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Circadian rhythms permeate mammalian biology. They
are manifested in the temporal organisation of beha-
vioural, physiological, cellular and neuronal processes.
Whereas it has been shown recently that these�24-hour
cycles are intrinsic to the cell and persist in vitro, internal
synchrony in mammals is largely governed by the hypo-
thalamic suprachiasmatic nuclei that facilitate anticip-
ation of, and adaptation to, the solar cycle. Our
timekeeping mechanism is deeply embedded in cell
function and is modelled as a network of transcriptional
and/or post-translational feedback loops. Concurrent
with this, we are beginning to understand how this
ancient timekeeper interacts with myriad cell systems,
including signal transduction cascades and the cell cycle,
and thus impacts on disease. An exemplary area where
this knowledge is rapidly expanding and contributing to
novel therapies is cancer, where the Period genes have
been identified as tumour suppressors. In more complex
disorders, where aetiology remains controversial, inter-
actions with the clockwork are only now starting to be
appreciated.

Introduction
Circadian (circa-, ‘approximately’; -diem, ‘day’) rhythms
are a fundamental property of living cells. When held in
temporal isolation, organisms from unicells to humans
exhibit behavioural and physiological rhythms that persist
with a period of approximately 24 h [1]. These rhythms are
driven by biological clocks that have two essential features.
First, their free-running period of �24 h is temperature-
compensated: clocks do not run slower at lower tempera-
tures or speed up when it is hot – a remarkable and
necessary feat of biochemical engineering. Second, they
can synchronise to temporally relevant stimuli such as
light, temperature or feeding schedules, and thus their
definition of internal time becomes predictive of external
(solar) time [2]. Entrained in this way, clocks confer se-
lective advantages to organisms by facilitating anticip-
ation of, and thereby adaptation to, the alternating day–

night cycle as well as temporally segregating mutually
antagonistic processes that might otherwise result in a
futile cycle – for example, glycolysis (day) and gluconeogen-
esis (night) in hepatocytes [3]. The competitive value of
circadian clocks has been demonstrated in prokaryotes and
higher plants [4,5], and disturbance of circadian timing in
humans, as seen in rotational shift workers for example,
carries significant long-term health costs [6].
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Rhythmic regulation of behaviour and physiology
results from the circadian modulation of diverse processes
and pathways, and therefore interactions between the
clock and health are necessarily pleiotropic in nature.
Two clear trends can be identified however. Namely, that
organisms whose internal clocks are synchronised with the
external environment are healthier (more adept at dealing
with environmental challenge) [7], and that genetic or
acute lesions affecting timekeeping reduce temporal
homeostasis with concomitant health consequences, albeit
often indirectly [8]. For example, in the context of cancer, it
has been shown that the circadian cycle gates cell division
[9], and thus loss of cellular rhythmicity might be expected
to correlate with increased cellular transformation.
Indeed, a number of canonical clock genes have been
identified independently as tumour suppressors; for
example, Bmal1 [10]. When otherwise healthy humans
or rodents are repeatedly desynchronised from the exter-
nal environment, however, an increased cancer risk and
reduced longevity is also observed [11,12].
Healthy clockwork = healthy body and mind
The human body is a cyclical machine, and circadian
variation in physical and cognitive performance is readily
observable at both the individual and population levels
[13,14] (Box 1, panels A,B). These behavioural outputs
stem from circadian regulation of neuronal, physiological
and endocrine function; examples include rhythms in core
body temperature, heart rate, and in cortisol and melato-
nin secretion [15,16]. Indeed, the majority of body and cell
functions, where studied, appear to have some circadian
component. For example, elements of both the adaptive
and innate immune system are subject to circadian regu-
lation [17], as is the severity of many disease states in-
cluding myocardial infarction [18] and depression [19].
Indeed, more than 20% of gene expression in a given tissue
has been estimated to be under circadian regulation at
either the transcriptional or protein level, with further
circadian regulation being evident through post-transla-
tional protein modification [20]. There is no doubt, there-
fore, that our bodies are temporally orchestrated by the
clockwork, but what are the consequences when our
internal clocks are disrupted, or become misaligned with
the external environment, as occurs in jet-lag and in shift
work?

There is mounting evidence to suggest that long-term
disruption of rhythmic behaviour correlates with disease
states, leading to profound implications for healthcare in
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https://core.ac.uk/display/81991661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:abr20@cam.ac.uk
http://dx.doi.org/10.1016/j.tcb.2009.10.005
http://creativecommons.org/licenses/by/3.0/


Box 1. The molecular clockwork

The montage in Figure I shows the hierarchical nature of circadian

rhythms from (A) Population (the incidence of road traffic accidents

varies across the day, adapted from Ref. [113]); to (B) Individual

behavioural activity shown on a double-plotted actigram; to (C)

Physiology and/or Organ systems that, although at different phases of

gene expression, are maintained in a stable phase relationship with

one another through signalling from the SCN; to (D) Individual cells,

for example fibroblast rhythms that can be observed in real-time

through bioluminescent promoter-fusion reporters; to (E) Molecular

oscillations where current models of timekeeping revolve around

autoregulatory, inter-linked transcriptional and post-translational

feedback loops in which, at the start of circadian daytime, the positive

factors Clock (red) and Bmal1 (black) activate the expression of the

negative regulators Period (Per1,2,3, purple) and Cryptochrome

(Cry1,2; yellow) via E-box regulatory sequences. With the progression

of circadian daytime the abundance of Per/Cry complexes in the

nucleus increases. On progressing into circadian night-time these

complexes start to suppress E-box activation, closing the negative

feedback loop. Thus the dynamic balance changes and, because the

rate of protein degradation exceeds de novo synthesis, Per/Cry

complexes disappear from the nucleus. By the end of the circadian

night the negative regulation is lifted and a new circadian day is

initiated [114]. Thus the dynamics of translation, intracellular traffick-

ing, complex formation and covalent post-translational modifications

(PTMs, green ovals), such as phosphorylation and acetylation, and

ultimately proteasomal degradation, will contribute to the pace and

stability of timekeeping. In particular the activity of ubiquitous cellular

kinases such as casein kinase 1/2, glycogen synthase kinase 3 and

AMP kinase have been shown to be intimately connected with clock

protein progression through the cycle [115], In addition, promoter

chromatin structure cycles through open and repressive states in

response to the NAD+/NADH redox balance of the cell through the

action of histone acetyl-transferases (e.g. Clock, NADH-dependent)

and histone deacetylases (e.g. SIRT1, NAD+-dependent; not shown).

