Sorgenfrey line and continuous separating families

Wei-Xue Shi *, Yin-Zhu Gao

Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

Received 2 September 2003; accepted 13 January 2004

Abstract

We study continuous separating families on linearly ordered extensions of the Sorgenfrey line S. Let \(\mathbb{R} \) be the set of all real numbers, \(\mathbb{Z} \) the set of all integers, and \(S^* = \mathbb{R} \times \{ n \in \mathbb{Z} : n \leq 0 \} \) with the lexicographical ordering \(\preceq \) and with the usual interval topology defined by \(\preceq \). Then \(S^* \) is a linearly ordered extension of \(S \). We prove that, in ZFC, \(S^* \) does not admit a continuous separating families and that any linearly ordered extension of \(S \) does not admit a continuous separating family. Two problems posed by H. Bennett and D. Lutzer are answered.

© 2004 Elsevier B.V. All rights reserved.

MSC: 54F05; 54E52; 54D35; 54C10; 54C30

Keywords: Sorgenfrey line; Linearly ordered topological spaces; Generalized ordered spaces; Continuous separating families

1. Introduction

A continuous separating family is a continuous mapping

\[\Phi : X^2 \setminus \Delta \to C_u(X), \]

where \(\Delta = \{ (x, x) : x \in X \} \) and \(C_u(X) \) is the space of continuous real-valued functions on \(X \) with the uniform convergence topology, such that if \(f_{x,y} = \Phi(x, y) \), then \(f_{x,y}(x) \neq f_{x,y}(y) \), and we also say the collection \(\{ f_{x,y} : (x, y) \in X^2 \setminus \Delta \} \) is a continuous separating family for \(X \), which was introduced by Stepanova. It is shown that a paracompact p-space...
(i.e., the preimage of a metric space under a perfect mapping) is metrizable if and only if it has a continuous separating family \([6,7]\). A linearly ordered space is metrizable if and only if it has a \(\sigma\)-closed-discrete dense subset and a continuous separating family \([2]\).

Recall that a linearly ordered topological space (LOTS) is a linearly ordered set with its usual open interval topology. A generalized ordered space (GO-space) is a linearly ordered set equipped with the topology which is \(T_1\) and has a base consisting of convex sets. It is well known that a GO-space is precisely a subspace of a LOTS. If \(X\) is a GO-space and \(Y\) is a LOTS containing \(X\) as a subspace, and the ordering on \(X\) is inherited from the ordering on \(Y\), then \(Y\) is called a linearly ordered extension of \(X\). Let \(X\) be a GO-space on which the topology is \(\tau\), and \(\lambda\) the interval topology on \(X\). Put

\[
R = \{x \in X: [x, \rightarrow) \in \tau \setminus \lambda\} \quad \text{and} \quad L = \{x \in X: (-, x] \in \tau \setminus \lambda\}
\]

and

\[
X^* = (X \times \{0\}) \cup (R \times \{n \in \mathbb{Z}: n < 0\}) \cup (L \times \{n \in \mathbb{Z}: n > 0\}), \quad (\bigodot)
\]

where \(\mathbb{Z}\) is the set of all integers. Regard \(X^*\) as the subset of \(X \times \mathbb{Z}\) with the lexicographical ordering. Then \(X^*\) with the order topology is a linearly ordered extension of \(X\). It often happens that a GO-space \(X\) has a topological property \(P\) if and only if its linearly ordered extension \(X^*\) has property \(P\) (for instance, \(P\) is paracompactness, metrizability, Lindelöfness or quasi-developability). Now suppose \(P\) is the property having a continuous separating family. Consider the Michael line \(M\) and the Sorgenfrey line \(S\). Each has a continuous separating family since each has a weaker metric topology \([4]\). Let \(M^*\) and \(S^*\) be the linearly ordered extensions of \(M\) and \(S\), respectively defined as above. In \([2]\), it is shown that \(M^*\) has a continuous separating family, and under the set-theoretic axiom CH, \(S^*\) does not admit a continuous separating family. The following two questions were posed by H. Bennett and D. Lutzer.

Question 1 \([1,2]\). In ZFC, does \(S^*\) have a continuous separating family?

Question 2 \([1]\). In ZFC, is there an example of a GO-space \(X\) that has a continuous separating family, but whose linearly ordered extension \(X^*\) does not?

In this paper, we prove that, in ZFC, \(S^*\) does not admit a continuous separating family. This result answers the above two questions. Moreover, we prove that any linearly ordered extension of \(S\) does not admit a continuous separating family. For undefined terminology we refer to \([3]\).

