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Abstract 

Carbon capture and storage is considered a promising option to mitigate CO2 emissions. This has resulted in many R&D efforts 
focusing at developing viable carbon capture technologies. During carbon capture technology development, process modeling 
plays an important role. Selecting an appropriate process model for carbon capture technologies is not trivial, because of the large 
range of technology options, the difference in technology development stage, and the different purposes for which a process 
model can be used. This paper proposes a five-step, structured approach, designed to support the selection of carbon capture 
process models. The approach is illustrated with a post-combustion (monoethanolamine) case study. The paper shows 
intermediate and output results of the structured approach, and of the MEA case. 
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1. Introduction 

Carbon capture and storage is generally considered a promising option to mitigate anthropogenic CO2 Emissions. 
For this reason, many R&D efforts focus at developing viable carbon capture technologies. Some of these 
technologies are well-established, many are relatively new. During Research and Development, modelling of carbon 
capture technologies plays an important role. Process models are used to assess performance, optimize processes or 
to serve as input for further analysis (economic, environmental).  
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Process model selection is an important step, because it determines, to a large extent, the quality of the model 
results. Selection is highly dependent on the type of technology that is modeled, and on the objectives that the model 
is supposed to fulfill. As an example, figure 1 shows a (non-exhaustive) number of carbon capture technologies that 
is currently under development. They are grouped into type (post-combustion, pre-combustion, and oxyfuel) and by 
Technology Readiness Level2. For technologies at a very early stage of development (low TRL), little data is 
available, limiting the type of process models that can be specified. For mature technologies (high TRL), there is 
often a range of possible models to choose from. Different technology types, e.g. solvent, PSA, or oxyfuel plants, 
require different kinds of models. The same applies to the modeling objective. If a model is to supply a detailed 
output for a LCA study, a different model will be chosen than when the aim is to perform  a quick scan of 
technology performance.  
 

To support the model selection process for carbon capture technologies, we suggest a structured approach 
consisting of five steps.  This approach has been developed as part of a larger study that focuses on selection and 
quality evaluation of process models, economic models, and LCA models [1]. In future work, the structured 
approach for process model selection will be complemented with an approach for process model evaluation. 

Figure 1.Selection of carbon capture technologies, clustered by type, and Technology Readiness Level 

 

 
2  Technology Readiness Level (TRL) is a measure for the maturity of a technology. It uses a scale that runs from 1 to 9, where a figure of 1 
represents technology that is at a very early stage of research, and a figure of 9 represents technology that is operating in a commercial 
environment over the entire range of conditions it was designed for. The TRL scale was first developed by NASA for use in their space 
programmes, and later adapted for energy technologies by the US Department of Energy [27]. 
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2. Approach 

In order to gain deeper understanding of process model selection, discussions were organized with several 
modeling experts from academia, research institutes, and corporations. Initial discussions where on a one to one 
basis, using a semi-structured interview format. At a later stage, follow-up discussions took place in a Group 
Decision Room, an environment that enables group brainstorming and group decision-making, using hardware 
(computer for each individual participant connected to a network system), software (to allow brainstorming, ranking 
and structuring of ideas), and process facilitation [2]. One of the results of the interviews and workshop was that 
model selection follows a sequence of iterative steps. When the experts were asked which steps they take during 
model selection, the following five were mentioned most often: 

 
1) Understand the process 
2) Define modeling objective 
3) Specify selection criteria 
4) Select model attributes 
5) Specify and run the model 

 
We include these five steps as the basis of the approach. The following section further illustrates each step, using 

an evaluation of a power plant with monoethanolamine CO2 capture, which was done as case study for the Eddiccut 
project [3]. 

3. Illustration of the approach with MEA post combustion solvent example 

3.1. Understand the process 

 
 
 
The first step of the approach, aims to gain understanding of the process. It is important to understand the current 

knowledge on the capture process, in order to pick the suitable model in a later step. For the purpose of process 
simulation, the following aspects are interesting to study, as they form the basic elements of a model :  components 
and their properties, chemistry, thermodynamics and process line-ups. 

