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a Equipe Cycle Cellulaire et Développement, Unité Mixte de Recherche Mer & Santé, UMR 7150, Centre National de la Recherche
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b Molécules et Cibles Thérapeutiques, Unité Propre de Service, UPS 2682, Centre National de la Recherche Scientifique (CNRS), Station Biologique de
Roscoff, 29682 Roscoff, Cedex, France

Received 28 February 2006; revised 5 April 2006; accepted 12 April 2006

Available online 24 April 2006

Edited by Gianni Cesareni
Abstract The elongation factor eEF1B involved in protein
translation was found to contain two isoforms of the eEF1Bd
subunit in sea urchin eggs. The eEF1Bd2 isoform differs from
eEF1Bd1 by a specific insert of 26 amino acids. Both isoforms
are co-expressed in the cell and likely originate from a unique
gene. The feature appears universal in metazoans as judged from
in silico analysis in EST-databanks. The eEF1B components
were co-immunoprecipitated by specific eEF1Bd2 antibodies.
Quantification of the proteins in immunoprecipitates and on
immunoblots demonstrates that eEF1Bd1 and eEF1Bd2 proteins
are present in two subsets of eEF1B complex. We discuss and
propose a model for the different subsets of eEF1B complex con-
comitantly present in the cell.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The first step of peptide chain elongation during eukaryotic

translation is catalyzed by eEF1A, a G-protein responsible

for delivering aminoacyl-tRNA to the ribosome on the A-site.

The guanine nucleotide exchange activity upon eEF1A is sup-

ported by a macromolecular complex, eEF1B, which consists

in a assembly of several subunits, the specific function of each

being not fully elucidated (reviews in [1,2]). The canonical

guanine nucleotide exchange subunit, eEF1Ba, was early dem-

onstrated to be tightly associated to a protein named eEF1Bc in

the eEF1B complex of all eukaryotes from yeast to mammals

review in [2]. The protein eEF1Bc is usually considered as a

structural subunit playing a role in the cellular localization of

eEF1B. Noteworthy, eEF1Bc has been the first identified phys-

iological substrate [3] for CDK1, the kinase controlling entry

into M-phase during the cell cycle (reviews in [4–6]). Surpris-

ingly, it was found that, in addition to eEF1Ba, a second nucle-

otide exchange protein is present in the eEF1B complex of

metazoans and plants (review in [1]). Strikingly, the supplemen-

tary exchange subunits of plants (eEF1Bb) or of metazoans
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(eEF1Bd), although they have guanine nucleotide exchange

activity in their C-terminal domain, are not capable to func-

tionally complement eEF1Ba deficient yeasts [7,8]. The most

exciting feature came from the studies on metazoan eEF1Bd.

(i) The N-terminal domain of eEF1Bd, which has no homology

with any proteins present in the databanks, possesses a leucine

zipper motif, a conserved secondary structure related to a pro-

tein–protein interaction [9]. (ii) The eEF1Bd protein from ver-

tebrates is a physiological substrate for CDK1 (reviews in

[1,10]). Although physiological relevant function for this phos-

phorylation is not documented, a clue came from the finding

that, in herpes virus infected cells, the eEF1Bd protein is phos-

phorylated on the CDK1 site by the viral kinase in relation to

the host protein synthesis shut-off and the viral mRNA prefer-

ential translation (review in [1]). (iii) The eEF1Bd protein is

responsible for the association of the valyl-tRNA synthetase

in the eEF1B complex [11]. The presence of valyl-tRNA synthe-

tase has been correlated to an inhibition of the valine encoding

codon translation when the eEF1B complex was phosphory-

lated by CDK1 [12]. (iv) Finally, eEF1Bd was reported to be

a true oncogene in mammalian cells [13].

