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Abstract

We compared the number of spatial frequency and orientation mechanisms underlying first- versus second-order processing by mea-
suring discrimination at detection threshold for first- and second-order Gabors to determine the smallest difference in spatial frequency
and orientation that permits accurate discrimination at threshold. For second-order gratings, the number of channels is the same as for
first-order gratings for spatial frequencies up to about 2 cpd; however, there are fewer second-order channels at higher spatial frequen-
cies. In contrast, the number of labeled channels for orientation is the same for first- and second-order gratings. In conclusion, our find-
ings provide evidence for distinct spatial frequency and orientation labeled detectors in second-order visual processing. We also show
that, relative to first-order, there are fewer second-order channels processing higher spatial frequencies. This is consistent with a fil-
ter-rectify-filter scheme for second-order in which the second stage of filtering is at lower spatial frequencies.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

It is now well accepted that the early stages of visual
processing consist of a series of filter-like mechanisms that
are selective to specific image properties such as spatial fre-
quency and orientation (reviewed in Graham, 1989). In
fact, accumulating evidence from psychophysical studies
in humans as well as from single-cell recording studies in
monkeys suggests that these mechanisms have relatively
limited spatial frequency (±1 octave) and orientation band-
widths (±12–15�) (reviewed in DeValois & DeValois,
1988). In an effort to determine the number of channels
making up early spatial frequency processing, Watson
and Robson (1981) used a discrimination task at detection
threshold. This task consists in finding the smallest differ-
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ence in spatial frequency or orientation that enables dis-
crimination at detection threshold. This is based on the
argument that at detection threshold, stimulus energy for
the given spatial frequency is only sufficient to activate
the most sensitive channel. Therefore, if two stimuli can
be perfectly discriminated at detection threshold, this sug-
gests that they are processed by different channels. In their
study, Watson and Robson (1981) found that there are sev-
en spatial frequency channels between 0.25 and 30 cycles
per degree (cpd). Hess and Norbdy (1986) extended Wat-
son and Robson’s findings and identified an additional
channel that covers spatial frequencies below 0.2 cpd.
Other studies have applied the same approach and deter-
mined the number of temporal frequency channels (Hess
& Plant, 1985; Thompson, 1983).

The investigation of spatial frequency channels has
mainly been done for mechanisms that are sensitive for
first-order image properties, such as luminance. However,
the human visual system is also able to detect second-order
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image attributes other than luminance, such as texture and
contrast, in which there is no difference in mean luminance
(Cavanagh & Mather, 1989; Chubb & Sperling, 1988;
Dumoulin, Baker, Hess, & Evans, 2003; Ellemberg, Allen,
& Hess, 2004; McGraw, Levi, & Whitaker, 1999; Prins &
Kingdom, 2003). Accumulating evidence indicates that
our ability to detect stimuli defined by second-order fea-
tures is done via separate mechanisms (Mareschal & Baker,
1998; Zhu & Baker, 1993) designed to extract modulations
in contrast or texture rather than as a consequence of a
processing non-linearity in early visual processing (Burton,
1973; Langley, Fleet, & Hibbard, 1996; Taub, Victor, &
Conte, 1997).

Computational modeling suggests that the detection of
second-order image properties requires not only a first
stage of linear filtering, as does the detection of first-order
image properties, but also an additional stage of filtering
that is preceded by rectification (Chubb & Sperling, 1988;
Wilson, Ferrara, & Yo, 1992). Recently, Prins and King-
dom (2003) provided evidence of such additional process-
ing for second-order perception in humans. They found
that the sensitivity to the second-order component of a
texture (i.e., the envelope created by the orientation and
frequency modulation) composed of densely packed
Gabor elements (i.e., the carrier) is decreased by previous
adaptation to a first-order grating that matched the char-
acteristics of the first-order carrier in the stimulus. These
data support a ‘filter-rectify-filter’ model, in which early
linear filtering via mechanisms that are sensitive to the
high spatial frequencies of the carrier are followed by a
non-linear processing stage (e.g., full-wave, half-wave rec-
tification, or squaring), and subsequently by a second
stage filtering by mechanisms that are sensitive to the low-
er spatial frequencies of the envelope. Single-cell recording
studies in cats report that the second stage of filtering is
tuned to spatial frequencies that can be lower than the
first stage of filtering by a factor of 10–20 (Mareschal &
Baker, 1999).

