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Based on the Sturm–Liouville eigenvalue problem, Banerjee et al. proposed a perturbative approach 
to analytically investigate the properties of the (2 + 1)-dimensional superconductor with Born–Infeld 
electrodynamics (Banerjee et al., 2013) [29]. By introducing an iterative procedure, we will further 
improve the analytical results and the consistency with the numerical findings, and can easily extend 
the analytical study to the higher-dimensional superconductor with Born–Infeld electrodynamics. We 
observe that the higher Born–Infeld corrections make it harder for the condensation to form but do 
not affect the critical phenomena of the system. Our analytical results can be used to back up the 
numerical computations for the holographic superconductors with various condensates in Born–Infeld 
electrodynamics.
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1. Introduction

As one of the most significant developments in fundamental 
physics in the last one decade, the anti-de Sitter/conformal field 
theories (AdS/CFT) correspondence [1–3] allows to describe the 
strongly coupled conformal field theories through a weakly cou-
pled dual gravitational description. A recent interesting application 
of such a holography is constructing of a model of a high Tc su-
perconductor, for reviews, see Refs. [4–7] and references therein. It 
was found that the instability of the bulk black hole corresponds 
to a second order phase transition from normal state to supercon-
ducting state which brings the spontaneous U(1) symmetry break-
ing [8], and the properties of a (2 +1)-dimensional superconductor 
can indeed be reproduced in the (3 + 1)-dimensional holographic 
dual model based on the framework of usual Maxwell electrody-
namics [9]. In order to understand the influences of the 1/N or 
1/λ (λ is the ’t Hooft coupling) corrections on the holographic 
dual models, it is of great interest to consider the holographic su-
perconductor models with the nonlinear electrodynamics since the 
nonlinear electrodynamics essentially implies the higher deriva-

* Corresponding author.
E-mail addresses: panqiyuan@126.com (Q. Pan), jljing@hunnu.edu.cn (J. Jing), 

wyj@hunnu.edu.cn (Y. Wang).
http://dx.doi.org/10.1016/j.physletb.2015.08.014
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
tive corrections of the gauge field [10]. Jing and Chen introduced 
the first holographic superconductor model in Born–Infeld elec-
trodynamics and observed that the nonlinear Born–Infeld correc-
tions will make it harder for the scalar condensation to form [11]. 
Along this line, there have been accumulated interest to study var-
ious holographic dual models with the nonlinear electrodynamics 
[12–24].

In most cases, the holographic dual models were studied nu-
merically. In order to back up numerical results and gain more 
insights into the properties of the holographic superconductors, 
Siopsis et al. developed the variational method for the Sturm–
Liouville (S–L) eigenvalue problem to analytically calculate the crit-
ical exponent near the critical temperature and found that the ana-
lytical results obtained by this way are in good agreement with the 
numerical findings [25,26]. Generalized to study the holographic 
insulator/superconductor phase transition [27], this method can 
clearly present the condensation and critical phenomena of the 
system at the critical point in AdS soliton background.

More recently, Gangopadhyay and Roychowdhury extended the 
S–L method to investigate the properties of the (2 +1)-dimensional 
superconductor with Born–Infeld electrodynamics by introducing 
a perturbative technique, and observed that the analytical results 
agree well with the existing numerical results for the condensa-
tion operator 〈O−〉 [28]. For the operator 〈O+〉, Banerjee et al. 
improved the perturbative approach and explored the effect of the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Born–Infeld electrodynamics on the (2 + 1)-dimensional supercon-
ductor [29]. However, comparing with the case of 〈O−〉 [28], we 
find that for the operator 〈O+〉 the agreement of the analytical 
result with the numerical calculation is not so good, for exam-
ple in the case of the Born–Infeld parameter b = 0.3 [29], the 
difference between the analytical and numerical values is 22.1%! 
Furthermore, this perturbative approach is not very valid to study 
the higher-dimensional superconductor with Born–Infeld electro-
dynamics. Thus, the motivation for completing this work is two 
fold. On one level, it is worthwhile to reduce the disparity between 
the analytical and numerical results for the operator 〈O+〉, and fur-
ther improve the analytical results and the consistency with the 
numerical findings. On another more speculative level, it would be 
important to develop a more general analytical technique which 
can be used to study systematically the d-dimensional supercon-
ductors with Born–Infeld electrodynamics and see some general 
features for the effects of the higher derivative corrections to the 
gauge field on the holographic dual models. In order to avoid the 
complex computation, in this work we will concentrate on the 
probe limit where the backreaction of matter fields on the space-
time metric is neglected.