Considering the high structural complexity of eEF1B and

the multiple potential regulation sites existing in the different

subunits, eEF1B may have additional physiological roles be-

sides the housekeeping nucleotide exchange function on

eEF1A (review in [1]). Using the sea urchin embryo we have

characterized a new isoform of eEF1Bd, eEF1Bd2 that coexists

in the cell with eEF1Bd1, increasing the known sophisticated

physiological structure of the eEF1B complex. We demon-

strate the concomitant presence of two subsets of eEF1B com-

plex that differ in their eEF1Bd composition. This feature,

discovered in sea urchin may be universal among metazoans.
2. Materials and methods

2.1. Handling of animals and gametes
Sphaerechinus granularis sea urchins were collected in the Brest area

(west Brittany). Animals and gametes were prepared and handled as
already described [14].

2.2. Cloning of sea urchin eEF1Bd2 and eEF1Bc
Full length S. granularis EF1Bd2 (SgEF1Bd2) was cloned by RT-

PCR from total RNA prepared from unfertilized eggs. The primers
used for amplification, forward primer 5 0CCGGAATTCATGGCA-
CACCCACTGATGC30 and reverse primer 5 0CGCGGATCCC-
GGGAGGGTTGATGGGGG3 0, were designed from, respectively,
the N-ter and the C-ter coding sequences of the already characterized
blished by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/81991621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:belle@sb-roscoff.fr 


2756 F. Le Sourd et al. / FEBS Letters 580 (2006) 2755–2760
cDNA of S. granularis EF1Bd (SgEF1Bd; EMBL No. Y14235) [15].
The PCR products were visualized by electrophoresis on 1% agarose/
TBE gel. Two distinct bands were resolved around 800 and 880 bp.
The upper band was excised from the gel, purified on Genelute column
(Sigma), cloned in pCR2.1-TOPO vector (Invitrogen) and sequenced
on both strands at the Genomer sequencing platform (Roscoff).

2.3. Cytoplasmic egg extracts
Egg extracts were prepared [14] from batches of packed unfertilized

eggs (10–20 ml) homogenized in 2 vol of buffer containing 50 mM
Tris–HCl, pH 7.4, 75 mM KCl, 50 mM sodium fluoride, 10 mM
Na2HPO4, 2 mM EDTA, 10 mM ATP, 5 mM paranitrophenylphos-
phate, 100 lM orthovanadate, 0.3 mM Na-benzoyl-LL-arginine methyl
ester (BAME), 1 mM benzamidine, 5 lM soybean trypsin inhibitor,
0.3 mM N-tosyl-LL-phenylalanine chloromethyl ketone (TPCK),
1 mM 4-(2-aminoethyl)-benzene sulfonylfluoride hydrochloride
(AEBSF), in the presence of 100 mM NaCl. Homogenates were clari-
fied by centrifugation (4000 · g for 20 min). The cytoplasmic extracts
were obtained by further centrifugation at 100000 · g for 1 h. All steps
were carefully carried out at 4 �C.

2.4. Antibodies generation
Guinea pig polyclonal antibodies against recombinant GST-

SgEF1Bd (anti-eEF1BdTOT) were obtained and used as already de-
scribed [14]. Polyclonal specific antibodies against SgEF1Bd2 were
obtained in guinea pig by the DoubleXP immunization protocol (Euro-
gentec) using the co-injection of two synthetic peptides designed from
the 26 aminoacids insert specific sequence of SgEF1Bd2 (H2N-
CVQKSDGPASNLVSE-CONH2 and H2N-EIARARQNIQSSLSC-
CONH2). Antibodies against sea urchin eEF1Bc were generated from
the protein sequence determined from Strongylocentrotus purpuratus
cDNA sequence obtained by two-hybrid (EMBL AJ973179). Two
peptides designed from the coding sequence of S. purpuratus EF1Bc
(H2N-KVPAFENGSGDTLFES-CONH2 and H2N-SNEQLRGTDD-
LSKAQC-CONH2) were synthesized and used to raise polyclonal
antibodies in both guinea pig and rabbit by DoubleXP immunization
protocol as above (Eurogentec). Two eEF1Bc antibodies were obtained,
a guinea pig serum and an affinity purified rabbit serum. Both antibod-
ies were efficient for SgEF1Bc recognition (data not shown).

