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1. Introduction

Development makes reiterative use of a surprisingly
small set of essential molecular signals: the Wingless (Wg/
Wnt), Hedgehog (Hh), Transforming Growth Factor-b (TGF-
b), Receptor Tyrosine Kinase/Phosphotase (RTK/P) and
Notch pathways (Gerhart, 1999). These five molecular
archetypes act both individually and coordinately to inter-
pret and transmit extrinsic signals as distinct cellular
transcriptional responses. They mediate the establishment
of polarity and body axes, coordinate pattern formation, and
ultimately choreograph the morphogenesis of individual
tissues. Recent advances have elucidated both the bio-
chemical mechanisms regulating receptor activation and
the molecular participants forming the intracellular signal-
ing cascades of each of these pathways.

A number of recent reviews have provided insight into
the ever-expanding efforts directed at understanding Notch
biology (Angerer and Angerer, 1999; Annaert and De
Strooper, 1999; Artavanis-Tsakonas et al., 1999; Baker,
000; Beatus and Lendahl, 1998; Bertrand et al., 2000; Bray,
998a,b; Chan and Jan, 1998, 1999; Deftos and Bevan, 2000;
reenwald, 1998; Gridley, 1997; Hoyne et al., 2000; Joutel

nd Tournier-Lasserve, 1998; Kimble et al., 1998; Lewis,
998; Miele and Osborne, 1999; Panin and Irvine, 1998;
erron and Harris, 2000; Robey, 1999; Rooke and Xu, 1998;
aito and Watanabe, 1998; Selkoe, 2000; Weinmaster, 1997,
000). In this review we summarize the efforts of many
roups that, over the past decade, contributed to the discov-
ry that a novel signaling paradigm, Regulated Intramem-

brane Proteolysis (RIP), controls Notch receptor activation.
In addition to Notch, the RIP paradigm has recently been
shown to impact a number of other proteins (Brown et al.,
2000). RIP utilizes “dual address” proteins which function
at two discrete subcellular locations. The full-length “re-
ceptor” is first held at a docking site where, in response to
stimulus/ligand, it undergoes intramembranous proteolysis
to release a subdomain that then translocates to a second
site of action, typically the nucleus. In the case of Notch,
1 To whom correspondence should be addressed.
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igand binding is now believed to initiate a proteolytic
ascade that culminates in release of the Notch IntraCellu-

lar Domain (NICD) and concomitant activation of immedi-
ate downstream target genes. Here we present a compre-
hensive overview of the latest developments in Notch
biology with special emphasis on the biochemistry of signal
transduction by Notch.

2. The Notch Signaling Pathway—Brief Overview

Notch loci, first described in Drosophila nearly a century
ago (for a historical perspective see Artavanis-Tsakonas et
al., 1999; Wu and Rao, 1999), encode large (;2500 amino
acids) Type I transmembrane receptors that have been
conserved throughout evolution (Fig. 1). Later, Notch was
identified as a “neurogenic” gene (Poulson, 1937); in Dro-
ophila, Notch mutants display a hyperplasia of the ner-
ous system at the expense of epidermal tissue. Notch
eceptors are activated by Type I transmembrane ligands,
nown collectively as DSL (Delta, Serrate, and Lag 2)

proteins, and are therefore proposed to receive short-range
signals between directly apposed cells. Interactions be-
tween Notch and either of its two ligands in Drosophila,
Delta or Serrate, can be differentially modulated by the
glycosyltransferase Fringe (for review, see Wu and Rao,
1999). Recently, this modulation has been suggested to
stem from Fringe-mediated elongation of specific O-linked
ucose residues within the extracellular epidermal growth
actor-like repeats of Notch (Bruckner et al., 2000; Moloney
t al., 2000). Ligand-mediated Notch activation ultimately
eads to the conversion of CSL (CBF1, Su(H), Lag-1) proteins

from repressors to transcriptional activators, and subse-
quent up-regulation of downstream targets (e.g., HES,
Hairy/Enhancer of Split genes). This “core” Notch signaling
pathway is depicted in Fig. 1.

Notch signaling has been classically described as direct-
ing equivalent cells (or “equivalence groups”), each express-
ing both ligand and receptor, to acquire the proper cell fates
during development. Detailed studies of this type of “lateral
signaling” have implicated Notch in inhibition of “default”

primary cell fates, thus allowing expression of secondary
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152 Mumm and Kopan
fate pathways (reviewed in Beatus and Lendahl, 1998;
Greenwald and Rubin, 1992; Kopan and Turner, 1996;
Lewis, 1998; Muskavitch, 1994; Rooke and Xu, 1998;
Sawamoto and Okano, 1996; Schlosser and Northcutt,
2000; Simpson, 1990; Tiedemann et al., 1998). Notch also
participates in multiple developmental processes as a
source of “inductive signaling” between nonequivalent
cells. In these cases the “signaling” cells (ligand-expressing)
and neighboring “receiving” cells (receptor-expressing) are
clearly demarcated. Maintenance of germline proliferation
in C. elegans, and boundary formation at the dorsal/ventral
wing margin of Drosophila are two well-described examples
f this type of signaling paradigm (for review, see Bray,
998b; Greenwald, 1998; Kimble and Simpson, 1997).
ounting evidence suggests that Notch signaling, in addi-

ion to inhibiting cell fates, can serve to promote cell fates
irectly. Recent evidence for Notch-mediated cell fate “pro-
otion” includes ectopic upregulation of “master control

enes,” vestigial (vg), eyeless (ey), and Distal-less (Dll), in
maginal discs expressing an activated Notch construct
Nact). Strikingly, early ectopic expression of Nact leads to
omeotic transformations appropriate to the master control
ene affected (Kurata et al., 2000). In addition, it has

recently been suggested that Notch can directly specify
glial cell fates rather than simply inhibit neuronal differen-
tiation (Furukawa et al., 2000; Gaiano et al., 2000; Morrison
et al., 2000); however, direct proof of this proposal awaits
identification of Notch-regulated factors required for glial

FIG. 1. Core Notch signaling pathway. The four core elements of
receptor, DSL (Delta, Serrate, Lag-2) ligands, CSL (CBF1, Suppresso
the HES (Hairy/Enhancer of Split) family of basic helix-loop-helix
converts CSL from a transcriptional repressor to a transcriptional a
protein-protein interactions between the Notch intracellular doma
differentiation.