For the MEA case, step 1 led to the following understanding: the main components in a MEA solvent are MEA, 
water, CO2 and their solutes (MEAH+, MEACOO-, CO3

2-, HCO3
-, OH-, H3O+). Flue gas typically consists of 

Nitrogen, Oxygen, water and CO2. Besides that, flue gas can contain many impurities like SOx, NOx, particulates, 
halogen compounds and heavy metals [4]. For the main substances, pure component data is available through 
software databanks, amongst others [5]. MEA-H2O-CO2 chemistry can be described by relations using the 
minimization of Gibbs free energy [6], equilibrium constants [7], and power law kinetics [8]. Good quality data on 
the chemistry is available in literature and in software databanks. In the solvent, also side and impurity reactions 
take place, producing heat stable salts and other degradation products. These reactions and reaction products have 
been studied, but the level of understanding is not as high as for the main reactions. For instance, reaction 
mechanisms have been proposed, and degradation rates are measured, but the results are still partial in nature, and 
are not combined yet into integrated degradation chemistry and kinetics, see e.g. [9]–[11]. Thermodynamics 
describing MEA-H2O-CO2 heat of absorption, phase equilibria, and speciation, have been described in many studies, 
e.g. [6], [7], [12]–[14]. Some studies propose simplified thermodynamic relations, others define complex, rigorous 
relations, including activity coefficient models. With respect to line-ups, the standard line-up for a MEA system 
includes a simple absorber stripper system with cross heat exchanger. Both absorber and stripper are typically 
equipped with a water wash to prevent MEA loss [15]. More advanced configurations have been proposed, 
containing energy integration methods to reduce the energy penalty for capture, e.g. [16]. Commercial vendors, like 
Fluor and Aker, have their own process line-ups, but the exact flowsheets are proprietary and not publicly available 
[17]. 

“So you start with trying to understand the process itself, that is the first step”. Senior Scientist gas treatment, 
TNO (Netherlands Organization for Applied Scientific Research) 
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3.2. Define modeling objective 

 
 
 
 
A modeling objective describes the purpose of the model and its results, and describes what questions the model 

is required to answer [18]. The modeling objective can be specified based on the information gathered in step 1, on 
the broader research context in which the modeling study is pursued, and on the requirements of possible clients. 
Defining a good modeling objective is important, because it gives direction to selection of the process model in later 
steps. The modeling objective should be clear and concise. For the MEA case, the modeling objective was to assess 
the technical performance of a MEA carbon capture unit connected to a pulverized coal power plant as a 
benchmark for novel carbon capture technologies. 

3.3. Specify selection criteria 

 
 
 
 
By defining the modeling objective, direction is given to the selection of the process model. Selection criteria can 

be defined to further reduce the selection space, i.e., criteria that can limit the amount of models to choose from. 
Model selection criteria that are found in literature most frequently include reliability, time availability, accuracy, 
predictability and data availability [14], [18]–[24]. During the expert sessions described in section 2, we asked 
which selection criteria participants use in their modeling. This revealed the following additional criteria: 
availability of in-house knowledge, client expectations, required output indicators, and required level of detail, 
amongst others.  

For the MEA case, the following criteria were specified: 
 

1) Time: the model should be selected, specified and run in two months. 
2) Accuracy: the model should be accurate enough to serve as a benchmark for other carbon capture 

technologies.  
3) Parameter availability: the model should run on existing physical property data. 
4) Level of detail: the level of output detail should be high enough to serve as input for rigorous economic 

analysis. 

3.4. Select model attributes 

 
 
 
 
Rather than choosing a process model as a whole, we suggest to break down the model into its attributes, as this 

makes the selection easier, more formalized, and more informed. The model attributes are defined along five 
dimensions (inputs & outputs, chemistry & conversion, thermodynamics, building blocks, and process integration) 
and five levels of complexity (from very low to very high), together forming an attribute complexity matrix (figure 
2). Inputs and outputs are defined as the components that flow into and out of the model. They may contain the main 
components, impurities, utility streams, and process chemicals. Chemistry and conversion deals with how complex 
one decides to model the chemical reactions in the model. A choice can be made for specifying simple yields, or 
including equilibrium or power law kinetics. In this dimension it can also be specified if mass and heat transfer are 

“The thing I always stress the most is that the purpose must be clear. You have to be able to formulate,…, as 
detailed as you can, the reason why you are developing this model”. Professor modeling and simulation of 

process and energy stystem, Delft University of Technology. 

“In the beginning of the project, this was very important, and I would advise you to do it, we wrote a document 
where we outlined all the criteria”. Professor modeling and simulation of process and energy systems, Delft 

University of Technology. 

“Complexity is important, because you can easily try and make a model too complex, unnecessarily. The choice 
for complexity depends on how well you know the process you are modeling”. Senior scientist, European 

energy utility company. 
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included, and if only the main reactions are taken into account, or also side reactions. The Thermodynamics 
dimension defines what kind of thermodynamic and phase equilibria models are used. This ranges from very simple 
heat balances and ideal thermodynamics to rigorous thermodynamics, including Equations of State and activity 
coefficient models. Using the dimension building blocks, one can specify the detail of the flowsheet (only the main 
blocks vs. all equipment) and the level of detail of the individual blocks (e.g. simple heat exchanger vs. rigorous 
heat exchanger).  The last dimension, process integration, is used to select the level of integration in the flowsheet: 
are recycle loops included, is there heat integration and how much, or is a fully optimized flowsheet required? 