2.5. Western blot analysis
Proteins from the cytoplasmic extracts were resolved by 12% SDS–

PAGE and transferred onto 0.22 lm nitrocellulose membranes as al-
ready described [14]. After Ponceau Red staining of the proteins, mem-
branes were saturated for 1 h in Tris buffer saline (TBS) containing 1%
bovine serum albumin and 0.1% Tween and probed with the indicated
antibodies diluted 1:4000. After 2 h of incubation at room temperature
and washing, the bound antibodies were revealed by chemilumines-
cence (ECL; Pharmacia Biotech) using HRP-conjugated secondary
antibodies (Dako) diluted 1:5000 in TBS/BSA/Tween.

2.6. Immunoprecipitation experiments
Immunoprecipitations were performed in 1 ml with the eEF1Bd

antibodies (anti-eEF1BdTOT) recognizing both eEF1Bd1 and eEF1Bd2
proteins at a dilution of 1:200 and with the specific eEF1Bd2 antibod-
ies (anti-eEF1Bd2) at a dilution of 1:1000 in buffer containing 50 mM
Tris–HCl, pH 7.4, 500 mM NaCl, 1% IGEPAL (Sigma), 1% BSA,
50 mM sodium fluoride, 10 mM pyrophosphate, 100 lM orthovana-
date, 10 mM b-glycerophosphate, 1 mM 4-(2-aminoethyl)-benzene sul-
fonylfluoride hydrochloride (AEBSF) for at least 2 h at 4 �C. The
immune complex was recovered after 1 h incubation with 1% BSA-pre-
saturated Protein A-Sepharose CL-4B beads (Sigma). The bound pro-
teins were washed three times in BSA free buffer and twice in 50 mM
Tris–HCl, pH 7.4, 500 mM NaCl. Proteins were resolved by SDS–
PAGE and analyzed by silver staining (Amersham Biosciences kit)
or by immunodetection as described above.

2.7. Protein quantification by densitometry
Proteins revealed by silver nitrate staining or ECL detection were

quantified after digitization of the gels or the films, using the ImajeJ
1.34s program (Wayne Rasband, National Institutes of Health,
USA). Results are expressed as mean of n experiments with standard
deviation (S.D.).
2.8. Immunofluorescence experiments
Eggs and embryos were first extracted with buffer containing 10 mM

EGTA, 25 mM MES, 0.55 mM MgCl2, 1 mM 4-(2-aminoethyl)-ben-
zene sulfonylfluoride hydrochloride (AEBSF), 1% IGEPAL (Sigma),
25% glycerol, pH 6.8, for 1 h at 4 �C and subsequently fixed in cold
90% methanol, 50 mM EGTA overnight at �20 �C as described [14].
After rehydration in PBS containing 0.05% Tween and saturation
for 1 h in the presence of 1% BSA, cells were incubated, at room tem-
perature, for 2 h with primary antibodies, followed by incubation for
1 h with fluorescent secondary antibodies. After washing, cells were
mounted in Citifluor AF3 (Citifluor Ltd., London) and observed un-
der a fluorescence microscope (Olympus BX61) using a 40· objective
(UplanApo, numerical aperture 1.0, Olympus). Pictures were taken
using a room temperature monochrome CCD camera (Diagnostic
Instrument Inc.). Primary antibodies were used at a 1:100 dilution.
FITC-linked secondary antibodies were diluted 1:100. When required,
DNA staining was performed by addition of the dye bis-benzimide
(1 lg/ml) during the last rinse after secondary antibodies incubation
[14].
3. Results