Copyright © 2000 by Academic Press. All right
3. Biochemistry of Notch Signaling: Proteolysis-
Mediated Activation

Over the past decade researchers have begun to piece
together components of the regulatory circuitry govern-
ing the Notch signaling pathway (Artavanis-Tsakonas et
al., 1999; Chan and Jan, 1998, 1999). Early structure/
function analyses established discrete roles for the extra-
cellular and intracellular domains of the Notch receptor
(for review, see Greenwald, 1994; Kimble et al., 1998). As
with most cell surface receptors, the intracellular domain
was found to have signal-transducing capacities while the
extracellular domain bound ligand and served to regulate
signaling by inhibiting activity in the absence of ligand
binding. However, unlike other surface receptors, mount-
ing evidence suggested that the intracellular domain of
Notch might directly function within the nucleus as a
transcriptional adapter protein (see below). The identifi-
cation of a putative nuclear localizing signal (NLS) in the
cytoplasmic sequence of Notch homologs (Stifani et al.,
1992) was quickly followed by demonstrations of nuclear
localization for truncated, nonmembrane-tethered, intra-
cellular Notch constructs (collectively referred to here as
NIC; Fortini et al., 1993; Lieber et al., 1993; Struhl et al.,

993). Additionally, constitutive gain of function pheno-
ypes were obtained when NIC was expressed in flies and

worms devoid of endogenous Notch/lin-12 activity
(Lieber et al., 1993; Roehl and Kimble, 1993; Struhl et al.,

otch signaling system are diagrammed. These include the Notch
hairless, Lag-1) transcriptional cofactors, and target genes such as
scriptional regulators. Upon binding ligand the Notch signaling
tor. The current model proposes that this conversion is via direct
d the CSL (see text for further details).
the N
r of
tran

ctiva
1993).
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153Notch Signaling: From the Outside In
A key observation for the course of later studies came
from ectopic overexpression studies of extracellularly de-
leted constructs in Xenopus and Drosophila. Based on the
presumed product of human Notch chromosomal translo-
cations associated with neoplastic transformation (Ellisen
et al., 1991; Jhappan et al., 1992; Robbins et al., 1992),
eletion constructs were made that had the majority of the
xtracellular domain removed (these type of constructs will
e collectively referred to as NDE; Coffman et al., 1993;
ebay et al., 1993). NDE constructs differ from NIC in that
ignal peptide and transmembrane domain have been re-
ained; thus the intracellular domain is tethered to the
lasma membrane. When ectopically overexpressed, NDE

was interpreted as having a dominant gain of function
activity resulting in a presumed delay of differentiation in
frogs (Coffman et al., 1993) and “a complex array of domi-
nant phenotypes” associated with Notch activation in flies
(Rebay et al., 1993). In addition, side by side comparison of
NIC and NDE transgenic flies showed “indistinguishable”
effects on eye development (Fortini et al., 1993). Thus, both
NIC and NDE performed as constitutively active proteins,

hich is in keeping with the interpretation that neoplastic
ransformations from NDE-type chromosomal transloca-
ions indicated an activated phenotype (Ellisen et al., 1991).
n activation mechanism for Notch was proposed that
ould explain why both NIC and NDE act equivalently

Lieber et al., 1993; Stifani et al., 1992; Struhl et al., 1993);
n the words of Lieber et al., “a segment of Notch might
ormally enter and function in the nucleus after cleavage of
he transmembrane protein.” Despite an obvious
onflict—the C-terminus of NDE constructs was localized to

the cell membrane and never seen in the nucleus (Fortini et
al., 1993), and endogenous Notch could not be detected in
the nucleus under any circumstances during fly
development—the cleavage model of Notch activation
proved correct.

The first test of the dual address hypothesis came when an
attenuated mouse N1IC fragment failed to inhibit myoblast
differentiation when the NLS sequences were removed (Ko-
pan et al., 1994). Restoring nuclear entry of this NLS-deleted
N1IC (N1ICDNLS) by addition of an exogenous NLS also restored
ts activity in the myogenic assay. This established that

1ICDNLS was functional and that its site of action was indeed
in the nucleus. In the next few years cell culture assays
verified the constitutive activity of NDE and NIC moieties; both
constructs activate appropriate reporter constructs, inhibit
myogenic and neurogenic differentiation, and impact T cell
development (Aster et al., 1994; Jarriault et al., 1995; Kopan et
al., 1994; Nye et al., 1994; Pear et al., 1996; Shawber et al.,
996). Biochemical analysis of N1DE 6myc (mouse Notch1DE

with a hexameric myc tag replacing the C-terminal 348 amino
acids) was conducted to resolve the apparent paradox of
constitutive Notch activity at two cellular locations—in the
nucleus and at the cell membrane (Kopan et al., 1996). This
tudy presented evidence that although the N-terminus of
1DE 6myc was present outside the cell, the C-terminus could be
localized within the nucleus of Xenopus embryos and 3T3