Stability and contrast enhancement are also conferred by auxiliary

feedback loops, such as those involving the orphan nuclear

receptors RORA and Rev-Erba (not shown) that are activated by

Clock:Bmal1 and have, respectively, positive and negative actions on

Bmal1 via RORE sequences [116]. By regulating the expression of

‘clock-controlled genes’ that carry E-box and RORE sequences, but

are not involved in these feedback loops, the daily waxing and

waning of Per, Cry, Bmal1, RORA and Rev-Erba clock proteins is able

to impose a daily order on cell activity, ultimately generating the

behaviour and physiology of the organism [20,34,117,118]. Compli-

cating this picture, however, are recent reports that many clock

genes are dispensable for cellular rhythmicity, whereas diverse

cellular mechanisms, such as microRNA-mediated repression, cAMP

signalling and redox metabolism that are under clock control also

feedback into the so-called ‘central’ clock mechanism [55,119,120].

Given that the cellular oscillator has also recently been shown to be

remarkably robust to gross inhibition of global transcriptional

activity [121], it is presently unclear to what extent it is helpful to

consider the transcriptional feedback circuitry in isolation from its

wider cellular context [32,122].

Figure I. Montage showing the hierarchical nature of circadian rhythms.
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the future [21]. Interestingly, diseases such as ischaemic
stroke, that share risk factors with cardiovascular disease,
have similarly been found to occur more frequently in
female long-term shift workers [22]. Moreover, in this
cohort there appears to be a clear link between breast
cancer risk and long-term shift working [23,24], and this
is being taken seriously by a number of governments in
view of increasing litigation in this area [25]. A number of
37
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additional studies have found that chronic shift work is
significantly associatedwith an increased risk of colorectal,
endometrial and prostate cancers [26]. Similarly, recent
work highlights that cardiovascular and metabolic dys-
function (glucose intolerance) occur in situations analogous
to rotational shift work [27], meaning that how we work
could have consequences for the development of such
conditions. Obesity, diabetes and related metabolic syn-
dromes are on the increase globally, and novel ways to
combat them are needed. In this context, the observation
that ‘statins’ are most efficacious when administered
during subjective night has been known anecdotally for
years [28], but when coupled with a recent report that mice
fed at the ‘wrong time’ of day (i.e. when they are supposed
to be sleeping) gain weight more rapidly than littermates
fed at the ‘right time’ [29], one may infer that attempts to
cure or prevent diseased states in humans will be hindered
unless the circadian context of treatment is considered.
There thus exists a clear need to understand the molecular
mechanisms that sustain our clockwork and to elucidate its
interactions with other biological systems.

From rhythmic behaviour to molecular events
Our view of circadian rhythms has changed immensely
over the last decade or so. For many years the consensus
view was that mammalian timekeeping function was
highly centralised within a so-called master clock – the
suprachiasmatic nuclei (SCN) that integrate relevant
environmental cues (photic and non-photic) and signal
timing information to peripheral tissues through via
neuronal efferents and diffusible factors [30–32] (Box 1,
panel C). This bilateral structure comprises approximately
10,000 neurons and resides in the basal hypothalamus,
above the optic nerve crossing (chiasm), and is ideally
situated to be entrained by ambient lighting cues relayed
from a sub-population of intrinsically photosensitive
retinal ganglion cells [33]. The SCN was shown to be
indispensable for coherent behavioural rhythmicity in
mammals in the 1970s. When it is ablated in mice, or
damaged in humans, behavioural cycles including sleep
and wakefulness become arrhythmic or disorganised
[31,34]. Indeed, intrinsic rhythmic activity in the SCN is
so robust that rhythms have been shown to persist for
months in organotypic slices in vitro [35]. Moreover,
mutations affecting the ability of the SCN to function as
an assemblage (e.g. in VPAC2 receptor knockoutmice), and
mutations that either ‘accelerate’ the clockwork (e.g. homo-
zygous Tau mutant mice or hamsters exhibit a signifi-
cantly shorter free-running periodicity of �21 hours) or
slow it down (e.g. Fbxl3 mutant mice, with an endogenous
periodicity of �28 hours), all directly impact on rhythmic
behaviour, further illustrating the SCN’s pivotal orches-
trating role in vivo [36–41].

Significantly, however, in the last 5 years it has been
shown beyond doubt that whereas the SCN clearly plays a
key role in synchronising rhythms across the body’s var-
ious tissues, cells within those tissues themselves exhibit
self-sustained rhythms in gene expression that also persist
in culture [35,42] (Box 1, panel D). Indeed, in mice with a
conditionally inactive clock in the liver, the number of
transcripts that continued to oscillate and were therefore
38
driven directly by humoral factors was only �10% com-
pared to wild-type controls [43,44], implying that the
majority of oscillating transcripts are reliant upon cell-
intrinsic mechanisms. Moreover, in addition to serum
factors and pharmacological cues, very mild 24-hour
temperature cycles (that mimic circadian variation in body
temperature) are sufficient to entrain the phase of fibro-
blasts in vitro, implying that peripheral tissues are also
competent to be stably entrained to timing cues in the
absence of SCN signalling [9,45–49]. Finally, when
entrained via feeding or pharmacological cues, it has been
shown that the SCN, and even several identified ‘clock
genes’, are dispensable for rhythmic behaviour [50,51].
Thus, the generic mechanism that sustains intracellular
rhythms in all tissues has become a major focus for circa-
dian research (Box 1 overviews the current molecular
model and its relation to higher-order biological structures
and behaviour).