3.1. Characterization of eEF1Bd2 a new isoform of eEF1Bd
subunit

We have cloned and sequenced the full length of a sea

urchin cDNA, referred as EMBL AJ973181, encoding for a

protein identified to eEF1Bd by sequence homology, includ-

ing presence of a leucine zipper motif characteristic of the d
subunit of eEF1B complex [16]. The new form of eEF1Bd
identified here was compared to a previous form obtained

by screening a cDNA sea urchin library [15] (EMBL

Y14235). The new form contains an insert of 78 bp encoding

for a 26 amino acid sequence while the 5 0 and 3 0 regions

flanking the insert were 100% identical to the sequence previ-

ously reported. The corresponding two mRNAs therefore en-

code for two proteins that differ in 2 kDa in their molecular

weights. We name eEF1Bd1 the mRNA and the protein en-

coded by the shortest sequence and eEF1Bd2 the mRNA

and the protein encoded by the longest mRNA. The two pro-

teins correspond to the doublet detected by Western blotting

and arbitrary named eEF1Bd1 and eEF1Bd2 according to

their molecular weights [14]. Additionally, the identification

and nomenclature of the two proteins, match with the pep-

tides found by microsequencing of the 35 and 37 kDa pro-

teins and with the partial mRNAs previously obtained by

RT-PCR [14]. The sequence identity of the two mRNAs

encoding for eEF1Bd1 and eEF1Bd2 suggests that the two

eEF1Bd isoforms originate from alternative splicing of a un-

ique pre-mRNA. A complete genome of the sea urchin S.

purpuratus [17] is available at the National Human Genome

Research Institute of Baylor College of Medicine-Houston,

USA. The sequence from S. purpuratus shared 81.5% identity

with the cognate sequence from S. granularis at the nucleo-

tides level and 80.3% identity at the protein level. The analy-

sis in silico of the sea urchin genome, using the Human

Genome Sequencing resources (Baylor College of Medicine-

Houston, USA), showed existence of a unique gene encoding

for eEF1Bd and containing the 78 bp insert specific for

eEF1Bd2 as a predicted full exon. Furthermore, two EST-se-

quences were found in S. purpuratus corresponding to each of

the two mRNAs produced by alternative splicing. The se-

quence analysis in the complete genome thus supports that

the two eEF1Bd isoforms originate from alternative splicing

of a unique pre-mRNA.
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To determine whether existence of two eEF1Bd isoforms, one

of them containing the insert, was restricted to the sea urchin,

we performed in silico searches using NCBI resources. In sev-

eral metazoan organisms both forms of mRNAs were found.

This was the case in hydra (Genbank CD680373 and

CF780242), fishes (Takifugu; Genbank CA844665 and

AL842751), amphibians (Xenopus; EMBL X66837 and Gen-

bank BG017641), arthropods (Drosophila; RefSeq

NP_723536 and NP_609361) and mammals (Mouse; dbj BAB
Fig. 1. Characterization of eEF1Bd2 subunit in sea urchin eEF1B
complex. Proteins (10 lg per lane) from cytoplasmic egg extracts were
resolved on a 12% polyacrylamide gel and transferred onto a
membrane for immunorevelation. Left panel, Ponceau Red staining
of the membrane; Right panel, immunorevelation with (1) eEF1Bd
antibodies (anti-eEF1BdTOT), (2) eEF1Bd2 specific antibodies, (3)
eEF1Bd2 specific antibodies pre-incubated with 1 lg of S. granularis
eEF1Bd2 derived-peptide (H2N-CVQKSDGPASNLVSE-CONH2),
(4) eEF1Bd2 specific antibodies pre-incubated with 1 lg unrelated-
peptide (H2N-SNEQLRGTDDLSKAQC-CONH2). The positions of
the molecular-weight markers run in parallel are indicated in kDa.