Copyright © 2000 by Academic Press. All right
fibroblasts. Smaller N-terminally truncated polypeptides are
produced from NDE by two distinct and mutually independent

echanisms. First, it was noted that N1DE 6myc could undergo
alternative translations from an internal methionine in the
transmembrane domain. Mutating this methionine to a valine
(M1727V) eliminated the product of alternative initiation and
revealed a second, proteolytic fragment. The proteolytic frag-
ment was later purified and found to be the result of proteol-
ysis between glycine 1743 and valine 1744 of mouse Notch1
(Schroeter et al., 1998). This cleavage site has been termed site
3 (or S3, Fig. 1) and is presumed to lie within the transmem-
brane domain, although this has yet to be rigorously demon-
strated (see below). Schroeter et al. went on to show that this
cleavage event occurs post-Golgi and that single point muta-
tions of valine 1744 partially inhibit S3 processing and con-
comitantly reduce the signaling activity of N1DE while having
no effect on the signaling efficacy of processing independent
N1IC V1744 mutant constructs. In addition, ligand binding to
transfected Notch in cell culture was shown to induce S3
cleavage and, again, efficient processing was dependent on
V1744 (Schroeter et al., 1998). Concurrent with these efforts,
investigators of Notch signaling in Drosophila revealed an in
vivo ligand-dependent nuclear translocation, presumably via
proteolysis, of intracellular Notch (Lecourtois and Schweis-
guth, 1998; Struhl and Adachi, 1998). It was also demonstrated
biochemically that modulation in the expression level of the
Notch ligand Delta resulted in similar modulations in NICD
production (Kidd et al., 1998).

These experiments demonstrated that ligand-dependent
proteolysis can occur in vivo and in vitro. Recently a require-
ment for proteolysis at S3 for Notch1 signaling was demon-
strated in the mouse; a processing impaired Notch1 allele
with a single point mutation at the S3 site (V1744G) was
homologously “knocked-in” to the Notch1 locus. Strikingly,
the V1744G mutation results in an embryonic lethal pheno-
type in homozygous mice (Huppert et al., 2000), that occurs
within the same period as Notch1 null mice (;e10; Conlon et
al., 1995; Swiatek et al., 1994). As expected from a mutation
that reduced but did not eliminate NICD production detailed
analysis of these mice revealed that the V1744G mutants are
hypomorphic. Finally, a biochemical comparison of the four
mouse Notch homologs (N1–N4) has shown that all four
undergo an S3-like cleavage event (M. T. Saxena and R. Kopan,
unpublished observations). Taken as a whole, these experi-
ments lead us to conclude that proteolysis at S3 is a conserved
signaling mechanism that is required for CSL-mediated Notch
signaling.

4. Notch Is Not Alone—Regulated Intramembrane
Proteolysis and the Emergence of Candidate
Proteases

Several proteins, in addition to Notch, respond to ligand
binding or other stimuli by undergoing unidentified confor-
mational or localization changes which promote, through a

proteolytic cascade, the release of part of these “dual

s of reproduction in any form reserved.
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154 Mumm and Kopan
address” proteins. This phenomenon, called regulated in-
tramembranous proteolysis (RIP), is a recently appreciated
signaling paradigm whereby transmembrane-bound pro-
teins are released from the cell surface by proteolytic
cleavage within the membrane (recently reviewed in Brown
et al., 2000). Another definitive example of RIP is the sterol
regulatory element binding protein (SREBP; Brown and
Goldstein, 1997; Brown et al., 2000) which regulates cho-
lesterol metabolism. In addition, studies involving cleavage
of the amyloid precursor protein (APP) to produce the
amyloid beta (Ab) peptide provides an example of a disease
process (Alzheimer’s disease) which is profoundly linked to
intramembranous proteolysis (Hardy and Israel, 1999).

What enzymes catalyze intramembranous cleavage of
Notch? The best candidates to date are the presenilin genes
(PS), independently linked to familial Alzheimer’s disease
(Sherrington et al., 1995, 1996), and regulation of the Notch
ignaling pathway (Levitan and Greenwald, 1995). Notch
nd APP are both believed to be proteolytically cleaved
ithin their transmembrane domains (at the S3 and

g-secretase sites, respectively) by an unidentified protein-
ase(s), termed g-secretase(s). PS must act at or upstream of
3 cleavage and NICD release, because NIC proteins are
pistatic to mutations in the C. elegans PS homolog sel-12;

mutations in sel-12 are incapable of suppressing the consti-
tutive activity of NIC, but do abbrogate the activity of
dominant gain of function alleles that are membrane teth-
ered (Levitan and Greenwald, 1998). PS and Notch have
been shown to physically interact early in the secretory
pathway and appear to remain associated thereafter, as they
are found in a complex at the cell membrane (Ray et al.,
1999a,b). In an effort to define the level at which PS genes
impact the Notch pathway, primary neuronal and fibroblas-
tic cells derived from wild-type and PS1-deficient animals
were transfected with NDE M1727V. The results showed that S3
cleavage is dramatically reduced in the absence of PS1 (De
Strooper et al., 1999). This is consistent with findings that
Ab production is reduced in the absence of PS1 (De Strooper
t al., 1998) and suggests that PS gene functions are required
or the intramembranous processing events, perhaps as

g-secretase(s) (Wolfe et al., 1999a,b,c). In support of this,
animals from three phyla which are deficient in all PS
activity phenocopy Notch null animals (Donoviel et al.,
1999; Herreman et al., 1999; Li and Greenwald, 1997; Struhl
nd Greenwald, 1999; Westlund et al., 1999; Ye et al., 1999).
oreover, three different inhibitors of g-secretase activity