2. **Main theorem**

In this section, we consider the linearly ordered extension \(S^*\) of the Sorgenfrey line \(S\). Note that when \(X = S\) in \((\bigodot)\),

\[
X^* = S^* = \mathbb{R} \times \{n \in \mathbb{Z}: n \leq 0\}.
\]

Theorem 1. In ZFC, the space \(S^*\) does not admit a continuous separating family.
Proof. Let \preceq be the lexicographical ordering on S^*. For contradiction, suppose that there is a continuous separating family for S^*, say \(\{f_{(x,i),(y,j)}: (x,i), (y,j) \in (S^*)^2 \setminus \Delta\} \). By Proposition 2.1 of [2], we may assume that if \((y,j) < (x,i)\), then

\[
f_{(x,i),(y,j)}((z,k)) = \begin{cases}
0, & \text{whenever } (z,k) \preceq (y,j), \\
1, & \text{whenever } (x,i) \preceq (z,k).
\end{cases}
\]

(†)

Consider the subspace $X = \{ (x,i) \in S^*: i \in \{0, -1\} \}$ of S^*. Then by restricting the continuous separating family to the subspace X, we obtain a continuous separating family for X.

For every $k \in \mathbb{N}$, where \mathbb{N} is the set of all natural numbers, let

\[
B_k = \{ (x,y) \in \mathbb{R}^2: y < x \text{ and } |f_{(x,0),(y,-1)}((0,0))| \geqslant 1/k \},
\]

\[
B_k(y) = \{ x \in \mathbb{R}: (x,y) \in B_k \},
\]

and

\[
Y_k = \{ y \in \mathbb{R}: B_k(y) \text{ is dense in some open interval} \}
\]

in the sense of the usual topology of the real line.

Claim. For each $k \in \mathbb{N}$, Y_k is countable.

Suppose that for some $k_0 \in \mathbb{N}$, Y_{k_0} is not countable. For each $y \in Y_{k_0}$, we can find two real numbers $a(y)$ and $b(y)$ such that $y \leqslant a(y) < b(y)$ and $B_{k_0}(y)$ is dense in the open interval $(a(y), b(y))$ in the sense of the usual topology of the real line. For each $i \in \mathbb{N}$, put

\[
Y_{k_0,i} = \{ y \in Y_{k_0}: b(y) - a(y) \geqslant 1/i \}.
\]

Then $Y_{k_0} = \bigcup \{ Y_{k_0,i}: i \in \mathbb{N} \}$, and there is an $i_0 \in \mathbb{N}$ such that Y_{k_0,i_0} is uncountable. It is easy to see that there must be a natural number N such that

\[
Y_{k_0,i_0}^N = \{ y \in Y_{k_0,i_0}: b(y) \leqslant N \}
\]

is uncountable. It follows that there is a $y_0 \in \mathbb{R}$ such that for any $\varepsilon > 0$, $(y_0, y_0 + \varepsilon)$ contains uncountably many points of Y_{k_0,i_0}^N. For each $y \in Y_{k_0,i_0}^N$, define $x(y) = (a(y) + b(y))/2$. Thus if $y > y_0$ and $y \in Y_{k_0,i_0}^N$, then $y_0 + 1/2i_0 < y + 1/2i_0 \leqslant x(y) < N$. Hence $\{ x(y): y > y_0 \}$ and $y \in Y_{k_0,i_0}^N \subset \{ y_0 + 1/2i_0, N \}$.

Subclaim. There must be an $x_0 > y_0$ such that any neighborhood (in the sense of the usual topology of the Euclidean plane) of the point (x_0, y_0) contains infinitely many points of the set $\{(x(y), y): y > y_0 \text{ and } y \in Y_{k_0,i_0}^N\}$.