Although the perception of second-order information
has been widely investigated over the past decade our
understanding of the neural architecture of the second-or-
der processing system is at an early stage compared with
that of its first-order counterpart. For example, while it is
currently presumed that the human visual system possesses
second-order mechanisms tuned to spatial frequency and
orientation (Sutter, Sperling, & Chubb, 1995), there is at
present limited support for this proposal. Furthermore,
nothing is known of the number or bandwidths of such
sub-mechanisms. By means of a discrimination at thresh-
old paradigm, like that used by Watson and Robson
(1981), the goal of the present study was to compare the
number of first- and second-order channels used by the
human visual system to extract spatial frequency and orien-
tation information. We hypothesize that to exploit the
degree of correlation that exists between the first- and sec-
ond-order information contained in natural scenes (John-
son & Baker, 2004), it would be advantageous for the
neural architecture supporting first- and second-order pro-
cessing to be comparable over as much of the visual range
as possible. However, we do expect to see this breakdown
in the higher spatial frequency range because of the intrin-
sic lower spatial frequency limitation of second-compared
with first-order detectors.
2. Methods

2.1. Observers

One of the authors and two observers, who were unaware of the issues
examined, participated in this study. Two had normal acuity and the other
had corrected to normal acuity.

2.2. Stimuli and apparatus

The stimuli consisted of localized two-dimensional Gabors and equally
sized patches of two-dimensional binary noise. A Gabor is a sinusoidal
modulation of luminance that is windowed by a two-dimensional Gauss-
ian envelope. The first-order stimuli were created by adding the sinusoidal
component of a Gabor to two-dimensional binary noise. This stimulus is
represented by the following equation:

Gðx; yÞ ¼ Lmean þ LmeanðGsineð2pfxÞ þ RCÞ expð�x2=r2
xÞ expð�y2=r2

yÞ; ð1Þ

where Lmean is the mean luminance of the pattern, f is the spatial frequency
of the sinusoidal modulation, G is the contrast of the grating, R is the
random carrier (having contrast C), and (rx) and (ry) are, respectively,
the horizontal and vertical space constants (the distance from the centre
of the normal distribution where amplitude decreases to 1/e). The noise
carrier had a contrast of 50% and each noise element was 1.9 by 1.9 arc
min.

The second-order stimuli were created by multiplying the sinusoidal
component of a Gabor by two-dimensional binary noise. This produced
Gabors with an internal sinusoidal structure that varied in contrast and
had a mean luminance that was constant across the pattern. The geometry
of the second-order stimulus is represented by the following equation:

Gðx; yÞ ¼ Lmeanð1þ ðRðM sineð2pfxÞ þ 1Þ expð�x2=r2
xÞ expð�y2=r2

yÞCÞ; ð2Þ

where M is the modulation depth of the sinusoidal component and all
other parameters are the same as indicated above. We created our sec-
ond-order stimuli so that any change in modulation depth varied both
the high and low contrast parts of the pattern.

The stimuli and presentation routine were programmed in MatlabTM

using the Psychophysics Toolbox routine (Brainard, 1997; Pelli, 1997).
The experiments were run on a Macintosh G4 computer and the images
were displayed on a monitor that had a frame rate of 75 Hz, a resolution
of 1152 · 870 pixels, and a mean luminance of 42 cd/m2. The relationship
between voltage and screen luminance was measured with a photometer.
The Gabors were produced with a subset of achromatic luminance values
that were ordered linearly.

2.3. Procedure

The display was viewed binocularly in dim lighting. At the beginning
of each trial, observers were instructed to fixate a cross at the centre of
a uniformly illuminated screen. The method used to measure discrimina-
tion at threshold was a two-by-two alternative forced-choice procedure—
utilizing the method of constant stimuli (Watson & Robson, 1981).
Randomly, for each trial, one interval contained an unmodulated noise
pattern whilst the other contained a Gabor pattern. In all, there were four
separate conditions: first- and second-order spatial frequency discrimina-
tion at threshold across a wide range of spatial frequencies (0.1–22 cpd),
and first- and second-order orientation discrimination at threshold across
all orientations (0–180 degrees).
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2.3.1. Experimental conditions

