracer, in 0.05 M Tris buffer, pH 7.4, containing 2%

glutaraldehyde and 2% formaldehyde for 2 hours, and processed

as described above.
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