The plan of the work is the following. In Section 2 we will in-
troduce the holographic superconductor models with Born–Infeld 
electrodynamics in the (d + 1)-dimensional AdS black hole back-
ground. In Section 3 we will improve the perturbative approach 
proposed in [29] and give an analytical investigation of the holo-
graphic superconductors with Born–Infeld electrodynamics by us-
ing the S–L method. We will conclude in the last section with our 
main results.

2. Holographic superconductors with Born–Infeld 
electrodynamics

We begin with the background of the (d + 1)-dimensional pla-
nar Schwarzschild–AdS black hole

ds2 = −r2 f (r)dt2 + dr2

r2 f (r)
+ r2

d−1∑
i=1

dx2
i , (1)

where f (r) = 1 − rd+/rd with the radius of the event horizon r+ . 
For convenience, we have set the AdS radius L = 1. The Hawking 
temperature of the black hole is determined by

T = dr+
4π

, (2)

which will be interpreted as the temperature of the CFT.
Working in the probe limit, we consider the Born–Infeld elec-

trodynamics and the charged complex scalar field coupled via the 
action

S =
∫

dd+1x
√−g

[
1

b

(
1 −

√
1 + 1

2
bF 2

)

− |∇ψ − i Aψ |2 − m2|ψ |2
]
, (3)

with the quadratic term F 2 = Fμν F μν . When the Born–Infeld pa-
rameter b → 0, the model (3) reduces to the standard holographic 
superconductors investigated in [9,30].

With the ansatz of the matter fields as ψ = |ψ |, At = φ where 
ψ and φ are both real functions of r only, we can arrive at the 
following equations of motion for the scalar field ψ and the gauge 
field φ

ψ ′′ +
(

1 + d + f ′ )
ψ ′ +

(
φ2

4 2
− m2

2

)
ψ = 0, (4)
r f r f r f
φ′′ + d − 1

r

(
1 − bφ′ 2

)
φ′ − 2ψ2

r2 f

(
1 − bφ′ 2

)3/2
φ = 0, (5)

where the prime denotes the derivative with respect to r.
Applying the S–L method to analytically study the properties of 

the holographic superconductors with Born–Infeld electrodynam-
ics, we will introduce a new variable z = r+/r and rewrite the 
equations of motion (4) and (5) into

ψ ′′ +
(

1 − d

z
+ f ′

f

)
ψ ′ +

(
φ2

r2+ f 2
− m2

z2 f

)
ψ = 0, (6)

φ′′ + 1

z

[
(3 − d) + b(d − 1)z4

r2+
φ′ 2

]
φ′

− 2ψ2

z2 f

(
1 − bz4

r2+
φ′ 2

)3/2

φ = 0, (7)

with f = 1 − zd . Here and hereafter the prime denotes the deriva-
tive with respect to z.