The early successes of molecular approaches to identify-
ing clock components revealed a number of transcription
factors (Per1–3, Cry1,2, Bmal1, Clock etc.) that appeared to
act in a day-long auto-regulatory negative feedback loop,
regulating the rhythmic expression of many clock-con-
trolled genes in a tissue-specific manner [42,52]. More
recently, however, several rhythmic outputs from this core
loop have been shown, in turn, to also feedback into it –

rendering the principle of a core mechanism increasingly
semantic. Strikingly, these additional loops include not
only additional transcription factors (e.g. Dec1,2, Rev-
erba) [53] but also several ubiquitous pathways that are
heavily implicated in other cellular processes. For
example, AMPK is involved in cellular energy homeostasis
but was recently shown to also display rhythmic activity
and localisation, and regulate the stability of Cry1 [54].
Similarly, cAMP signalling is an essential signal trans-
duction pathway, but is also described as a core clock
component, governing the period, amplitude and phase
of rhythms in gene expression [55]. In addition, the
NAD/NADH redox balance, so crucial to cellular metab-
olism, has been shown to have reciprocal regulation with
the core clock mechanism (see below) [56]. Whether the
participation of these essential cellular systems reflects an
inbuilt distributed functional redundancy or a deeper bio-
logical truth remains to be seen. Certainly, our picture of
what constitutes the minimal cellular timing architecture
has become somewhat cluttered of late, and our drive to
separate cause from effect dictates that an quantitative
assessment of the relevant functional contribution of each
putative component to timekeeping is overdue, especially
because transfer of this understanding to clinical relevance
is the foremost objective.

The clock and cancer: a tale of two cycles
Possible interactions between the cell cycle and the clock-
work have been known for some time [57–61], in the sense
that the clock gates cell division to specific circadian
phases. From an evolutionary perspective this is intuitive
because DNA synthesis and replication performed at night
are not exposed to harmful UV radiation that might other-
wise have deleterious effects on replicative fidelity. In
mammals, there is a vast body of evidence, spanning more
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than two decades, that has defined circadian variation in
mitotic indices in a multitude of tissues including oral
mucosa, skin, intestinal epithelium, and bone marrow
[62]. Only recently, however, have the mechanisms under-
lying this link been revealed and, lately, translated to the
clinical oncology arena [62–65].

Beyond the observation that circadian disruption short-
ens survival and accelerates malignant growth, insights
broadly split into two categories: clock genes as tumour
supressors or oncogenes and therefore putative prognostic
indicators, and chronotherapeutic applications resulting
from circadian regulation of cell proliferation and detox-
ification pathways. In the case of the former, defects in core
clock components (such as Period 1 and 2; putative tumour
suppressors) have been shown to be involved in the
response to radiation-induced DNA damage, and hence
the propensity for tumour formation in vivo [66,67]. In
addition, the core clock components Clock:Bmal1, and the
close homologue Npas2, have been shown to protect
Figure 1. Clocks, cancer and the cell cycle. (A) The circadian system is linked to the cell

mechanisms. Transcription of the myelocytomatosis (Myc) oncogene and of Wee1 is c

expression of Wee1 is coregulated with that of period homologue genes (Per) and the

transcription of Per (and Wee1) is high. In addition, the PER1 protein interacts with the

(CHK2), whereas related work has linked the timeless (TIM) and cryptochrome (CRY) prot

the circadian clock. CDC25, cell division cycle 25; CDK1, cyclin-dependant kinase 1 (adapt

(FU), and leucovorin (LV) administered as a chronomodulated infusion over 4 days (c

represents alternating spans of 8 hours of darkness, corresponding to the average re

daytime wakefulness, over the course of chemotherapy delivery. (C) Overall survival

(chronoFLO4) chemotherapy group (adapted from Ref. [91]).
against chemical and radiation-induced damage [68–70],
Indeed, Npas2 is being investigated as a prognostic bio-
marker for breast cancer [71]. By contrast, loss of the
putative oncogeneCryptochrome significantly reduces can-
cer risk in p53 mutant mice [72] and Cryptochrome2 has
further been implicated in the development of non-Hodg-
kin’s Lymphoma [73]. Moreover, a variety of classical cell
cycle and/or proliferation genes (such as c-Myc and Wee1)
have been shown to be under direct clock control, and their
expression (driven by Clock:Bmal1 complexes via E-box
elements in their regulatory regions) effectively gates the
division of non-transformed cells to specific circadian
phases [62,64,66]. Other well-recognised cell-cycle regula-
tors (e.g. Cyclin D1 andMdm-2 and Gadd45a) are likely to
be controlled indirectly [66] but, strikingly, the interaction
is bidirectional in that DNA damage can reset the phase of
the clockwork (Figure 1A) [74,75], presumably because
repair to geneticmaterial has to take priority over a system
that contributes to cellular homeostasis in the longer term.
-division cycle through circadian control of gene expression and post-translational

ircadian and this appears to be a direct target of the CLOCK:BMAL1 complex. The

entry of the cell cycle into M phase is suppressed during the daytime when the

checkpoint proteins ataxia telangiectasia mutated (ATM) and checkpoint kinase 2

eins with CHK1. Activation of the DNA-damage pathway can also reset the phase of

ed from Ref. [2]). (B) Treatment schedules combining oxaliplatin (Oxal), fluorouracil

hronoFLO4) or as a conventional infusion over 2 days (FOLFOX2). The abscissa

st span at night, and 16 hours of light, corresponding to the average duration of

curve for men, indicating a superior survival at 5 years in the chronomodulated
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In tumours themselves, consistent changes in the
expression of clock genes (e.g. Per1–3) have been demon-
strated, as well as changes in themethylation state of their
regulatory regions in various tissues including breast, liver
and endometrial cancers [76–78]. The extent to which
cancer cells are able to dispense with normal circadian
gating of cell division is however unclear [79], and it could
well be that tumours instead become insensitive to per-
ipheral cues and, in effect, free run [80,81]. Demonstrably
though, when the daily timing of animals is upset using
conditions mimicking jet-lag or shift work, implanted
malignant tumours grow more rapidly than in unper-
turbed controls [81], correlating well with reports of shor-
tened survival in cancer patients with abnormal rhythms
[82–84] and supported by epidemiological meta-analyses of
tumour induction [85]. Indeed, several clock gene poly-
morphisms are being actively investigated as cancer risk
factors [73,86]. Thus there is compelling evidence that
‘clock mechanisms’ are also inexorably tied up in cell
proliferation and its control at the DNA (epigenetic),
RNA and protein levels.