have recently been shown to bind PS proteins directly (Esler
et al., 2000; Li et al., 2000a; Seiffert et al., 2000) providing
the best evidence to date that PS proteins function as
unique intramembranous enzymes. Although definitive
proof awaits a demonstration that the PS proteins function
as proteases in an in vitro system the recent finding that
presenilin proteins share a conserved catalytic center with
the bacterial type 4 prepilin peptidases (C. Haas, personal
communication) strongly argues that the catalytic center of
g-secretase lies within the presenilin protein. Most re-

cently, a novel member of the high molecular weight b

Copyright © 2000 by Academic Press. All right
resenilin-containing complex, wherein g-secretase activ-
ity resides (Li et al., 2000b), has been identified. The
evidence suggests that this factor, nicastrin (APH-2 in C.
elegans), may be an integral component of a putative
multimeric complex (the “secretasome”) required for in-
tramembrane proteolysis of both APP and Notch (Yu et al.,
2000). Investigation of APH-2 function in C. elegans previ-
ously established it as a novel member of the Notch
signaling pathway; however, chimeric analysis suggested
that APH-2 can act non-cell autonomously in either the
signaling or receiving cell (Goutte et al., 2000), a result
potentially in conflict with the secretasome proposal (for
recent reviews on intramembrane proteolysis, see Brown et
al., 2000; Kopan and Goate, 2000).

5. Ectodomain Shedding and Notch: New Twists
with Old Knives

Since Notch activation requires presenilin-dependent in-
tramembranous proteolysis, how does ligand binding to the
Notch extracellular domain regulate this step? Structure/
function analyses of Notch mutants and deletion con-
structs in flies and worms suggest that the extracellular
domain functions to repress Notch signaling in the absence
of ligand (Greenwald, 1994; Kimble et al., 1998). This
negative control region is likely located somewhere be-
tween the LNR and the transmembrane domain (Kimble et
al., 1998; Lieber et al., 1993). Results from three groups

sing different approaches have recently shed light on the
echanism of this regulation.
First, the existence of a ligand-induced, “ectodomain

hedding-like” cleavage event has been described (Brou et
l., 2000; Mumm et al., 2000). Cleavage occurs at an
xtracellular site (S2), between Ala1710 and Val1711 residues,
pproximately 12 amino acids outside the transmembrane
omain. The resultant carboxy product of S2 cleavage is
alled NEXT (for Notch EXtracellular Truncation). The

data suggest metalloproteases are responsible for S2 cleav-
age; the metalloprotease TACE/ADAM17 was shown to
cleave Notch in vitro at the S2 site (Brou et al., 2000) and
zinc chelators block S2 cleavage in culture (Mumm et al.,
2000). However Sup-17/Kuzbanian/ADAM10, a metallo-
protease genetically linked to Notch signaling (Rooke et al.,
1996; Sotillos et al., 1997; Wen et al., 1997), is not required
for S1, S2, or S3 cleavage (Mumm et al., 2000). These data
suggest that a ligand-induced proteolytic cascade activates
Notch1: inhibitor studies demonstrated that NEXT is a
proteolytic intermediate required for the generation of
NICD (Mumm et al., 2000). Notch undergoes Furin-
onvertase-type cleavage in the secretory pathway at a site
alled S1 (site 1, Fig. 1), the cleaved fragments held together by
calcium coordinated bond (Rand et al., 2000). Dissolving this
ond by calcium chelation also results in activation via S3
leavage (Rand et al., 2000). Ligand binding might therefore
vercome “juxtamembrane” repression of Notch intramem-

rane proteolysis (and thus signaling) by simply removing the

s of reproduction in any form reserved.
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155Notch Signaling: From the Outside In
negative control region. This work and additional experimen-
tal evidence support the existence of a shared regulatory
mechanism among Notch, SREBP, and APP (Chan and Jan,
1999; De Strooper et al., 1999; Hardy and Israel, 1999), with
extracellular proteolysis serving to facilitate proteolysis at the
intramembranous site to release NICD.

Evidence that S2 cleavage truly results in “ectodomain
shedding” has come from studies in Drosophila. A compari-
son of temperature-sensitive shibire (Grigliatti et al., 1973)
and temperature-sensitive Notch mutants (Shellenbarger
and Mohler, 1975, 1978) noted a similarity in their pheno-
types and suggested that shibire has a “neurogenic” pheno-
type (Poodry, 1990). shibire is the Drosophila homolog of
vertebrate dynamin, a GTPase required for clathrin-
mediated endocytosis (Damke et al., 1994; Herskovits et
al., 1993; Kosaka and Ikeda, 1983). Subsequent investiga-
tion demonstrated that Notch signaling requires dynamin/
shibire-mediated endocytosis, in both signaling cells
(ligand-expressing) and receiving cells (Notch-expressing),
during sense organ development in Drosophila (Seugnet et
al., 1997). A recent study provides further insight demon-
strating that the Notch extracellular domain is “trans-
endocytosed” into ligand (Delta)-expressing cells at sites of
Notch activation where ligand-presenting and receptor-
presenting cells are clearly demarcated, the developing eye
and wing imaginal discs (Parks et al., 2000). Importantly,
they find that an endocytosis-defective class of ligand
mutants function as loss-of-function alleles, presumably
due to their inability to trans-endocytose Notch (Parks et
al., 2000). Taken together these results have led to the
hypothesis that ligand-mediated Notch activation requires
an endocytosis-driven, stress-based conformational change
that exposes the S2 site to cleavage and leads to the cascade
of proteolytic activation (Mumm et al., 2000; Parks et al.,
2000; Fig. 2).