In order to get the solutions in the superconducting phase, we 
have to impose the appropriate boundary conditions for ψ and φ. 
At the event horizon z = 1 of the black hole, the regularity gives 
the boundary conditions

ψ(1) = − d

m2
ψ ′(1) , φ(1) = 0 . (8)

Near the AdS boundary z → 0, the asymptotic behaviors of the 
solutions are

ψ = ψ−
r�−+

z�− + ψ+
r�++

z�+ , φ = μ − ρ

rd−2+
zd−2 , (9)

where �± = (d ±√
d2 + 4m2)/2 is the conformal dimension of the 

scalar operator dual to the bulk scalar field, μ and ρ are inter-
preted as the chemical potential and charge density in the dual 
field theory respectively. It should be pointed out that, provided 
�− is larger than the unitarity bound, both ψ− and ψ+ can be 
normalizable and they can be used to define operators in the dual 
field theory according to the AdS/CFT correspondence, ψ− = 〈O−〉
and ψ+ = 〈O+〉, respectively. Just as in Refs. [9,30], we will im-
pose boundary condition that either ψ− or ψ+ vanishes. In this 
work, we impose boundary condition ψ− = 0 since we concen-
trate on the condensate for the operator 〈O+〉. For clarity, we set 
〈O〉 = 〈O+〉 and � = �+ in the following discussion.

3. Analytical study of holographic superconductors with 
Born–Infeld electrodynamics

Here we will improve the perturbative approach proposed in 
[29] and use the S–L method [25] to analytically discuss the prop-
erties of the d-dimensional superconductor phase transition with 
Born–Infeld electrodynamics. We will investigate the relation be-
tween critical temperature and charge density as well as the criti-
cal exponent of condensation operators, and examine the effect of 
the Born–Infeld parameter.

3.1. Critical temperature

At the critical temperature Tc , the scalar field ψ = 0. Thus, near 
the critical point the equation of motion (7) for the gauge field φ
becomes

φ′′ + 1

z

[
(3 − d) + b(d − 1)z4

r2
φ′ 2

]
φ′ = 0, (10)
+c
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where r+c is the radius of the horizon at the critical point. Defining 
ξ(z) = φ′(z), we can obtain

ξ ′ + 3 − d

z
ξ = b(1 − d)z3

r2+c

ξ3, (11)

which is the special case of Bernoulli’s Equation y′(x) + f (x)y =
g(x)yn [31] for n = 3. Considering that the boundary condition (9)
for φ, we can get the solution to Eq. (11)

ξ(z) = φ′(z) = − λr+c(d − 2)zd−3√
1 + (d − 2)2bλ2z2(d−1)

, (12)

which leads to the expression

φ(z) = λr+cζ(z), (13)

with

ζ(z) =
1∫

z

(d − 2)z̃d−3√
1 + (d − 2)2bλ2 z̃2(d−1)

dz̃, (14)

where we have set λ = ρ/rd−1+c and used the fact that φ(1) = 0.
Obviously, the integral in (14) is not doable exactly. Just as 

in Refs. [28,29], we will perform a perturbative expansion of 
(d − 2)2bλ2. In order to simplify the following calculation, we will 
express the Born–Infeld parameter b as

bn = n�b, n = 0,1,2, . . . , (15)

where �b = bn+1 − bn is the step size of our iterative procedure. 
Considering the fact that

(d − 2)2bλ2 = (d − 2)2bnλ
2

= (d − 2)2bn(λ
2|bn−1) + 0[(�b)2], (16)

where we have set b−1 = 0 and λ2|b−1 = 0, we will discuss 
the following two cases (note that the variable z has a range
0 ≤ z ≤ 1):

Case 1. If (d − 2)2bn(λ2|bn−1) < 1, we have

ζ(z) = ζ1(z)

≈
1∫

z

(d − 2)z̃d−3

[
1 − (d − 2)2bn(λ

2|bn−1)z̃2(d−1)

2

]
dz̃

= (1 − zd−2) + (d − 2)3bn(λ
2|bn−1)

2(4 − 3d)
(1 − z3d−4). (17)

Case 2. If (d − 2)2bn(λ2|bn−1) > 1, we set (d − 2)2bn(λ2|bn−1)×
�2(d−1) = 1 for z = �. Obviously, we find that (d −2)2bn(λ2|bn−1)×
z2(d−1) < 1 for z < � < 1, which results in

ζ(z) = ζ2A(z)

≈
�∫

z

(d − 2)z̃d−3

[
1 − (d − 2)2bn(λ

2|bn−1)z̃2(d−1)