How is this new knowledge being applied clinically?
Changes in clock gene expression might find use as
biomarkers for cancers [73], but the most exciting avenue
has been the development of ‘chronotherapy’ for cancer –

using medications at times when they will be most
effective on cancer cells, while simultaneously minimis-
ing side effects [65,87]. Circadian dosing time influences
the extent of toxicity of more than thirty anticancer
drugs, and it has been shown in animal models that
survival rate varies by at least 50% depending on when a
‘lethal dose’ of drug is given [15]. This might well be
because cellular repair mechanisms, such as nucleotide
excision, are subject to circadian regulation [88], as are
many key genes associated with xenobiotic metabolism
and transport [89]. Even more strikingly though, the
administration of a drug at a circadian time when it is
best tolerated usually achieves the best anti-tumour
activity [90]. This knowledge is being applied increas-
ingly in clinical trials. For example, Giacchetti and
colleagues recently conducted a Phase III trial compar-
ing ‘chronomodulated’ administration of fluorouracil (5-
FU), leucovorin, and oxaliplatin against the standard
regime in patients with newly diagnosed metastatic
colorectal cancer (Figure 1B,C) [91]. There was a signifi-
cant survival advantage of the chronomodulated regime,
but this was interestingly only confined to men, whereas
women fared better on conventional delivery, highlight-
ing the need for further such studies. Moreover, rodent
studies using the drug seliciclib, a cyclin-dependent
kinase inhibitor, showed that drug treatment during
subjective day reduced tumour growth by more than
50% compared with subjective night [92], and that this
increased reduction apparently resulted from restoration
of normally phased clock gene expression patterns in the
tumours [93].

The ageing clock: neurodegeneration and rhythmic
behaviour
At the behavioural level, it is well established that aged
organisms behave less rhythmically [12]. Indeed, loss of
40
regular sleeping patterns in humans is the one of the
prime motivations for institutionalisation of the elderly
[94]. Furthermore, this loss of daily rhythms in sleep–

wake activity has been speculated to contribute to the
onset of neurodegenerative disorders and could be con-
sidered a pre-symptomatic correlate [94–96]. Conversely,
behaviourally arrhythmic animals exhibit accelerated
ageing – for example the Bmal1�/� mouse exhibits loss
of behavioural and molecular circadian rhythms because
it lacks Bmal1-driven rhythmic transcription of down-
stream clock genes from their cognate E-box promoter
sequences [97]. These mice also exhibit reduced body
weight and show mortality at around six months in the
absence ofmajor pathological changes in theirmajor organ
systems [98]. Thus, whereas a bidirectional interaction
between the circadian clock and the ageing process has
long been suspected, until recently there was little mol-
ecular evidence to substantiate it. Many theories of cel-
lular senescence, however, posit impaired redox
regulation at their core [99], and so the observation that
Npas2, a functional homologue of Clock, could also be
affected by the energy/redox status of the cell, and thus
potentially influence circadian transcription, was a sur-
prise to the circadian field [100,101].More specifically, it is
the redox balance of nicotinamide adenine dinucleotide
(NAD) cofactors that influence this: the reduced forms
NAD(H) and NADP(H) strongly enhance DNA binding
of the Clock:Bmal1 and Npas2:Bmal1 heterodimers,
whereas the oxidized forms inhibit binding [101].
Additional redox-sensing ligands (e.g. heme) have sub-
sequently been identified in the regulation of Per2 and
Rev-Erba activity [102,103]; other recent work in this area
has produced further insights into this core biochemical
machinery and has highlighted a role for the deacetylase
SIRT1 (homologous to Sir2 in yeast) in this process [104–

107]. SIRT1 has broad biological functions in growth
regulation, stress response, tumourigenesis, endocrine
signalling, and in extending lifespan [108]. In the present
context SIRT1 appears to counteract the transcription-
activating function of Clock protein that was recently
shown to exhibit histone acetyl-transferase activity, and
thus controls chromatin remodelling around target genes.
SIRT1 therefore facilitates repressive chromatin struc-
tures in anti-phase to Clock:Bmal1 because, crucially,
SIRT1 activity is NAD-dependent and therefore sensitive
to the redox balance of the cell, that is itself subject to
circadian regulation through modulation of NAD syn-
thesis pathways [104]. It remains to be seen how the
clockwork and cell ageing interact at the molecular level
to produce the whole-animal effects observed during
senescence.

An additional correlate of ageing in humans is the
increased incidence of neurodegenerative disorders.
Whereas it has been known for many years that poor sleep
health is associated with a range of neuronal diseases, the
links between circadian dysfunction and Alzheimer’s or
Huntington’s disease, for example, has only recently begun
to be studied in detail. Disturbed sleep cycles are the
principal cause of institutionalisation in dementia, and
therefore represent a major clinical problem [94]. Cer-
tainly, disturbances in the activity–rest cycles of patients



Figure 2. The clockwork and neurodegenerative disorders. (A) Representative actograms from healthy control (top) and moderately demented (bottom) patients. Data from

28 consecutive days are double-plotted on a 48-hour time base for clarity. Group daily activity profiles (plotted as means � SEM) and moderately demented subjects are

shown to the right; adapted from Ref. [94]. (B) Progressive changes in the activity–rest cycles of control mice (left) and R6/2 mice (right) before they develop motor and/or

cognitive symptoms (6–7 weeks) and after they exhibit overt signs of disease (14–15 weeks). LD, light–dark cycle; DD, constant dim red light.

Box 2. Future questions

1. Is the molecular clock inexorably linked to the rest of the cell’s

machinery?

2. How is daily timing (and its dysfunction) linked to ageing?

3. Are changes seen in neurodegeration a cause or consequence of

clock dysfunction?