2.3.1.1. Spatial frequency discrimination at threshold. The observer sat at
57 cm from the screen for baseline spatial frequencies from 0.1 to 12 cpd
and at 128 cm from the screen for the baseline spatial frequencies of 12
and 22 cpd. To verify the effect of viewing distance, 12 cpd was tested at
both viewing distances. The size of the stimuli was two periods of the
smallest spatial frequency tested. The stimuli were truncated at ±2r.
The orientation of the sine-wave component was vertical. For each bloc
of trials, a pair of spatial frequencies (the baseline and comparative spatial
frequencies) was presented at five contrast levels, spanning the observer’s
threshold. Each of the two spatial frequencies making up a pair was pre-
sented 33 times at each contrast level in each of three separate runs, for a
total of 990 trials per datum point (e.g., filled or open symbols on Figs. 2
and 3). For a given block of trials, spatial frequency (higher versus lower)
was varied randomly across trails. The observer’s task was to indicate,
using one of two keys on the keyboard, which of the two intervals (first
or second) contained the stimulus (detection) as well as indicate using
two other keys, which spatial frequency was presented (discrimination).
Prior to each block of trials, the observer was familiarized with high con-
trast versions of the stimuli. Each stimulus was presented for 350 ms, sep-
arated by a 500 ms interval during which the screen returned to mean
luminance. Each interval was accompanied by a tone.

2.3.1.2. Orientation discrimination at threshold. All testing was done at
57 cm from the screen and spatial frequency remained constant at
1.4 cpd. The observer’s task was to indicate, using one of two keys on
the keyboard, which of the two intervals (first or second) contained the
stimulus (detection) as well as indicate using two other keys, which orien-
tation was presented (discrimination). Prior to each block of trials, the
observer was familiarized with high contrast versions of the stimuli. All
other details were the same as for the spatial frequency condition.

2.4. Data analysis

To determine whether the two stimuli presented in each pair (spatial
frequency or orientation) were perfectly discriminated at threshold (i.e.,
indicating different underlying mechanisms), the psychometric functions
for detection and discrimination were fitted by Weibull functions using
the maximum likelihood procedure and the two ensuing functions were
compared statistically (for details see Prins & Kingdom, 2003). Specifical-
ly, if the likelihood for ‘‘same parameters’’ is not significantly different
from the likelihood for ‘‘different parameters,’’ then the detection and dis-
crimination data can be fitted as well by a single Weibull and the data are
considered to be perfectly discriminated. We defined lambda (k), an arbi-
trary variable, to be

k ¼ �2 lnðLS=LDÞ; ð3Þ
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Fig. 1. In both panels, the dark triangles represent detection of 0.10 cpd and
represent detection of 0.16 cpd (left) or 0.19 cpd (right) and the white squares
frequency pairing on the left panel is not perfectly discriminated whilst the pa
where LS is the likelihood for the ‘‘same parameters’’ (detection and dis-
crimination Weibulls have equal parameters) and LD is the likelihood
for the ‘‘different parameters’’ (detection and discrimination Weibulls have
different parameters). An advantage with this model is that it includes a
bias parameter for discrimination. Further, it should be noted that com-
bining the discrimination data also controls for part of this bias.

3. Results

Fig. 1 presents a typical example of the psychometric
functions for detection and discrimination. The left panel
shows a spatial frequency pairing that is not perfectly dis-
criminated and the right panel shows a spatial frequency
pairing that is perfectly discriminated. Fig. 2 presents the
spatial frequency discrimination at threshold data for the
first- and second-order stimuli for the two observers. The
horizontal axis displays spatial frequency and the vertical
axis shows the threshold difference (discrimination thresh-
old minus detection threshold). Therefore, a value of zero
indicates equal detection and discrimination thresholds.
The arrows at the top correspond to the baseline spatial
frequency to which the following points on the line are
compared. Open symbols represent spatial frequencies that
are not perfectly discriminated from the baseline, whilst
filled ones show those that are (based on the calculation
of lambda presented in Section 2.4). Circles present data
that were collected at a viewing distance of 57 cm and the
squares data that were collected at a viewing distance of
128 cm. For both participants, there is almost complete
overlap between the spatial frequency pairs that were tested
at both distances, indicating that changing viewing distance
for the higher spatial frequencies did not influence the
results.