 
Figure 2 shows the choices made for the MEA case. In this case it was chosen to only model the main 

components (N2, H2O, CO2, MEA) and their solutes in the flue gas and aqueous MEA solvent, and only take into 
account the most common other substances in the flue gas (Ar and O2). Given the modeling objective and criteria, it 
was not required to include other impurities, or solvent degradation products. Secondly, it was chosen to model the 
chemistry using equilibrium coefficients, because these coefficients are readily available in literature, and supply 
sufficiently accurate results. In particular, we selected the coefficients from Kim et al. [7], because these coefficients 
were well validated. In addition to that, mass transfer limitations were used in the columns to increase the accuracy 
of the model. Thirdly, it was chosen to describe thermodynamics by the rigorous e-NRTL-RK model, to fulfill the 
criterion of accuracy. More specific, to also fulfill the criteria of time and parameter availability,  the VLE model 
and parameters are used as available in the Aspen Plus databanks [5]. The Aspen databank parameters were used 
instead of regressing parameters from experimental data ourselves, because the latter would require much more time 
than the available two months (criterion 1). 

Figure 2. Attribute complexity matrix for the MEA model.  

To be able to supply a detailed equipment list (criterion 4), we chose to include all heat exchangers and pumps, 
including the ones of the DCC and water wash recycle streams (figure 3). Some models only include the major 
pumps (e.g. absorber bottom pump), but that would render too little detail for cost estimation. Most of the pumps 
and HX’s were modelled using simple unit operation models. Only the cross heat exchanger and the columns were 
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modelled using more detailed unit operation models, enabling rate based chemistry in the columns and realistic heat 
flux in the cross-HX.  

The process in figure 3 resembles a basic solvent process for flue gas carbon capture. It is possible to increase 
complexity of the flowsheet, e.g. by adding more advanced energy integration options. However, because the 
modeling objective was to generate a benchmark for other carbon capture technologies, we chose not to do this. 
Adding more complexity to the flowsheet would stray from modeling a generic benchmark, or base case, and would 
rather move towards modeling a specific vendor’s technology.  

Summarizing, most model attributes were selected at an average to high level of complexity (grey shading in 
figure 2). The matrix provided a clear choice of attributes that aids in defining the process model. As such, the 
matrix can be a useful tool for selecting the right MEA model for the given objective, and helps minimize under or 
overspecification.  
 

Figure 3. Process Flow Diagram of the MEA model. 

In conjunction with selection of attributes, the software is selected. As we use the e-NRTL-RK thermodynamic 
coefficients from the Aspen Plus databanks, we chose to use this software. Another, but secondary reason to work 
with this software, was because of available in-house knowledge of Aspen Plus simulation.  

3.5. Specify and run model 

In the last step of the approach, the process model is specified in the chosen software. We specified the MEA 
model according to the attribute selections made in step four, i.e. using the flowsheet in figure 3, the 
thermodynamics from the Aspen Plus databanks, and the chemistry and equilibrium coefficients as proposed by Kim 
et al [7].  
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3.6. Model results 

Table 1, shows the results of our MEA model and compares those to results as found in the Esbjerg pilot plant 
[15], [25], [26]. As can be seen, the results agree fairly well with the validation plant. 

Table 1. Results of the MEA model (this work), and validation against the Esbjerg pilot plant data.  

 This study Validation 
Specific Reboiler Duty (GJ/t CO2) 3.6 Esbjerg: 3.6-3.9 
Liquid/gas ratio (kgsolvent/kgflue gas) 3.8 Esbjerg: 3-3.5 
Electric power requirement (MJ/t CO2) 122.3 - 
Cooling water requirement (GJ/t CO2) 4.1 Esbjerg: 3.2-3.9 
Plant water requirement (m3/t CO2) 0.53 - 
CO2 in stripper overhead (%) 95.9 Esbjerg: 96.9 

4. Conclusions and further work 

In this paper, we presented a five-step approach for carbon capture model selection, and illustrated the approach 
on a MEA post combustion case study. The approach  supports  the model selection process, and can aid in making 
informed and explicit decisions on model selection. At the core of the approach is the use of an attribute complexity 
matrix. Further research is currently being carried out to extend the approach with model quality evaluation tools, in 
order to assess  quality of the model and integrate this information in the assessment of results, and to communicate 
the quality of modeling study outputs to decision makers. This integrated approach for model selection and model 
quality evaluation will be further tested on a number of carbon capture and carbon utilization case studies. This is 
subject to research that will be pursued in the Eddiccut project in the period 2014 - 2017.  
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