6. Dual Address Protein: Notch Is a
Transmembrane Receptor; NICD Is a Nuclear
Adapter Regulating CSL-Mediated Transcription

The results discussed above established that NICD is
released by proteolysis and that its release is required for
Notch activity in cell culture (Schroeter et al., 1998) and in
ivo (Huppert et al., 2000). Early efforts demonstrated that
otch activity was required in the nucleus (Kopan et al.,

1994; Struhl and Adachi, 1998) where NICD binds directly
to CSL proteins, through the Notch RAM domain (amino
acids 1748–1810; Tamura et al., 1995), and the Ankyrin
repeats (Kato et al., 1997; Kurooka et al., 1998; Roehl and

imble, 1993). The coupled proteins can be extracted from
ertebrate nuclei in cell culture and the complex is capable
f binding DNA (Jarriault et al., 1995). However, CSL/
otch interactions were also detected in the cytoplasm of
rosophila cells in culture (Fortini and Artavanis-
sakonas, 1994; Kidd et al., 1998) spurring a debate as to the

ctual site of Notch action in vivo: in the nucleus (Kopan et e

Copyright © 2000 by Academic Press. All right
l., 1994; Lieber et al., 1993; Struhl et al., 1993) or else-
here (Artavanis-Tsakonas et al., 1999; Aster et al., 1997,

and see Section 4). Nuclear Notch has recently been ob-
served in differentiated neurons in vivo (Ahmad et al., 1995;
Redmond et al., 2000; Sestan et al., 1999) and Notch
activation by ligand was shown to result in nuclear immu-
noreactivity in neurons in cell culture (Sestan et al., 1999).
However, evidence for nuclear Notch in tissues where
Notch signaling is active during development is still lack-
ing. A number of studies have identified nuclear cofactors
capable of binding intracellular Notch (see below); one
trivial explanation could be that antibody recognition is
disrupted by such interactions, thereby masking detection.
The difficulty in identifying nuclear Notch in most cells
undergoing Notch signaling was partially explained by the
demonstration that NICD acts at a nuclear concentration
below the threshold of current detection techniques (Hup-
pert et al., 2000; Schroeter et al., 1998). Therefore, only
small amounts of NICD may be normally produced in cells
receiving Notch signal. How could low amounts of nuclear
NICD produce the transcriptional output required for early
developmental decisions? The answer to this central ques-
tion remains elusive, but a flurry of recent publications
produce the clearest picture yet of the players and events
that enable Notch signaling to orchestrate a developmental
switch in the nucleus.

a. The Corepressor Complex

In the absence of activation by Notch, it has been
demonstrated that CSL acts as a transcriptional repressor
(Dou et al., 1994; Hsieh and Hayward, 1995). Recent pub-
lications offer an increasingly detailed view of how Notch
and its viral mimic, the EBNA2 protein (Sakai et al., 1998;
Strobl et al., 2000), affect transcription. CSL binds to at
least two corepressor complexes: the SMRT/NcoR/histone
deacetylase 1 (HDAC1) (Kao et al., 1998) and CIR/HDAC2/
SAP30 complexes (Hsieh et al., 1999; Zhou et al., 2000b). A
third corepressor, KyoT2, (Taniguchi et al., 1998) has also
been identified (Taniguchi et al., 1998). In all cases, intra-
cellular Notch can antagonize the CSL/corepressor interac-
tion (Hsieh et al., 1999; Zhou et al., 2000a,b, Fig. 3A). The
involvement of the corepressor complex in CSLCBF1-

ediated repression (RBPJk and CBF1 are two different
ames for the same CSL protein, reflecting the cloning
istory) was further substantiated by demonstrating that a
SL mutant (CBF1EEF233AAA), which lost interaction with
oth the SMRT and the CIR proteins, fails to repress
ranscription (Hsieh et al., 1999; Zhou et al., 2000a,b).

If CSL acts as a transcriptional repressor, removal of CSL
rotein, or its binding sites in target promoters, should
esult in activation of these repressed targets. This predic-
ion was first demonstrated for the adenovirus pIX pro-
oter. Here, promoter-bound CSL directly associates with
FIIA and TFIID (members of the basal transcription ma-
hinery), preventing transcription from progressing (Olave

t al., 1998). Deletion of the CSL-binding site or their

s of reproduction in any form reserved.
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FIG. 2. Diagram of Notch proteins and the proteolytic cascade of Notch activation. (A) Schematic of artificial Notch plasmids referred to
n the text: NIC, Notch Intracellular construct; NDE Notch Deleted Extracellular construct; NLNR, Notch Lin/Notch Repeat construct; NFL,

Notch Full-Length construct. Note that NIC and NDE constructs can vary considerably between individual laboratories. Constructs which
mimic natural proteolytic products (e.g., NIC V1744, see below) have been employed more recently. Conserved domains are denoted above the
ull-length Notch diagram. Abbreviations: EGF, Epidermal Growth Factor-like repeats; LNR, Lin/Notch Repeat domain; RAM, RAM23
domain; nls, nuclear localizing signals; ANK, CDC10/Ankyrin repeat domain; PEST, a region rich in proline (P), glutamine (E), serine (S),