4. Can resynchronisation of clocks correct metabolic derange-

ments?

5. Will drugs in the future be delivered according to the time of day,

and be individually tailored for a person’s ‘chronotype’?
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with certain dementias (most notably Alzheimer-type
and fronto-temporal dementia) have suggested that cir-
cadian rhythm disturbance might contribute to the dis-
ease process, or be a reflection of it [94,95,109]
(Figure 2A). Recently, there has been much interest in
the disturbance of circadian rhythms in Huntington’s
disease. Disintegration of sleep–wake cycles and circa-
dian gene expression across the brain occurs in the R6/2
mouse model of Huntington’s disease, and this disturb-
ance becomes more profound as the animal’s brain degen-
erates (Figure 2B) (Ref. [110]). More impressively,
cognitive decline and dysfunctional circadian gene
expression can be reversed by imposing a daily cycle of
sleep in R6/2 mice with the benzodiazepine alprazolam,
and this leads to a significant improvement in survival of
the diseased mice [111,112]. This latest evidence
suggests therefore that circadian and sleep disruption
contribute to the neuronal damage that occurs in Hun-
tington’s disease, and that targeting the clockwork could
be a novel way to combat this archetypal genetic dis-
order, with obvious implications for other related neuro-
degenerative conditions.

Concluding Remarks
Our emerging view of circadian clocks at the cellular and
molecular levels revolutionises the way we view the
physiological processes that occur in our bodies. Whether
it is the regulation of daily cell metabolism, the cell
division cycle or the modulation of mood and neurological
function, the circadian clockwork is hard-wired into
these processes. A key example of this is provided by
the Period proteins that are involved in tumour suppres-
sion. Understanding the programmes that mould tissue-
specific gene and protein expression is beginning to lead
to insights into how we can best use this knowledge to
direct existing therapies and interventions. This is being
applied currently in oncology, but endocrinologists in the
future are likely to use drugs modulating clock outputs
to treat obesity and its sequelae, including diabetes and
metabolic syndrome. Nuclear hormone receptors are
emerging targets for drug therapy and could link disease
states in multiple tissues to tractable therapeutics in the
future. Current barriers to translating basic findings to
the clinic can only be addressed with further research
into the complex interactions between the distributed
network of clocks around the body and how they are
synchronised (Box 2). Moreover, new discoveries will
propel the development of completely novel therapeutic
regimens.
41



Review Trends in Cell Biology Vol.20 No.1
Acknowledgements
We are thankful to the Wellcome Trust (WT083643MA) and to the MRC
Centre for Obesity and Related metabolic Diseases (MRC-CORD) for their
support.

References
1 Dunlap, J.C. (1999) Molecular bases for circadian clocks. Cell 96, 271–

290
2 Takahashi, J.S. et al. (2008) The genetics of mammalian circadian

order and disorder: implications for physiology and disease. Nat. Rev.
Genet. 9, 764–775

3 Kohsaka, A. and Bass, J. (2007) A sense of time: how molecular clocks
organize metabolism. Trends Endocrinol. Metab. 18, 4–11

4 Woelfle, M.A. et al. (2004) The adaptive value of circadian clocks; an
experimental assessment in cyanobacteria. Curr. Biol. 14, 1481–1486

5 Dodd, A.N. et al. (2005) Plant circadian clocks increase
photosynthesis, growth, survival, and competitive advantage.
Science 309, 630–633

6 Barger, L.K. et al. (2009) Neurobehavioral, health, and safety
consequences associated with shift work in safety-sensitive
professions. Curr. Neurol. Neurosci. Rep. 9, 155–164

7 Preuss, F. et al. (2008) Adverse effects of chronic circadian
desynchronization in animals in a ‘challenging’ environment. Am.
J. Physiol. Regul. Integr. Comp. Physiol. 295, R2034–2040

8 Kondratov, R.V. and Antoch, M.P. (2007) The clock proteins, aging,
and tumorigenesis.Cold SpringHarb. Symp. Quant. Biol. 72, 477–482

9 Nagoshi, E. et al. (2004) Circadian gene expression in individual
fibroblasts: cell-autonomous and self-sustained oscillators pass time
to daughter cells. Cell 119, 693–705

10 Mullenders, J. et al. (2009) A large scale shRNA barcode screen
identifies the circadian clock component ARNTL as putative
regulator of the p53 tumor suppressor pathway. PLoS One 4, e4798

11 Filipski, E. et al. (2006) Disruption of circadian coordination and
malignant growth. Cancer Causes Control 17, 509–514

12 Gibson, E.M. et al. (2009) Aging in the circadian system:
considerations for health, disease prevention and longevity. Exp.
Geronto.l 44, 51–56

13 Reilly, T. et al. (2005) Jet lag and air travel: implications for
performance. Clin. Sports Med. 24, 367–380 xii

14 Schmidt, C. et al. (2007) A time to think: circadian rhythms in human
cognition. Cogn. Neuropsychol. 24, 755–789

15 Levi, F. and Schibler, U. (2007) Circadian rhythms: mechanisms
and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 47,
593–628

16 Hu, K. et al. (2008) The endogenous circadian pacemaker imparts a
scale-invariant pattern of heart rate fluctuations across time scales
spanning minutes to 24 hours. J. Biol. Rhythms 23, 265–273

17 Habbal, O.A. and Al-Jabri, A.A. (2009) Circadian rhythm and the
immune response: a review. Int. Rev. Immunol. 28, 93–108

18 Portaluppi, F. and Lemmer, B. (2007) Chronobiology and
chronotherapy of ischemic heart disease. Adv. Drug. Deliv. Rev. 59,
952–965

19 Wirz-Justice, A. (2008) Diurnal variation of depressive symptoms.
Dialogues Clin. Neurosci. 10, 337–343

20 Reddy, A.B. et al. (2006) Circadian orchestration of the hepatic
proteome. Curr. Biol. 16, 1107–1115

21 Costa, G. (1996) The impact of shift and night work on health. Applied
Ergonomics 27, 9–16

22 Brown, D.L. et al. (2009) Rotating night shift work and the risk of
ischemic stroke. Am. J. Epidemiol. 169, 1370–1377

23 Schernhammer, E.S. et al. (2001) Rotating night shifts and risk of
breast cancer in women participating in the nurses’ health study. J.
Natl. Cancer. Inst. 93, 1563–1568