2

]
dz̃

+
1∫

�

1√
bn(λ|bn−1)z̃2

[
1 − 1

2(d − 2)2bn(λ2|bn−1)z̃2(d−1)

]
dz̃

= −zd−2 + (d − 2)z3d−4

2(3d − 4)�2(d−1)

+ 3(d − 1)[6 + d(4d − 9)]
�d−2
2(2d − 1)(3d − 4)
+ (d − 2)�d−1

[
�2(d−1)

2(2d − 1)
− 1

]
, (18)

and (d − 2)2bn(λ2|bn−1)z2(d−1) > 1 for � < z ≤ 1, which leads to

ζ(z) = ζ2B(z)

≈
1∫

z

1√
bn(λ|bn−1)z̃2

[
1 − 1

2(d − 2)2bn(λ2|bn−1)z̃2(d−1)

]
dz̃

= (d − 2)�d−1

[
�2(d−1)

2(2d − 1)

(
1 − z1−2d

)
+ 1

z
− 1

]
. (19)

It should be noted that in both cases we observe that ζ(1) = 0
from (17) and (19), which is consistent with the boundary condi-
tion φ(1) = 0 given in (8).

Introducing a trial function F (z) near the boundary z = 0 as

ψ(z) ∼ 〈O〉
r�+

z� F (z), (20)

with the boundary conditions F (0) = 1 and F ′(0) = 0, from Eq. (6)
we can obtain the equation of motion for F (z)

(T F ′)′ + T
(

P + λ2 Q ζ 2
)

F = 0, (21)

with

T = z1+2�−d(1 − zd), P = �(� − d)

z2
+ � f ′

zf
− m2

z2 f
,

Q = 1

f 2
. (22)

According to the S–L eigenvalue problem [32], we deduce the 
eigenvalue λ minimizes the expression

λ2 =
∫ 1

0 T
(

F ′ 2 − P F 2
)

dz∫ 1
0 T Q ζ 2

1 F 2dz
, for (d − 2)2bn(λ

2|bn−1) < 1, (23)

and

λ2 =
∫ 1

0 T
(

F ′ 2 − P F 2
)

dz∫ �

0 T Q ζ 2
2A F 2dz + ∫ 1

�
T Q ζ 2

2B F 2dz
,

for (d − 2)2bn(λ
2|bn−1) > 1. (24)

Using Eqs. (23) and (24) to compute the minimum eigenvalue of 
λ2, we can obtain the critical temperature Tc for different Born–
Infeld parameter b, spacetime dimension d and mass of the scalar 
field m from the following relation

Tc = d

4π

(
ρ

λmin

) 1
d−1

. (25)

In the following calculation, we will assume the trial function to 
be F (z) = 1 − az2 with a constant a.

As an example, we will study the case for d = 3 and m2L2 =
−2 with the chosen values of the Born–Infeld parameter b. Setting 
�b = 0.1, for b0 = 0 we use Eq. (23) and get

λ2 = 4(15 − 20a + 12a2)

10(9 − √
3π − 3 ln 3) + 10(13 − 12 ln 3)a + (10

√
3π − 21 − 30 ln 3)a2

,

(26)

whose minimum is λ2|b0 = 17.31 at a = 0.6016. According to 
Eq. (25), we can easily obtain the critical temperature Tc =
0.1170ρ1/2, which is in good agreement with the numerical result 
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Tc = 0.1184ρ1/2 [9]. For b1 = 0.1, we can easily have b1(λ
2|b0) > 1

and � = [b1(λ
2|b0)]−1/4 = 0.8718. Using Eq. (24) we arrive at

λ2 = 1 − 4a
3 + 4a2

5

0.02060 − 0.01199a + 0.002659a2
, (27)

whose minimum is λ2|b1 = 33.84 at a = 0.6532. So the critical 
temperature Tc = 0.09898ρ1/2, which also agrees well with the 
numerical finding Tc = 0.1007ρ1/2 [11]. For b1 = 0.2, we still have 
b2(λ