Copyright © 2000 by Academic Press. All rights of reproduction in any form reserved.
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157Notch Signaling: From the Outside In
location upstream from a Sp1-binding site restores tran-
scriptional activity, indicating that this viral promoter
utilizes CSL only for repression (Olave et al., 1998). In more
complex promoters, CSL protein is required for both repres-
sion and activation. In Drosophila, both Notch and CSL are
normally required together to activate the gene single-
minded (sim) in the midline (Morel and Schweisguth,
2000). Loss of CSLSu(H) results in partial misexpression of
im, a phenomenon previously interpreted to indicate CSL-
ndependent signaling by Notch (Lecourtois and Schweis-
uth, 1995; Rusconi and Corbin, 1999). However, removal
f the CSL-binding site from the sim promoter is sufficient
o induce ectopic sim expression pattern in a Notch-
ndependent manner (Morel and Schweisguth, 2000). These
xperiments demonstrated the consequence of loss of re-
ression by CSL in vivo, validating results accumulating
rom cell culture work. Moreover, transcription of CSLSu(H)

itself has recently been shown to be regulated by the
repressor activity of CSLSu(H) in one particular cell, the
ristle cell of the external sensory organ. A complex 39
nhancer element was identified in the Drosophila CSLSu(H)

locus, containing multiple CSL-binding sites (S. Barolo and
J. W. Posakony, personal communication). Interestingly,
this element (termed ASE, for Autoregulatory Socket En-
hancer) is responsible for preventing accumulation of
CSLSu(H) via auto-repression. Point mutations disrupting
these sites result in loss of repression, elevated CSLSu(H) in
ristle precursor cells, and conversion of the bristle cell to a
ocket cell, its sibling cell fate.

Strong support of a direct role for Notch in transcription
tems from experiments reported by Kuroda et al. These
uthors demonstrated that 1 h after addition of ligand-
xpressing cells, a 7-fold increase was detected in the
ccumulation of the Hes-1 mRNA in Notch-expressing
ells, reaching 20-fold in 2 h. This robust increase was only
etected in the presence of cycloheximide, a protein trans-
ation inhibitor. A modest, biphasic, 2.5-fold increase was
bserved when protein translation was not inhibited (Ku-
oda et al., 1999). These observations indicate that Hes-1 is

direct target of Notch and point to the existence of a
egative feedback loop by some Notch targets (Hes-1 and

and threonine (T) residues; TM, transmembrane region. Also inclu
important signaling domains, NCR, Notch Cytokine Response reg
of Mouse Notch1 encompassing each known cleavage site is shown
one, etc.) are denoted by arrows and the amino acid number of the re
sites may not be conserved in all species; for instance, it is unclear w
receptor maturation. The shaded gray rectangle represents an appro
a 21aa span could place the S3 site at the cytosolic interface of the t
putative proteases responsible for each processing event is given. (C
activation. Upon ligand-binding the heterodimeric receptor is bel
exposes S2 to proteolysis. The resultant C-terminal product, NEXT
translocation of NICD and activation of the Notch transcrip
TransMembrane and IntraCellular domain (also referred to as p120

Domain.
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ossibly Deltex), (Deftos and Bevan, 2000). However, the
olecular mechanism by which Notch antagonizes CSL-
ediated repression remains mysterious. How can unde-

ectable amounts of nuclear NICD displace several ubiqui-
ous transcriptional repressors from DNA-bound CSL?

b. The Intermediate Complex

A recent discovery offers important insight into NICD-
mediated transition of CSL from a repressor to an activator
complex. Using CSLCBF1 as bait in a yeast two-hybrid screen,
Zhou and co-workers identified the Ski interacting protein
(SKIP) as a member of the CSL/corepressor complex (Zhou
et al., 2000a,b). cSki is known to participate in TGFb/
SMAD2/MAD and nuclear receptor-mediated repression as
a member of the corepressor complex (Akiyoshi et al., 1999;
Hammond et al., 1998; Luo et al., 1999; Nomura et al.,
999; Baudino et al., 1998; Tagami et al., 1998). SKIP was
dentified as a protein involved in derepression of this
omplex (Baudino et al., 1998; Dahl et al., 1998; Tagami et
l., 1998).
SKIP, and its conserved orthologs in Drosophila and C.

legans, interact with CSL at a domain distant and distinct
rom the CSL/SMRT interaction site. In fusion with Gal4,
KIP mediates repression (as does CSL) most likely through
nteraction with the SMRT/HDAC complex. However,
KIP is also able to interact with NIC under the same
onditions. The SKIP interaction interface on Notch is
evealing: point mutations located in the fourth ankyrin
epeat that have been shown to disrupt Notch activity, M1
nd M2 (Jarriault et al., 1995; Kopan et al., 1994), also
bolish SKIP interaction. Under the conditions used by
hou, M2 mutants retained the ability to interact with
SLCBF1 but did not bind SKIP (Zhou et al., 2000b). Most

mportantly, while SMRT competes with Notch for CSL
inding, SKIP promotes Notch/CSL interactions. For ex-
mple, a Notch construct with a deletion of the RAM23
omain binds CSL weakly (Kato et al., 1997) or not at all

(Zhou et al., 2000b); addition of SKIP recruits this same
construct to CSL (Zhou et al., 2000b). The binding of SMRT
or Notch to SKIP is mutually exclusive; Skip/CSL can form

are two roughly mapped regions recently identified as potentially
nd TAD, Trans-Activating Domain. (B) The amino acid sequence

hin the open rectangle. Precise sites of S1, S2, and S3 cleavage (site
tive C-terminal ends. The location and function of these processing
her S1 occurs in flies or whether it is absolutely required for Notch
ated transmembrane domain with a 24 amino acid span (note that

embrane domain). A brief description of the known functions and
iagram of the proteolysis-mediated model of ligand-induced Notch
to undergo an endocytosis-driven conformational change which

dergoes constitutive S3 intramembranous proteolysis resulting in
l response. Abbreviations: ECN, ExtraCellular Notch; TMIC,
XT, Notch ExtraCellular Truncation; NICD, Notch IntraCellular
ded
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FIG. 3. Model for Notch-mediated conversion of CSL. Diagram of hypothetical mechanism by which Notch mediates conversion of the
CSL corepressor complex to a transcriptional coactivator complex (see text for further details). RTGRGAR and YGTGRGAAM are
low-affinity and high-affinity consensus CSL-binding sites, respectively (Nellesen et al., 1999). Abbreviations: SMRT, Silencing Mediator
of Retinoid and Thyroid hormone receptors; CIR, CBF1 Interacting coRepressor; SKIP, Ski-related Protein; HDAC, Histone Deacetlyase;
HAT, Histone Acetylase; EBNA2, Epstein Barr virus Nuclear Antigen; AC, Acetylated histones. Other abbreviations are given in the text

and preceding figures.