24 Schernhammer, E.S. et al. (2006) Night work and risk of breast cancer.
Epidemiology 17, 108–111

25 Wise, J. (2009) Danish night shift workerswith breast cancer awarded
compensation. Br. Med. J. 338, b1152

26 Reiter, R.J. et al. (2007) Light at night, chronodisruption, melatonin
suppression, and cancer risk: a review. Crit. Rev. Oncog. 13, 303–

328
27 Scheer, F.A. et al. (2009) Adverse metabolic and cardiovascular

consequences of circadian misalignment. Proc. Natl. Acad. Sci. U.
S. A 106, 4453–4458
42
28 Muck, W. et al. (2000) Pharmacokinetics of cerivastatin when
administered under fasted and fed conditions in the morning or
evening. Int. J. Clin. Pharmacol. Ther. 38, 298–303

29 Arble, D.M. et al. (2009) Circadian timing of food intake contributes to
weight gain. Obesity (Silver Spring) 17, 2100–2102

30 Hastings, M.H. et al. (2005) Analysis of circadian mechanisms in the
suprachiasmatic nucleus by transgenesis and biolistic transfection.
Methods Enzymol. 393, 579–592

31 Weaver, D.R. (1998) The suprachiasmatic nucleus: a 25-year
retrospective. J. Biol. Rhythms 13, 100–112

32 Hastings, M.H. et al. (2008) Two decades of circadian time. J.
Neuroendocrinol. 20, 812–819

33 Guler, A.D. et al. (2007) Multiple photoreceptors contribute to
nonimage-forming visual functions predominantly through
melanopsin-containing retinal ganglion cells. Cold Spring Harb.
Symp. Quant. Biol. 72, 509–515

34 Akhtar, R.A. et al. (2002) Circadian cycling of the mouse liver
transcriptome, as revealed by cDNA microarray, is driven by the
suprachiasmatic nucleus. Curr. Biol. 12, 540–550

35 Yoo, S.H. et al. (2004) PERIOD2::LUCIFERASE real-time reporting
of circadian dynamics reveals persistent circadian oscillations in
mouse peripheral tissues. Proc. Natl. Acad. Sci. U. S. A. 101, 5339–

5346
36 Harmar, A.J. et al. (2002) The VPAC(2) receptor is essential for

circadian function in the mouse suprachiasmatic nuclei. Cell 109,
497–508

37 Busino, L. et al. (2007) SCFFbxl3 controls the oscillation of the
circadian clock by directing the degradation of cryptochrome
proteins. Science 316, 900–904

38 Godinho, S.I. et al. (2007) The after-hours mutant reveals a role for
Fbxl3 in determining mammalian circadian period. Science 316, 897–

900
39 Siepka, S.M. et al. (2007) Circadian mutant Overtime reveals F-box

protein FBXL3 regulation of cryptochrome and period gene
expression. Cell 129, 1011–1023

40 Lowrey, P.L. et al. (2000) Positional syntenic cloning and functional
characterisation of the mammalian circadian mutation tau. Science
288, 483–491

41 Maywood, E.S. et al. (2007) Genetic and molecular analysis of the
central and peripheral circadian clockwork ofmice.Cold Spring Harb.
Symp. Quant. Biol. 72, 85–94

42 Reppert, S.M. and Weaver, D.R. (2002) Coordination of circadian
timing in mammals. Nature 418, 935–941

43 Kornmann, B. et al. (2007) System-driven and oscillator-dependent
circadian transcription in mice with a conditionally active liver clock.
PLoS Biol 5, e34

44 Reddy, A.B. and Maywood, E.S. (2007) Circadian rhythms:
per2bations in the liver clock. Curr. Biol. 17, R292–294

45 Reddy, A.B. et al. (2007) Glucocorticoid signaling synchronizes the
liver circadian transcriptome. Hepatology 45, 1478–1488

46 Balsalobre, A. et al. (2000) Resetting of circadian time in peripheral
tissues by glucocorticoid signaling. Science 289, 2344–2347

47 Balsalobre, A. et al. (1998) A serum shock induces circadian
gene expression in mammalian tissue culture cells. Cell 93, 929–

937
48 Balsalobre, A. et al. (2000) Multiple signaling pathways elicit

circadian gene expression in cultured rat-1 fibroblasts. Curr. Biol.
10, 1291–1294

49 Brown, S.A. et al. (2002) Rhythms of mammalian body temperature
can sustain peripheral circadian clocks. Curr. Biol. 12, 1574–1583

50 Mohawk, J.A. et al. (2009) The methamphetamine-sensitive circadian
oscillator does not employ canonical clock genes. Proc. Natl. Acad. Sci.
U. S. A. 106, 3519–3524

51 Storch, K.F. andWeitz, C.J. (2009) Daily rhythms of food-anticipatory
behavioral activity do not require the known circadian clock. Proc.
Natl. Acad. Sci. U. S. A. 106, 6808–6813

52 Bozek, K. et al. (2009) Regulation of clock-controlled genes in
mammals. PLoS One 4, e4882

53 Ukai-Tadenuma, M. et al. (2008) Proof-by-synthesis of the
transcriptional logic of mammalian circadian clocks. Nat. Cell. Biol.
10, 1154–1163

54 Lamia, K.A. et al. (2009) AMPK regulates the circadian clock by
cryptochrome phosphorylation and degradation. Science 326, 437–440



Review Trends in Cell Biology Vol.20 No.1
55 O’Neill, J.S. et al. (2008) cAMP-dependent signaling as a core
component of the mammalian circadian pacemaker. Science 320,
949–953

56 Eckel-Mahan, K. and Sassone-Corsi, P. (2009) Metabolism control by
the circadian clock and vice versa. Nat. Struct. Mol. Biol. 16, 462–467