2|b1) > 1 and � = [b2(λ
2|b1)]−1/4 = 0.6200. With the help of 

Eq. (24) we obtain

λ2 = 1 − 4a
3 + 4a2

5

0.01176 − 0.006582a + 0.001450a2
, (28)

whose minimum is λ2|b2 = 58.19 at a = 0.6640. Therefore the crit-
ical temperature Tc = 0.08644ρ1/2, which is again consistent with 
the numerical result Tc = 0.08566ρ1/2 [11]. For other values of b, 
the similar iterative procedure can be applied to give the analytical 
result for the critical temperature.

In Table 1, we provide the critical temperature Tc of the cho-
sen parameter b with the scalar operator 〈O〉 = 〈O+〉 for the 
(2 +1)-dimensional superconductor if we fix the mass of the scalar 
field by m2L2 = −2 and the step size by �b = 0.1. From Table 1, 
we observe that the differences between the analytical and numer-
ical values are within 4.1%. Compared with the analytical results 
given in Table 1 of Ref. [29], the iterative procedure can further 
improve our analytical results and improve the consistency with 
the numerical findings.

Extending the investigation to the (3 + 1)-dimensional super-
conductor, in Table 2 we also give the critical temperature Tc for 
the scalar operator 〈O〉 = 〈O+〉 when we fix the mass of the scalar 
field m2L2 = −3 for different Born–Infeld parameter b by choos-
ing the step size �b = 0.05 and 0.025, respectively. Obviously, for 
the case of �b = 0.025 the agreement of the analytical results 
derived from S–L method with the numerical calculation is im-
pressive. Thus, we argue that, even in the higher dimension, the 
analytical results derived from the S–L method are in very good 
agreement with the numerical calculation. Furthermore, reducing 
the step size �b reasonably, we can improve the analytical result 
and get the critical temperature more consistent with the numeri-
cal result.

From Tables 1 and 2, we point out that the critical temperature 
Tc decreases as the Born–Infeld parameter b increases for the fixed 
scalar field mass and spacetime dimension, which supports the 
numerical computation found in Refs. [11,12,21]. It is shown that 
the higher Born–Infeld electrodynamics corrections will make the 
scalar hair more difficult to be developed. On the other hand, the 
consistency between the analytical and numerical results indicates 
that the S–L method is a powerful analytical way to investigate the 
holographic superconductor with various condensates even when 
we take the Born–Infeld electrodynamics into account.

3.2. Critical phenomena

Since the condensation for the scalar operator 〈O〉 is so small 
when T → Tc , we can expand φ(z) in 〈O〉 near the boundary z = 0
as

φ(z)

r+
= λζ(z) + 〈O〉2

r2�+
χ(z) + · · · , (29)

with the boundary conditions χ(1) = 0 and χ ′(1) = 0 [25,33,34]. 
Thus, substituting the functions (20) and (29) into (7), we keep 
terms up to 0(b) [29] to get the equation of motion for χ(z)
(Uχ ′)′ = 2λz1+2�−d F 2ζ

f
, (30)

where we have introduced a new function

U (z) = e3bλ2 z4ζ ′ 2/2

zd−3
. (31)

Making integration of both sides of Eq. (30), we have[
χ ′(z)

zd−3

] ∣∣∣∣
z→0

=
{

−λα1 , for (d − 2)2bn(λ
2|bn−1) < 1,

−λ(α2A + α2B), for (d − 2)2bn(λ
2|bn−1) > 1,

(32)

with

α1 =
1∫

0

2z1+2�−d F 2ζ1

f
dz, α2A =

�∫
0

2z1+2�−d F 2ζ2A

f
dz,

α2B =
1∫

�

2z1+2�−d F 2ζ2B

f
dz. (33)

For clarity, we will fix the spacetime dimension d in the follow-
ing discussion. Considering the case of d = 3 and the asymptotic 
behavior (9), for example, near z → 0 we can arrive at