Copyright © 2000 by Academic Press. All rights of reproduction in any form reserved.
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159Notch Signaling: From the Outside In
a triprotein complex with either Notch or SMRT but not
with both (Fig. 3). Importantly, the authors demonstrate
that even at 4-fold SMRT excess, Notch remained associ-
ated with SKIP/CSL. Thus, Zhou et al. illuminate a possible
mechanism by which low levels of NICD in the nucleus
may convert CSL into a transcriptional activator. SKIP,
which is a permanent resident of the CSL repressor com-
plex, seems to facilitate NICD binding by providing an
interface to which NICD may have a higher affinity than
SMRT. Since the binding of SMRT and NICD to SKIP is
mutually exclusive, NICD recruitment to the complex may
destabilize the SMRT/CSL interaction leading to the con-
version from SMRT-corepressor complex to an intermedi-
ate, NICD-containing complex (Fig. 3B). Whether NICD
concentration is higher near Notch-regulated promoters
remains to be determined.

Additional members of this intermediate complex were
revealed recently by Kurooka and Honjo. Using mammalian
two-hybrid assays, they have demonstrated an interaction
between Notch and two conserved histone acetylases
(HATs), PCAF and GCN5 (Kurooka and Honjo, 2000). Both
the Ankyrin repeats (amino acids 1810–2097) and the TAD
region (amino acids 2194–2398) of Notch are necessary to
mediate the interaction with the amino-terminus of PCAF
and GCN5, thus recruiting these HATs to the Notch/CSL
complex. The HAT/Notch/CSL complex would acetylate
histones, increasing the likelihood for the formation of an
open chromatin and an active transcription complex
(Struhl, 1999). Another speculative possibility is that HATs
acetylate SMRT, catalytically promoting Notch/CSL inter-
actions. This would provide another mechanism whereby
low levels of Notch could displace ubiquitous corepressors.
It should be noted that a truncated version of fly NotchIC

from which the TAD equivalent region was removed be-
haved in vivo in an identical fashion to the complete NICD
rotein (Tomlinson and Struhl, 1999). Thus, questions
ersist regarding the relevance of the HAT/TAD interaction
or all systems.

c. The Coactivator Complex

The HAT/Notch/CSL complex is, however, only part of
the story. PCAF and GCN5 were fused with the DNA
binding domain of yeast Ga14 and tested for their transcrip-
tional prowess on the ga14 promoter in cultured cells.
Intriguingly, neither HAT-Ga14 construct was sufficient to
induce transcription while NICD-Ga14 showed robust in-
duction (Kurooka and Honjo, 2000). Using a different strat-
egy, Petcherski and Kimble identified a new constituent of
the coactivation complex. These authors modified a yeast
two-hybrid screen to identify proteins that interact with the
intracellular domain of the Notch ortholog Glp-1, but only
in the presence of CSLLAG-1. They identified only one protein
(cloned six separate times) that met this criteria. The
protein is novel, nuclear, and glutamine-rich. RNAi-
mediated interference of this gene led to a phenotype

identical to a complete loss of Notch (lin-12 and glp-1)

Copyright © 2000 by Academic Press. All right
ctivity in C. elegans, hence the name Lag-3 (Lin and Glp-3,
Petcherski and Kimble, 2000a; or Sel-8, Doyle et al., 2000).
Lag-3 now joins an elite group of genes in C. elegans whose
bsence prevents Notch signaling; the others include a
elta-like ligand (Lag-2) and CSL (Lag-1). Using the same

trategy these authors show that in Drosophila and verte-
rates, mastermind provides the same function as lag-3
Petcherski and Kimble, 2000b), thus providing a possible

echanistic explanation for the previously observed epi-
tatic relationship between Notch and mastermind (Helms
t al., 1999; Schuldt and Brand, 1999).
Further experiments revealed the molecular mechanism

y which lag-3 may mediate Notch signaling. In vitro
xperiments determined that Lag-3 interacts weakly with

IC Glp1; however, the interaction is strongly enhanced by the
addition of CSLLag-1. Using a temperature-sensitive muta-
ion Petcherski and Kimble established that the fourth
nkyrin repeat, the very same region identified as a SKIP

nteraction interface, mediates NIC/Lag-3 interactions
Petcherski and Kimble, 2000a). Finally, unlike the HATs,
exA/Lag-3 fusion proteins are strong transcriptional acti-
ators. LAG-3 could therefore be a transcriptional activator
n C. elegans, with the glutamine-rich domain serving as
he primary activation domain or acting cooperatively with
he Notch TAD domain. It is not clear if the coactivator
omplex still contains SKIP, and it is possible that NICD
ecruits Lag-3 to the HAT complex. The exact composition
f, and the sequence of events leading to, the coactivator
omplex remain to be elucidated. However, a speculative
odel consistent with all these recent publications is

resented in Fig. 3.

d. Termination of Notch Signaling

After NICD acts in the nucleus of mitotic cells, it must
be removed as the daughters will often again rely on Notch
signaling to determine their fate (Kopan, 1999). It has been
recently demonstrated that the proteasome plays a role in
Notch signaling (Schweisguth, 1999) as do the E3 ubiquitin
ligases Suppressor of Deltex (Su(Dx); Cornell et al., 1999;
Fostier et al., 1998) and Sel-10 (Hubbard et al., 1997). While
one mode of proteasome action could be to degrade Notch
effectors such as Tramtrack (ttk) (Campos-Ortega, 1996;
Dong et al., 1999) NICD itself was recently shown to be a
target for ubiquitinition by a Su(Dx) homolog in verte-
brates, Itch (Qiu et al., 2000).