Fig. 2. Characterization of two subsets of eEF1B complex. Proteins (1 mg) fr
a 12% polyacrylamide gel. Figure A corresponds to silver nitrate stained gel
SgEF1BdTOT) or eEF1Bc antibodies (B; right panel: anti-eEF1Bc). In A an
eEF1Bd2; 1:1000), (3) eEF1Bd antibodies (anti-eEF1BdTOT; 1:200), (2, 4) con
the absence of egg extracts. The position of eEF-1Ba, eEF-1Bd1, eEF-1Bd2 a
and light chains of the IgG used for immunoprecipitation are indicated wit
markers run in parallel are indicated in kDa.
30841 and RefSeq NP_075729), strongly suggesting universal-

ity of the feature. Furthermore, accurate analysis in the human

genome showed existence of a unique gene eEF1Bd (named

EEF1D) encoding for two pairs of mRNAs, as judged from

EST search, with in each pair, one corresponding to the in-

sert-containing form (RefSeq NM_001960 and NM_032378),

and one corresponding to the insert-free form (Genbank

BC094806 and BC000678). Therefore, existence of the two iso-

forms of eEF1Bd, an insert-containing form and an insert-free

form that originate from a unique gene appears to be a meta-

zoan universal feature.

We have produced antibodies specific for eEF1Bd2, using

synthetic peptides matching the 26 amino acid insert of the

S. granularis sequence and analyzed the proteins of cytoplas-

mic egg extracts by immunoblotting (Fig. 1). Comparable

amounts of proteins were loaded on the immunoblots as

judged by Ponceau red staining (Fig. 1 left). While a 35/

37 kDa doublet was visualized with the polyclonal eEF1Bd
antibodies (anti-eEF1BdTOT; Fig. 1 right; lane 1) as previously

shown [14], the eEF1Bd2 antibodies recognized specifically the

band at 37 kDa (Fig. 1 right; lane 2). When the eEF1Bd2 anti-

bodies were incubated with an excess of eEF1Bd2-related pep-

tide, the 37 kDa signal was totally abolished whereas an

unrelated peptide had no effect (Fig. 1 right; lanes 3 and 4).

Therefore, the eEF1Bd2 antibodies appear to be highly specific

for the eEF1Bd2 protein allowing its analysis in the cells that

contain both eEF1Bd1 and eEF1Bd2 proteins.
3.2. The eEF1Bd1 and eEF1Bd2 proteins are present in two

eEF1B complex subsets

Extracts were prepared from sea urchin unfertilized eggs.

The extracts were immunoprecipitated (Fig. 2A) with the spe-

cific eEF1Bd2 antibodies (anti-eEF1Bd2; Fig. 2A; lane 1) or

with the eEF1Bd antibodies (anti-eEF1BdTOT) recognizing

both eEF1Bd1 and eEF1Bd2 proteins (Fig. 2A; lane 3). In both

cases, several proteins were detected using silver staining of the

gels (Fig. 2A). As judged from immunoprecipitation experi-

ments performed without egg extracts, the bands resolved at

48, 31 and 28 kDa corresponded to heavy and light chains of

immunoglobins and the band at 60 kDa corresponded to
om cytoplasmic egg extracts were immunoprecipitated and resolved on
and B to Western blots using eEF1Bd antibodies (B; left panel: anti-
d B: (1) immunoprecipitate using eEF1Bd2 specific antibodies (anti-
trol immunoprecipitations performed with the respective antibodies in
nd eEF-1Bc are arrowed and indicated by stars on the gel. The heavy

h arrows on the right of the panel. The positions of molecular-weight
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bovine serum albumin (Fig. 2A; lanes 2 and 4). When the egg

extracts were immunoprecipitated using the eEF1Bd antibod-

ies (anti-eEF1BdTOT), five bands were consistently and specif-

ically detected at 150, 47, 37, 35 and 30 kDa (Fig. 2A; lanes 3).

The 47 kDa protein corresponds to eEF1Bc component, the 37

and 35 kDa doublet corresponds to the two eEF1Bd compo-

nents and the 30 kDa band to eEF1Ba subunit (formerly

named eEF1b) as previously reported [14]. The 150 kDa pro-

tein was not identified although it may correspond to the

valyl-tRNA synthetase (review in [1,10]).