ρ

r2+
(1 − z) = λζ(z) + 〈O〉2

r2�+

[
χ(0) + χ ′(0)z + · · ·] . (34)

From the coefficients of the z1 terms in both sides of the above 
formula, we can obtain

ρ

r2+
= λ − 〈O〉2

r2�+
χ ′(0), (35)

where χ ′(0) can be easily calculated by using Eq. (32). Therefore 
we will know that

〈O〉 = βT �
c

(
1 − T

Tc

) 1
2

, (36)

where the coefficient β is given by

β =

⎧⎪⎨
⎪⎩

(
4π
3

)� √
2
α1

, for bn(λ
2|bn−1) < 1,(

4π
3

)� √
2

α2A+α2B
, for bn(λ

2|bn−1) > 1.

(37)

Obviously, the expression (36) is valid for different values of the 
Born–Infeld parameter and scalar field mass in the case of the 
(2 + 1)-dimensional superconductor. For concreteness, we will fo-
cus on the case for the mass of the scalar field m2 L2 = −2 and the 
step size �b = 0.1. Since in Ref. [11] the scalar operator is given 
by 〈O+〉 = √

2ψ+ which is different from 〈O+〉 = ψ+ in this work, 
we present the condensation value γ = √

2β obtained by the ana-
lytical S–L method and from numerical calculation with the chosen 
values of the Born–Infeld parameter b for the (2 + 1)-dimensional 
superconductor in Table 3. We see that the condensation value γ
increases as the Born–Infeld parameter b increases for the fixed 
scalar field mass and spacetime dimension, which indicates the 
consistent picture shown in Tc that the higher Born–Infeld electro-
dynamics corrections make the condensation to be formed harder. 
On the other hand, comparing with the analytical results shown 
in Table II of Ref. [29], we find that the iterative procedure indeed 
reduces the disparity between the analytical and numerical results.
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Table 1
The critical temperature Tc obtained by the analytical S–L method and from numerical calculation [11] for the chosen values of the Born–Infeld parameter b in the case of 
4-dimensional AdS black hole background. Here we fix the mass of the scalar field by m2L2 = −2 and the step size by �b = 0.1.

b 0 0.1 0.2 0.3

Analytical 0.1170ρ1/2 0.09898ρ1/2 0.08644ρ1/2 0.07586ρ1/2

Numerical 0.1184ρ1/2 0.1007ρ1/2 0.08566ρ1/2 0.07292ρ1/2

Table 2
The critical temperature Tc with the chosen values of the Born–Infeld parameter b and the step size �b in the case of 5-dimensional AdS black hole background. Here we 
fix the mass of the scalar field by m2 L2 = −3.

b 0 0.1 0.2 0.3

Analytical (�b = 0.05) 0.1962ρ1/3 0.1460ρ1/3 0.1091ρ1/3 0.07866ρ1/3

Analytical (�b = 0.025) 0.1962ρ1/3 0.1329ρ1/3 0.08754ρ1/3 0.05195ρ1/3

Numerical 0.1980ρ1/3 0.1275ρ1/3 0.08298ρ1/3 0.05292ρ1/3
Table 3
The condensation value γ = √

2β obtained by the analytical S–L method and from 
numerical calculation [11] with the chosen values of the Born–Infeld parameter b
in the case of 4-dimensional AdS black hole background. Here we fix the mass of 
the scalar field by m2 L2 = −2 and the step size by �b = 0.1.

b 0 0.1 0.2 0.3

Analytical 92.80 117.92 137.22 161.14
Numerical 139.24 207.36 302.76 432.64

Table 4
The condensation value β obtained by the analytical S–L method with the chosen 
values of the Born–Infeld parameter b and step size �b in the case of 5-dimensional 
AdS black hole background. Here we fix the mass of the scalar field by m2L2 = −3.

b 0 0.1 0.2 0.3

�b = 0.05 238.91 418.95 697.64 1195.56
�b = 0.025 238.91 496.06 1005.38 2303.28

As another example, let us move on to the case of d = 4. From 
the asymptotic behavior (9), we can expand φ when z → 0 as