7. Alternative Modes of Notch Signaling?

Recent evidence suggests that more surprises may be in
store for Notch signaling. As previously suggested by
misexpression of sim (see above, Lecourtois and Schweis-
guth, 1995), some Notch signaling may occur in a CSL-
independent manner; expression of a dominant negative
Su(H) affects only certain sublineages of Notch/Numb-

dependent cell fates during bristle development in Drosoph-

s of reproduction in any form reserved.
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160 Mumm and Kopan
ila (Wang et al., 1997), and Su(H) mutant phenotypes differ
from Notch mutants in the wing, the eye, and the embryo of

rosophila (Arias, 1998; Brennan et al., 1999a,b, 1997;
Ligoxygakis et al., 1998; Rusconi and Corbin, 1999; Zec-
hini et al., 1999). Similar evidence has been presented for
ertebrate B cell and muscle development (Ordentlich et
l., 1998; Shawber et al., 1996). Interestingly, this signaling
ay also be independent of DSL ligands or proteolysis

Brennan et al., 1999a, 1997; Rusconi and Corbin, 1999).
Several possible mechanisms by which this function of
otch is accomplished have been proposed. Genetic experi-
ents in Drosophila lead to the hypothesis that Notch

epresses Wingless function at a stage preceding cell fate
pecification (Brennan et al., 1999a, 1997, 1999c; Rusconi
nd Corbin, 1999). Wg may repress Notch function through
subdomain containing EGF repeats 17–19 and/or 24–26

Brennan et al., 1999c) to prevent the formation of an
quivalence group. Further support for this possibility
omes from recent biochemical studies demonstrating that
g and Notch physically interact (Wesley, 1999) without

roducing a NICD equivalent (Wesley and Saez, 2000).
otch also interacts with the Wg signal transducer, Dishev-

lled (Axelrod et al., 1996). It remains to be determined
hat the significance of Wg binding to Notch is. Interest-

ngly, the same region of Notch mediates binding of other
roteins, including Fringe (Ju et al., 2000; Wesley and Saez,
000). Moreover, while some speculate that Notch re-
resses Wg activity (Brennan et al., 1999a) others find that

Wg and Notch interact to activate specific targets (Wesley,
1999). Finally, recent evidence suggests that some CSL
“independent” activity of Notch is due to CSL derepres-
sion. Another alternative for the core pathway may be
modulation of kinase activity, for example, Jun kinase
(JNK), by Notch (Ordentlich et al., 1998; Zecchini et al.,
1999). Clearly, modulation of Notch during development is
complex, and the relationship of these factors to the “core”
Notch pathway or to novel signaling pathways remains to
be clarified. Finally, CSLSu(H) has recently been shown to
auto-activate itself in a Notch-independent manner, main-
taining its own expression via the 39 ASE in the socket cell
f the adult bristle of Drosophila (S. Barolo and J. W.
osakony, personal communication), the very same ele-
ents required for CSL-mediated repression in its sister

ell, the bristle precursor. Though a special case, this
bservation reminds us that detailed knowledge of Notch/
SL-regulated promoters is essential for complete under-

tanding of the pathway.

8. Future Directions

Despite benefiting in recent years from an increasingly
collaborative, multidisciplinary effort many questions re-
main in the Notch field. Structural information regarding
Notch and its interacting proteins remains scarce. The
oligomeric state of Notch and the molecules that are

associated with it at the cell surface are unknown, nor is it

Copyright © 2000 by Academic Press. All right
lear what oligomerization changes if any are induced by
igand binding from within the same cell (cis interactions)
r from another cell (trans interactions). Another area
agging behind is the elucidation of the molecular mecha-
isms of known genetic modifiers of Notch signaling.
hile some recent progress in this area has been made (e.g.,

ringe; Ju et al., 2000; Bruckner et al., 2000; Moloney et al.,
000; Numb; Verdi et al., 1999; Wakamatsu et al., 1999; and
astermind; Petcherski and Kimble, 2000b) the role of

roteins such as Deltex, big brain, pecanex, scabrous, san-
odo, and neuralized remains elusive. Another unresolved
ssue is the existence of “soluble” ligands. Soluble forms of
SL ligands are capable of binding to Notch (Shimizu et al.,
999) but have been reported to either antagonize (Hukriede
nd Fleming, 1997; Sun and Artavanis-Tsakonas, 1997) or
romote (Han et al., 2000; Li et al., 1998; Qi et al., 1999;
estan et al., 1999; Wang et al., 1998) Notch signaling. Also,
he degree of functional redundancy of the four vertebrate
otch proteins and their role in the adult vertebrate is only

eginning to be investigated. Perhaps the biggest challenge
emaining is complete integration, at the biochemical level,
f the genetic interactions between the Notch, Wingless,
nd Ras pathways. If the last few years are any indication,
uture research will no doubt continue to produce many
urprising and intriguing results.
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