57 Clausen, O.P. et al. (1979) Circadian rhythms in mouse epidermal
basal cell proliferation. Variations in compartment size, flux and
phase duration. Cell Tissue Kinet. 12, 319–337

58 Rensing, L. and Goedeke, K. (1976) Circadian rhythm and cell cycle:
possible entraining mechanisms. Chronobiologia 3, 853–865

59 Scheving, L.E. and Pauly, J.E. (1973) Cellular mechanism involving
biorhythms with emphasis on those rhythms associated with the S
and M stages of the cell cycle. Int. J. Chronobiol. 1, 269–286

60 Gushchin, V.A. (1971) [Relation of the duration of phases S and M of
the cell cycle, the labelling index and the mitotic index in order to
sustain circadian rhythm]. Tsitologiia 13, 1035–1038

61 Hunt, T. and Sassone-Corsi, P. (2007) Riding tandem: circadian clocks
and the cell cycle. Cell 129, 461–464

62 Reddy, A.B. et al. (2005) Circadian clocks: neural and peripheral
pacemakers that impact upon the cell division cycle. Mutat. Res.
574, 76–91

63 Borgs, L. et al. (2009) Cell ‘circadian’ cycle: new role for mammalian
core clock genes. Cell Cycle 8, 832–837

64 Matsuo, T. et al. (2003) Control mechanism of the circadian clock for
timing of cell division in vivo. Science 302, 255–259

65 Levi, F. et al. (2008) Implications of circadian clocks for the rhythmic
delivery of cancer therapeutics. Philos. Trans. R. Soc. Lond. A Math.
Phys. Sci. 366, 3575–3598

66 Fu, L. et al. (2002) The circadian gene Period2 plays an important role
in tumor suppression and DNA damage response in vivo. Cell 111,
41–50

67 Lee, C.C. (2006) Tumor suppression by the mammalian Period genes.
Cancer Causes Control 17, 525–530

68 Antoch, M.P. et al. (2008) Disruption of the circadian clock due to the
Clock mutation has discrete effects on aging and carcinogenesis. Cell
Cycle 7, 1197–1204

69 Gorbacheva, V.Y. et al. (2005) Circadian sensitivity to the
chemotherapeutic agent cyclophosphamide depends on the
functional status of the CLOCK/BMAL1 transactivation complex.
Proc. Natl. Acad. Sci. U. S. A. 102, 3407–3412

70 Hoffman, A.E. et al. (2008) The circadian gene NPAS2, a putative
tumor suppressor, is involved in DNA damage response. Mol. Cancer
Res. 6, 1461–1468

71 Yi, C. et al. (2009) The circadian gene NPAS2 is a novel prognostic
biomarker for breast cancer. Breast Cancer Res. Treat. (in press)

72 Ozturk, N. et al. (2009) Loss of cryptochrome reduces cancer risk in
p53 mutant mice. Proc. Natl. Acad. Sci. U. S. A. 106, 2841–2846

73 Hoffman, A.E. et al. (2009) Clock–cancer connection in non-Hodgkin’s
lymphoma: a genetic association study and pathway analysis of the
circadian gene cryptochrome 2. Cancer Res. 69, 3605–3613

74 Gamsby, J.J. et al. (2009) A phylogenetically conserved DNA damage
response resets the circadian clock. J. Biol. Rhythms 24, 193–202

75 Oklejewicz, M. et al. (2008) Phase resetting of the mammalian
circadian clock by DNA damage. Curr. Biol. 18, 286–291

76 Kuo, S.J. et al. (2009) Disturbance of circadian gene expression in
breast cancer. Virchows Arch. 454, 467–474

77 Lin, Y.M. et al. (2008) Disturbance of circadian gene expression in
hepatocellular carcinoma. Mol. Carcinog. 47, 925–933

78 Chen, S.T. et al. (2005) Deregulated expression of the PER1, PER2
and PER3 genes in breast cancers. Carcinogenesis 26, 1241–1246

79 Singletary, J. et al. (2009) Imaging multidimensional therapeutically
relevant circadian relationships. Int. J. Biomed. Imaging 2009,
231539

80 Nakagawa, H. et al. (2008) Modulation of circadian rhythm of DNA
synthesis in tumor cells by inhibiting platelet-derived growth factor
signaling. J. Pharmacol. Sci. 107, 401–407

81 Filipski, E. et al. (2003) Disruption of circadian coordination
accelerates malignant growth in mice. Pathol. Biol. (Paris) 51,
216–219

82 Sephton, S.E. et al. (2000) Diurnal cortisol rhythm as a predictor of
breast cancer survival. J. Natl. Cancer. Inst. 92, 994–1000

83 Mormont, M.C. et al. (2000) Marked 24-h rest/activity rhythms are
associated with better quality of life, better response, and longer
survival in patients with metastatic colorectal cancer and good
performance status. Clin. Cancer Res. 6, 3038–3045

84 Innominato, P.F. et al. (2009)Circadian rhythm in rest andactivity: a
biological correlate of quality of life and a predictor of survival in
patients with metastatic colorectal cancer. Cancer Res. 69, 4700–

4707
85 Megdal, S.P. et al. (2005) Night work and breast cancer risk: a

systematic review and meta-analysis. Eur. J. Cancer 41, 2023–

2032
86 Marino, J.L. et al. (2008) Shift work, hCLOCKT3111C polymorphism,

and endometriosis risk. Epidemiology 19, 477–484
87 Mormont, M.C. and Levi, F. (2003) Cancer chronotherapy: principles,

applications, and perspectives. Cancer 97, 155–169
88 Kang, T.H. et al. (2009) Circadian oscillation of nucleotide excision

repair in mammalian brain. Proc. Natl. Acad. Sci. U. S. A. 106, 2864–

2867
89 Lim, F.L. et al. (2006) Emerging evidence for the interrelationship of

xenobiotic exposure and circadian rhythms: a review. Xenobiotica 36,
1140–1151

90 Levi, F. (2006) Chronotherapeutics: the relevance of timing in cancer
therapy. Cancer Causes Control 17, 611–621

91 Giacchetti, S. et al. (2006) Phase III trial comparing 4-day
chronomodulated therapy versus 2-day conventional delivery of
fluorouracil, leucovorin, and oxaliplatin as first-line chemotherapy
of metastatic colorectal cancer: the European Organisation for
Research and Treatment of Cancer Chronotherapy Group. J. Clin.
Oncol. 24, 3562–3569