ρ

r3+
(1 − z2) = λζ(z)

+ 〈O〉2

r2�+

[
χ(0) + χ ′(0)z + 1

2
χ ′′(0)z2 + · · ·

]
. (38)

Considering the coefficients of z1 terms in above equation, we ob-
serve that χ ′(0) → 0 if z → 0, which is consistent with Eq. (32). 
Comparing the coefficients of the z2 terms, we have

ρ

r3+
= λ − 〈O〉2

2r2�+
χ ′′(0), (39)

where χ ′′(0) can be computed by using Eq. (32). So we can deduce 
the same relation (36) for the (3 + 1)-dimensional superconductor 
with the different condensation coefficient

β =

⎧⎪⎨
⎪⎩

π�
√

6
α1

, for 4bn(λ
2|bn−1) < 1,

π�
√

6
α2A+α2B

, for 4bn(λ
2|bn−1) > 1.

(40)

In Table 4, we give the condensation value β obtained by the 
analytical S–L method with the chosen values of the Born–Infeld 
parameter b and step size �b for the (3 + 1)-dimensional super-
conductor. In both cases we find again that, for the fixed scalar 
field mass and spacetime dimension, the condensation value β

increases as the Born–Infeld parameter b increases, just as the ob-
servation obtained in the (2 + 1)-dimensional superconductor with 
Born–Infeld electrodynamics.
It should be noted that one can easily extend our discussion 
to the higher-dimensional superconductor and get our expression 
(36), although the coefficient β is different. Thus, near the critical 
point, the scalar operator 〈O〉 will satisfy

〈O〉 ∼ (1 − T /Tc)
1/2 , (41)

which holds for various values of the Born–Infeld parameter b, 
spacetime dimension d and mass of the scalar field m. It shows 
that the phase transition is of the second order and the critical ex-
ponent of the system always takes the mean-field value 1/2. The 
Born–Infeld electrodynamics will not influence the result.

4. Conclusions

We have generalized the variational method for the S–L eigen-
value problem to analytically investigate the condensation and crit-
ical phenomena of the d-dimensional superconductors with Born–
Infeld electrodynamics, which may help to understand the influ-
ences of the 1/N or 1/λ corrections on the holographic super-
conductor models. We found that the S–L method is still powerful 
to disclose the properties of the holographic superconductor with 
various condensates even when we take the Born–Infeld electro-
dynamics into account. Using the iterative procedure in the per-
turbative approach proposed by Banerjee et al. [29], we further 
improved the analytical results and the consistency with the nu-
merical findings for the (2 + 1)-dimensional superconductor. Fur-
thermore, extending the investigation to the higher-dimensional 
superconductor with Born–Infeld electrodynamics, we observed 
again that the analytical results derived from this method with a 
reasonable step size are in very good agreement with those ob-
tained from numerical calculation. Our analytical result shows that 
the Born–Infeld parameter makes the critical temperature of the 
superconductor decrease, which can be used to back up the nu-
merical findings as shown in the existing literatures that the higher 
Born–Infeld electrodynamics corrections can hinder the conden-
sation to be formed. Moreover, with the help of this analytical 
method, we interestingly noted that the Born–Infeld electrodynam-
ics, spacetime dimension and scalar mass cannot modify the crit-
ical phenomena, and found that the holographic superconductor 
phase transition belongs to the second order and the critical expo-
nent of the system always takes the mean-field value. It should be 
noted that one can easily extend our technique to the holographic 
superconductor models with the logarithmic form [20] and expo-
nential form [21] of nonlinear electrodynamics. More recently, a 
model of p-wave holographic superconductors from charged Born–
Infeld black holes [35] via a Maxwell complex vector field model 
[36–38] was studied numerically. It would be of interest to gener-
alize our study to this p-wave model and analytically discuss the 
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effect of the Born–Infeld electrodynamics on the system. We will 
leave it for further study.
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