Assume that for each $x \in [y_0 + 1/2i_0, N]$, there is an open neighborhood $U(x)$ (in the Euclidean plane) of (x, y_0) such that $U(x)$ contains at most finite points of $\{(x(y), y): y > y_0 \text{ and } y \in Y_{k_0,i_0}^N\}$. Then there is a finite subset $\{x_1, x_2, \ldots, x_m\}$ of $[y_0 + 1/2i_0, N]$ such that $\bigcup \{ U(x_i): i = 1, 2, \ldots, m \} \supset \{ y_0 + 1/2i_0, N \} \times \{ y_0 \}$ since $[y_0 + 1/2i_0, N] \times \{ y_0 \}$ is compact in the Euclidean plane. It follows that there is an $\varepsilon_0 > 0$ such that $(y_0, y_0 + \varepsilon_0) \cap Y_{k_0,i_0}^N$ is finite. Thus we get a contradiction. So the proof of Subclaim is completed.
Since \(f(x_0, y_0)(y_0, 0) = 0 \) and \(f(x_0, y_0, 0) \in \mathcal{C}_u(X) \), there is a neighborhood \(V = \{(y_0, y_0 + \delta_1) \times \{0, -1\} \setminus \{(y_0, -1)\} \} \) of \((y_0, 0) \) in \(X \), where \(\delta_1 \) is small enough such that for \((z, l) \in V \),
\[
|f(x_0, y_0, 0)(z, l)| < 1/2k_0.
\]
Moreover since \(\Phi(x, i, (y, j)) = f(x, i, (y, j)) \in \mathcal{C}_u(X) \) is continuous with respect to the uniform convergence topology on \(\mathcal{C}_u(X) \), there is a neighborhood \(W = \{(x_0, x_0 + \varepsilon) \times \{0, -1\} \setminus \{(x_0, -1)\} \} \times \{(y_0, y_0 + \delta_2) \times \{0, -1\} \setminus \{(y_0, -1)\} \} \) of \((x_0, 0), (y_0, 0) \) in \(X^2 \setminus \Delta \) such that for \((x, i), (y, j) \in W \),
\[
\sup_{(z, l) \in X} |f(x, i, (y, j)) - f(x_0, y_0, 0)(z, l)| < 1/2k_0.
\]
Take \(\delta = \min\{\delta_1, \delta_2\} \), and
\[
O = \{(x_0, x_0 + \varepsilon) \times \{0, -1\} \setminus \{(x_0, -1)\} \} \times \{(y_0, y_0 + \delta) \times \{0, -1\} \setminus \{(y_0, -1)\} \}.
\]
Then for \((x, i), (y, j) \in O \) and \((z, l) \in ((y_0, y_0 + \delta) \times \{0, -1\} \setminus \{(y_0, -1)\}) \), we have
\[
|f(x, i, (y, j))(z, l)| \\
\leq |f(x, i, (y, j))(z, l)| - f(x_0, y_0, 0)(z, l)| + |f(x_0, y_0, 0)(z, l)| \\
< 1/2k_0 + 1/2k_0 = 1/k_0.
\]
In particular, whenever \((\xi, \eta) \in (x_0, x_0 + \varepsilon) \times (y_0, y_0 + \delta) \), we have
\[
\eta < \xi \quad \text{and} \quad |f(\xi, 0, (\eta, -1))(\xi, 0)| < 1/k_0.
\]
Therefore
\[
((x_0, x_0 + \varepsilon) \times (y_0, y_0 + \delta)) \cap B_{k_0} = \emptyset.
\]
Take an \(\varepsilon_1 > 0 \) satisfying \(0 < \varepsilon_1 < \min\{\varepsilon, 1/2k_0, \delta\} \). Let
\[
B((x_0, y_0), \varepsilon_1) = \{(x, y) \in \mathbb{R}: \sqrt{(x - x_0)^2 + (y - y_0)^2} < \varepsilon_1\}.
\]
Then by the definition of \(x_0 \) and \(y_0 \) in the above subclaim, \(B((x_0, y_0), \varepsilon_1) \cap \{(x(y), y): y > y_0 \text{ and } y \in Y_{k_0,i_0}^N\} \neq \emptyset \). Take a point \(y_1 \in Y_{k_0,i_0}^N \) such that \((x(y_1), y_1) \in B((x_0, y_0), \varepsilon_1) \cap \{(x(y), y): y > y_0 \text{ and } y \in Y_{k_0,i_0}^N\} \). It follows that \(|x(y_1) - x_0| < \varepsilon_1 \leq 1/2k_0 \) and thus \(x_0 \in (a(y_1), b(y_1)) \). Therefore there is an \(x' \in B_{k_0}(y_1) \) such that \(x' \in (x(y_1, x_0 + \varepsilon) \text{ since } B_{k_0}(y_1) \text{ is dense in } (a(y_1), b(y_1)). \) Also since \(y_0 < y_1 < y_0 + \varepsilon_1 \leq y_0 + \delta \), \(x', y_1 \in B_{k_0} \cap ((x_0, x_0 + \varepsilon) \times (y_0, y_0 + \delta)) \). This contradicts \((*) \). So we have proved that \(Y_k \) is countable for every \(k \in \mathbb{N} \). Thus the proof of \textit{Claim} is finished.

Let \(Y = \bigcup_{k \in \mathbb{N}} Y_k \). Then \(Y \) is countable, and if \(y \notin Y_k \), then \(B_k(y) \) is nowhere dense in the real line. Moreover if \(y \notin Y \), then \(B(y) = \bigcup_{k \in \mathbb{N}} B_k(y) \) is a first category set in the real line.
Take a point \(y' \in \mathbb{R} \setminus Y \). There is a decreasing monotone sequence \(\{x_n\} \) contained in \(\mathbb{R} \setminus B(y') \) such that \(\{x_n\} \) converges to \(y' \) in the space \(S \).