When the egg extracts were immunoprecipitated using the

specific eEF1Bd2 antibodies (anti-eEF1Bd2), again, five bands

were consistently observed at 150, 47, 37, 35 and 30 kDa

(Fig. 2A; lane 1). The bands immunoprecipitated by the spe-

cific eEF1Bd2 antibodies at 47, 37 and 35 were further identi-

fied by immunoblot analysis using the eEF1Bd antibodies

(anti-eEF1BdTOT) or using antibodies generated (see Section

2) against the eEF1Bc protein (anti-eEF1Bc). The immunoblot

using eEF1Bd antibodies (anti-eEF1BdTOT) revealed the pres-

ence of the two eEF1Bd isoforms at 37 and 35 kDa in the

immunoprecipitate obtained using the specific eEF1Bd2 anti-

bodies (Fig. 2B left panel; lane 1) comparable to the immuno-

blot of the precipitate obtained using the eEF1Bd antibodies

(anti-eEF1BdTOT; Fig. 2B left panel; lane 3). The anti-eEF1Bc
antibodies revealed the presence of the eEF1Bc component in

both immunoprecipitates obtained using the eEF1Bd antibod-

ies (anti-eEF1BdTOT; Fig. 2B right; lane 3) or using the specific

eEF1Bd2 antibodies (anti-eEF1Bd2; Fig. 2B right panel; lane

1). Therefore, the 47 kDa component corresponds in both

cases to eEF1Bc while the 35 and 37 kDa proteins correspond

to the two eEF1Bd isoforms. We assume that the 30 kDa pro-

tein corresponds to eEF1Ba which is always associated to

eEF1Bc (reviews in [1,10]). Altogether, the specific eEF1Bd2

antibodies co-precipitate all the components of eEF1B includ-

ing eEF1Bd1. Since the specific eEF1Bd2 antibodies do not

directly recognize eEF1Bd1, its presence in the immunoprecip-

itate demonstrates that a subset of eEF1B complex contains

both the eEF1Bd1 and the eEF1Bd2 components.

Immunoprecipitation experiments were performed using

batches of embryos from different females. For each of the

antibodies used, the eEF1B constituents were reproducibly ob-

served in the same proportions. For note, while the eEF1Bd2

antibodies were highly specific for eEF1Bd2, the eEF1Bd anti-

bodies (anti-eEF1BdTOT) were obtained from the recombinant

eEF1Bd-GST protein devoid of the 26 amino acid insert [14],

therefore they may recognize each of the two eEF1Bd isoforms

with the same efficiency with respect to their identical primary

sequence. Using the two types of antibodies, an interesting

observation was consistently made. While the ratios between

eEF1Ba and eEF1Bc were comparable (0.47 and 0.43), the

respective proportions of eEF1Bd2 and eEF1Bd1 were differ-

ent according to the antibodies used for immunoprecipitation

(compare in Fig. 2A; lanes 1 and 3 and compare in Fig. 2B left

panel; lanes 1 and 3) suggesting that the pool of eEF1B in the

cell is heterogeneous regarding eEF1Bd composition. This

point was addressed by accurate quantification of eEF1Bc,

eEF1Bd1 and eEF1Bd2 in the eEF1B complex depending on

the antibodies used for immunoprecipitation. When egg ex-

tracts were immunoprecipitated using the specific eEF1Bd2

antibodies, quantification of the silver stained gel showed that

eEF1Bd1 represented 49% and eEF1Bd2 51% (S.D. = 7; n = 6)

of the total amount of eEF1Bd. Thus embryos contain a subset
of cellular eEF1B that contains equal amounts of eEF1Bd1