92 Iurisci, I. et al. (2006) Improved tumor control through circadian clock
induction by Seliciclib, a cyclin-dependent kinase inhibitor. Cancer
Res. 66, 10720–10728

93 Iurisci, I. et al. (2009) Liver circadian clock, a pharmacologic target of
cyclin-dependent kinase inhibitor seliciclib.Chronobiol. Int. 26, 1169–

1188
94 Hatfield, C.F. et al. (2004) Disrupted daily activity/rest cycles in

relation to daily cortisol rhythms of home-dwelling patients with
early Alzheimer’s dementia. Brain 127, 1061–1074

95 Hu, K. et al. (2009) Reduction of scale invariance of activity
fluctuations with aging and Alzheimer’s disease: Involvement of
the circadian pacemaker. Proc. Natl. Acad. Sci. U. S. A. 106, 2490–

2494
96 van Someren, E.J.W. et al. (1995) Circadian rest-activity rhythm

disturbances in Alzheimer’s disease. Biol. Psychiatry 38, 1–12
97 Kondratov, R.V. et al. (2006) Early aging and age-related pathologies

in mice deficient in BMAL1, the core componentof the circadian clock.
Genes Dev. 20, 1868–1873

98 Sun, Y. et al. (2006) The mortality of MOP3 deficient mice with a
systemic functional failure. J. Biomed. Sci. 13, 845–851

99 Shimokawa, I. et al. (2008) Longevity genes: insights from calorie
restriction and genetic longevity models. Mol. Cells 26, 427–435

100 Rutter, J. et al. (2002) Metabolism and the control of circadian
rhythms. Annu. Rev. Biochem. 71, 307–331

101 Rutter, J. et al. (2001) Regulation of clock andNPAS2 DNA binding by
the redox state of NAD cofactors. Science 293, 510–514

102 Yang, J. et al. (2008) A novel heme-regulatory motif mediates heme-
dependent degradation of the circadian factor period 2.Mol. Cell. Biol.
28, 4697–4711

103 Yin, L. et al. (2007) Rev-erbalpha, a heme sensor that coordinates
metabolic and circadian pathways. Science 318, 1786–1789

104 Ramsey, K.M. et al. (2009) Circadian clock feedback cycle through
NAMPT-mediated NAD+ biosynthesis. Science 324, 651–654

105 Nakahata, Y. et al. (2009) Circadian control of the NAD+ salvage
pathway by CLOCK-SIRT1. Science 324, 654–657

106 Nakahata, Y. et al. (2008) The NAD+-dependent deacetylase SIRT1
modulates CLOCK-mediated chromatin remodeling and circadian
control. Cell 134, 329–340

107 Asher, G. et al. (2008) SIRT1 regulates circadian clock gene
expression through PER2 deacetylation. Cell 134, 317–328

108 Kim, E.J. and Um, S.J. (2008) SIRT1: roles in aging and cancer. BMB
Rep. 41, 751–756

109 Anderson, K.N. et al. (2009) Disrupted sleep and circadian patterns in
frontotemporal dementia. Eur. J. Neurol. 16, 317–323

110 Morton, A.J. et al. (2005) Disintegration of the sleep–wake cycle and
circadian timing in Huntington’s disease. J. Neurosci. 25, 157–163
43



Review Trends in Cell Biology Vol.20 No.1
111 Pallier, P.N. et al. (2007) Pharmacological imposition of sleep slows
cognitive decline and reverses dysregulation of circadian gene
expression in a transgenic mouse model of Huntington’s disease. J.
Neurosci. 27, 7869–7878

112 Pallier, P.N. and Morton, A.J. (2009) Management of sleep/wake
cycles improves cognitive function in a transgenic mouse model of
Huntington’s disease. Brain Res. 1279, 90–98

113 Yu, B.H., Cho, D.Y. and Jeong, D.U. (1994) The effects of circadian
rhythm in subjective alertness on the occurrence of traffic accidents.
Sleep Med. Psychophysiol. 1, 68–75

114 Hastings, M.H. et al. (2003) A clockwork web: circadian timing in brain
and periphery, in health and disease. Nat. Rev. Neurosci. 4, 649–661

115 Gallego, M. and Virshup, D.M. (2007) Post-translational
modifications regulate the ticking of the circadian clock. Nat. Rev.
Mol. Cell Biol. 8, 139–148
44
116 Preitner, N. et al. (2002) The orphan nuclear receptor REV-ERBalpha
controls circadian transcription within the positive limb of the
mammalian circadian oscillator. Cell 110, 251–260

117 Panda, S. et al. (2002) Coordinated transcription of key pathways in
the mouse by the circadian clock. Cell 109, 307–320

118 Storch, K.F. et al. (2002) Extensive and divergent circadian gene
expression in liver and heart. Nature 417, 78–83

119 Cheng, H.Y. et al. (2007) microRNA modulation of circadian-clock
period and entrainment. Neuron 54, 813–829

120 Gatfield, D. et al. (2009) Integration of microRNA miR-122 in hepatic
circadian gene expression. Genes Dev. 23, 1313–1326

121 Dibner, C. et al. (2009) Circadian gene expression is resilient to large
fluctuations in overall transcription rates. EMBO J. 28, 123–134

122 Hastings, M.H. et al. (2008) Cellular circadian pacemaking and the
role of cytosolic rhythms. Curr. Biol. 18, R805–R815


	Healthy clocks, healthy body, healthy mind
	Introduction
	Healthy clockwork=healthy body and mind
	From rhythmic behaviour to molecular events
	The clock and cancer: a tale of two cycles
	The ageing clock: neurodegeneration and rhythmic behaviour
	Concluding Remarks
	Acknowledgements
	References