In \(X \), we have \(\lim_{n \to \infty} (x_n, 0) = (y', 0) \). Hence

\[
\lim_{n \to \infty} f((x_n, 0), (y', -1)) = f((y', 0), (y', -1)).
\]

Therefore

\[
\lim_{n \to \infty} f((x_n, 0), (y', -1)) (\langle y', 0 \rangle) = f((y', 0), (y', -1)) (\langle y', 0 \rangle).
\]

Since for each \(k \in \mathbb{N} \), \((x_n, y') \notin B_k \), \(|f((x_n, 0), (y', -1)) (\langle y', 0 \rangle)| < 1/k \) for any natural number \(k \), so that for all \(n \in \mathbb{N} \), \(f((x_n, 0), (y', -1)) (\langle y', 0 \rangle) = 0 \). It follows that

\[
\lim_{n \to \infty} f((x_n, 0), (y', -1)) (\langle y', 0 \rangle) = 0.
\]

But by (†), \(f((y', 0), (y', -1)) (\langle y', 0 \rangle) = 1 \). This is a contradiction. Thus the proof of the theorem is completed. \(\Box \)

It is obvious that Theorem 1 gives a negative answer to Question 1 and an affirmative answer to Question 2. In the proof of Theorem 1, it is worth to note that if \(C \) is a countable subset of \(\mathbb{R} \), then \((\mathbb{R} \setminus C) \setminus B(y) \) is also dense in \(\mathbb{R} \). So by a slightly modification of the proof, we can prove

Corollary 2. If \(T \) is a subspace of the Sorgenfrey line \(S \) by removing a countable subset from \(S \), then \(T^* \) does not admit a continuous separating family.

3. General results

In Section 2 we have proved that the linearly ordered extension \(S^* \) of \(S \) does not admit a continuous separating family. A natural question is: “if a GO-space \(X \) has a continuous separating family, is there a linearly ordered extension \(Y \) of \(X \) such that \(Y \) also has a continuous separating family?” In this section, we answer this question negatively by proving that any linearly ordered extension of the Sorgenfrey line \(S \) does not admit a continuous separating family. Recall that a LOTS is said to be a linearly ordered dense extension of a GO-space \((X, \tau, \leq) \) if \(Y \) contains \(X \) as a dense subspace and the ordering on \(Y \) extends the ordering \(\leq \) on \(X \).

Lemma 3. Let \(X \) be an uncountable subspace of the Sorgenfrey line \(S \). Then any linearly ordered dense extension \(Y \) of \(X \) does not admit a continuous separating family.

Proof. It is easy to see that \(X \) is separable so that \(Y \) is separable since \(X \) is dense in \(Y \). If \(Y \) admitted a continuous separating family, by [2, Proposition 2.6], \(Y \) would be metrizable and so would be \(X \). But \(X \) is not metrizable since \(X \) is separable and has no countable base. \(\Box \)

Theorem 4. Any linearly ordered extension of the Sorgenfrey line \(S \) does not admit a continuous separating family.
Proof. Let \(Y\) be a linearly ordered extension of \(S\). By the discussion in [5, Section 3], we can classify \(S\) into two disjoint sets according to the extension type of each point of \(S\) for \(Y\). Simply explaining the case for \(S\), for a point \(x \in S\), if the set of points of \(Y\) which lie between \((\leftarrow, x)\) and \([x, \to)\) has a minimum point, then we say \(x\) has the left extension type \(-1\) for \(Y\); otherwise we say \(x\) has the left extension type \(-\infty\) for \(Y\). Put

\[
A_1 = \{x \in S: x \text{ has the left extension type } -1 \text{ for } Y\};
A_2 = \{x \in S: x \text{ has the left extension type } -\infty \text{ for } Y\}.
\]

Then \(S = A_1 \cup A_2\) and \(A_1 \cap A_2 = \emptyset\). Put

\[
E(S) = \left(A_1 \times \{0, -1\} \right) \cup \left(A_2 \times \{n \in \mathbb{Z}: n \leq 0\} \right).
\]

Orderize \(E(S)\) by the lexicographical ordering and topologize \(E(S)\) by the linearly ordered topology. In [5], it is proved that \(E(S)\) is homeomorphic to a subspace of \(Y\). So it suffices to prove that \(E(S)\) does not admit a continuous separating family. If \(A_1\) is countable, then \(A_2 = S \setminus A_1\). By Corollary 2, the subspace \(A_2 \times \{n \in \mathbb{Z}: n \leq 0\}\) of \(E(S)\) does not admit a continuous separating family. If \(A_1\) is uncountable, then the subspace \(A_1 \times \{0, -1\}\) of \(E(S)\) is a dense linearly ordered extension of \(A_1\), by Lemma 3, \(A_1 \times \{0, -1\}\) does not admit a continuous separating family. \(\square\)

References