and eEF1Bd2. The ratio of eEF1Bd2 versus eEF1Bc co-immu-

noprecipitated by the eEF1Bd2 specific antibody was calcu-

lated to be 0.09 (S.D. = 0.02, n = 4). When the egg extracts

were immunoprecipitated using eEF1Bd antibodies (anti-

eEF1BdTOT), the ratio of eEF1Bd2 versus eEF1Bc was calcu-

lated to be 0.05 (S.D. = 0.03; n = 3). Thus, for an identical

amount of eEF1Bd2 immunoprecipitated, a higher amount

of eEF1Bc is co-immunoprecipitated by the eEF1Bd antibod-

ies (anti-eEF1BdTOT), implicating that this extra proportion of

eEF1Bc originates from a subset of eEF1B complex containing

solely eEF1Bd1 component. We conclude that two subsets of

eEF1B complex coexists in the embryos, one containing the

couple eEF1Bd1–eEF1Bd2 and the other containing solely

eEF1Bd1. To evaluate the potential presence of free eEF1Bd1

in the cell that could have been immunoprecipitated by the

eEF1Bd antibodies (anti-eEF1BdTOT), we have evaluated the

ratio of total eEF1Bd components versus eEF1Bc according

to the antibody used for immunoprecipitation. The ratio was

comparable in both cases, respectively, 0.21 and 0.22, thus dis-

carding the eventuality of free eEF1Bd1 excess in the cells,

which is in agreement with previous findings (reviews in [1,10]).

When using eEF1Bd antibodies (anti-eEF1BdTOT), the pro-

teins eEF1Bd1 and eEF1Bd2 in the immunoprecipitates repre-

sented, respectively, 71% and 29% (S.D. = 5; n = 4) of total

eEF1Bd. We further estimated the proportion of the two iso-

forms of eEF1Bd in the whole cellular extracts, reflecting the

whole pool of eEF1Bd protein, by quantification of the

Western blots. The proportion obtained was 69% and 31% for,

respectively, eEF1Bd1 and eEF1Bd2 (S.D. = 8; n = 10) highly

compatible with the proportions calculated from the eEF1Bd
antibodies (anti-eEF1BdTOT) immunoprecipitation experiments.

In conclusion, the comparison between the different com-

plexes obtained by immunoprecipitation using either the spe-

cific eEF1Bd2 antibodies or the eEF1Bd antibodies (anti-

eEF1BdTOT) demonstrated that several subsets of eEF1B com-

plex coexist in the cells. The results demonstrate the existence

of at least one subset of cellular eEF1B containing eEF1Bd1

and eEF1Bd2 in a 1:1 stoichiometry and existence of a complex

containing only the eEF1Bd1 isoform. They allow to propose a

model for the different structural subsets of the factor eEF1B

(see Section 4).

3.3. Early developmental changes in eEF1B components

We investigated developmental changes in eEF1Bd. The

expression of each isoforms remained constant from fertiliza-

tion up to the pluteus stage (80 h after fertilization) as judged

from Western blot analysis of embryo extracts (data not

shown). We then investigated intracellular localization changes

during the first cell cycle. Since it was shown that using

eEF1Bd antibodies (anti-eEF1BdTOT), a subset of the eEF1B

complex was subjected to cell cycle-directed localization

changes [14], it was of interest to investigate potential specific

changes of the eEF1B complex subset containing the eEF1Bd2

component. The results showed highly comparable relocaliza-

tion of the subsets of eEF1B complex during cell cycle (Fig. 3).

The localization of the component eEF1Bc of eEF1B was also

analyzed, taking advantage of the generation of specific

eEF1Bc antibodies. The same cell-cycle-directed relocalization

of eEF1Bc was observed (Fig. 3). Therefore, all the subsets of

eEF1B detected in our experiments undergo comparable cell-

cycle directed localization changes.



Fig. 3. Localization by fluorescence microscopy of the eEF1B subunits during sea urchin embryo first cell cycle. Progression through cell division
was followed by DNA staining with the dye bis-benzimide (DNA). Embryos were sampled at the indicated times after fertilization and treated for
immunostaining as indicated in Section 2. The subunit eEF1Bc was detected using eEF1Bc antibodies (eEF1Bc), total eEF1Bd was detected using
eEF1Bd antibodies (eEF1BdTOT), eEF-1Bd2 was detected using the specific eEF1Bd2 antibodies (eEF1Bd2). The right column corresponds to control
staining using secondary antibodies alone (Ctl 150 min). Each photography is representative of the pool of embryos. Bar: 30 lm.

Fig. 4. Schematic model for the composition and the proportion of the
eEF1B subsets. Subset 1 contains the couple [eEF1Bd1–eEF1Bd2] in a
1:1 stoichiometry. Subset 2 contains the couple [eEF1Bd1–eEF1Bd1] in
a 1:1 stoichiometry. The grey polygons correspond to the grouped
associated eEF1B subunits (eEF1Bd, eEF1Bc and Valyl-tRNA
synthetase). The proportion of each eEF1B subset in the same cell is
indicated.
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4. Discussion

Our results demonstrate the existence of different subsets of

the guanine nucleotide exchange factor (eEF1B) known to be

involved in the elongation step of protein synthesis (see Section

1). We have identified two isoforms for the eEF1Bd subunit of

eEF1B. The two isoforms eEF1Bd1 and eEF1Bd2 originate

from a single gene by alternative splicing of a unique pre-

mRNA and are concomitantly expressed in the cells. Immuno-

detection analyses show that eEF1B is present in the cell under

several subsets differing in their eEF1Bd isoform proportion.

A model (Fig. 4) may be proposed to match our observa-

tions and estimations of the relative amounts of eEF1Bd1

and eEF1Bd2 in immunoprecipitation or immunoblotting

experiments. The results indicate the coexistence of a subset

of complex (Fig. 4, subset 1) containing the couple

[eEF1Bd1–eEF1Bd2] in a 1:1 stoichiometry together with a

subset of complex (Fig. 4, subset 2) containing the couple

[eEF1Bd1–eEF1Bd1]. We have estimated the relative amounts

of each eEF1B subset. When using the eEF1Bd antibodies

(anti-eEF1BdTOT), the first subset of complex containing the

couple [eEF1Bd1–eEF1Bd2] is immunoprecipitated in addition

to the subset of complex devoid of eEF1Bd2 and containing

the couple [eEF1Bd1–eEF1Bd1]. The protein eEF1Bd1 repre-

sents 70% of total eEF1Bd and eEF1Bd2 represents 30% of to-

tal eEF1Bd. Since all eEF1Bd2 is engaged in the couple

[eEF1Bd1–eEF1Bd2], 70 � 30 = 40% of eEF1B contains the

couple [eEF1Bd1–eEF1Bd1], and consequently 60% of eEF1B

contains the couple [eEF1Bd1–eEF1Bd2] (Fig. 4).

The complex eEF1B is assumed to be composed of a basic

heteromer consisting in the association of four subunits,

valyl-tRNA synthetase (ValRS), eEF1Bd, eEF1Bc and eEF1-

Ba [ValRS–eEF1Bd–eEF1Bc–eEF1Ba] in a 1:1:1:1 stoichiom-

etry [10,11,18] or 1:1:2:1 stoichiometry [19]. Our results

demonstrate the cellular existence of a macromolecular dimeric

assemblage [ValRS–eEF1Bd1–eEF1Bc–eEF1Ba]–[ValRS–
eEF1Bd2–eEF1Bc–eEF1Ba] and suggest by analogy the exis-

tence of a [ValRS–eEF1Bd1–eEF1Bc–eEF1Ba] dimer. This is

in accordance with the models proposing dimerization of the

heteromer [ValRS–eEF1Bd–eEF1Bc–eEF1Ba] [11,19–21].

Our results do not rule out existence of a [eEF1Bc–eEF1Ba]

multimer as proposed [10] and which would not have been re-

vealed in the present analysis.

The existence of the two isoforms of the protein eEF1Bd first

demonstrated here in sea urchin eggs, questions the respective

roles for the proteins concomitantly expressed in the same cells

and present under different subsets of eEF1B complex in vivo.

The feature discovered in sea urchin is conserved in several if

not all metazoan species including human and must then be

of general significance among evolution. This further suggests

an important specific function for each subset of complex re-

lated or not to protein synthesis elongation.
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