The results are similar for both participants, and for
both the first- and second-order conditions. For the first-
order stimuli, each observer produced seven pairs of spatial
frequencies that were perfectly discriminated, consistent
with there being eight labeled channels. In contrast, for
the second-order stimuli, there are fewer pairs of spatial
frequencies that are perfectly discriminated. The number
of perfectly discriminated pairs is the same as for first-order
1.0
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the white triangles represent discrimination of 0.10 cpd. The dark squares
represent discrimination of 0.16 cpd (left) or 0.19 cpd (right). The spatial
iring on the right is. These data are from subject PG.
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Fig. 2. Spatial frequency discrimination at threshold. The baseline spatial frequencies are indicated by the arrows at the top and the symbols present the
comparative spatial frequencies tested. Open symbols show spatial frequency pairs that are not perfectly discriminated and filled symbols present those
that are. Circles present data collected at a viewing distance of 57 cm and squares at a viewing distance of 128 cm. The left panel shows data for the first-
order stimuli and the right panel shows data for second-order stimuli. The upper figures present data from DE and the lower figures present data from
participant PG.
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gratings for spatial frequencies up to about 2 cpd, and the
difference in spatial frequency between these pairs is also
similar. However, beyond 2 cpd there is only one pair of
perfectly discriminated spatial frequencies for the second-
order condition, compared to four pairs for the first-order
condition. Further, for the second-order condition the
highest spatial frequency tested was 19 cpd and it was not
discriminated from 5 cpd.

Fig. 3 presents the data for orientation discrimination at
threshold for the first- and second-order stimuli for the two
observers. The horizontal axis displays orientation and the
vertical axis shows the threshold difference (discrimination
threshold minus detection threshold). All other details are
the same as for Fig. 2. Again, the results are similar for both
participants, and that both for the first- and second-order
conditions. However, in contrast with the spatial frequency
data, we find no difference between the results for the first-
versus second-order conditions. For example, HS produced
five pairs of perfectly discriminated orientations, both for
the first- and second-order conditions, and the difference
in orientation between these pairs is also similar.
4. Discussion

The results from the present study provide the first
strong support for separate spatial frequency and orienta-
tion tuned mechanisms underlying the detection of sec-
ond-order information. The lowest spatial frequency-
tuned mechanism is around 0.1 cpd and the highest around
6 cpd. We find evidence for five separate spatial frequency
tuned channels. In terms of orientation, five discriminable
steps can be made at threshold across the entire range, sug-
gesting the existence of six separate orientation tuned chan-
nels, at least for the spatial frequency tested (i.e., 1.4 cpd).

We find a number of important differences and similari-
ties between the first- and second-order channels. At the
lower spatial frequencies, between the limits of 0.1–2 cpd,
the number and bandwidth of the channels appear to be
similar for first- and second-order processing. However, at
higher spatial frequencies, there are fewer spatial frequency
tuned channels underlying second-order compared to first-
order pattern vision. Specifically, between 2 and 6 cpd there
are two second-order spatial frequency tuned channels,
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Fig. 3. Orientation discrimination at threshold. The baseline orientations are indicated by the arrows at the top and the symbols present the comparative
orientations tested. Open symbols show orientation pairs that are not perfectly discriminated and filled symbols present those that are. The left panel
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whilst between 2 and 20 cpd there are five first-order chan-
nels. The reduced number of spatial frequency tuned mech-
anisms covering higher frequencies and their wider
bandwidths implies a decrease in efficiency of second-order
processing with respect to first-order. This is consistent with
evidence of reduced modulation sensitivity and reduced res-
olution at higher spatial frequencies for second-order com-
pared to first-order pattern vision (Manahilov, Calvert, &
Simpson, 2003; Schofield & Georgeson, 1999). Our pattern
of results is also consistent with the ‘filter-rectify-filter’ pro-
cessing scheme proposed to account for second-order pro-
cessing (e.g., Cavanagh & Mather, 1989; Chubb &
Sperling, 1988; Prins & Kingdom, 2003) and single-cell
studies in cats that find that second-order filtering is tuned
to spatial frequencies that are lower than the first stage of
filtering by a factor of 10–20 (Mareschal & Baker, 1999).

In contrast, we do not find any difference in the number
of orientation selective channels between the first- and sec-
ond-order conditions. This finding might also suggest that
the first- and second-order mechanisms also have similar
bandwidths. However, it is important to note that although
the current paradigm is a powerful tool to determine the
number of separate labeled channels underlying spatial fre-
quency and orientation filtering, it does not give a model-
free measure of bandwidth. In fact, using a paradigm
designed to assess lateral inhibitory interactions among
first- and second-order filters, we previously documented
slightly narrower orientation tuning for first- compared
to second-order processing (Ellemberg et al., 2004). Fur-
ther, although other studies also suggest several similarities
between the mechanisms underlying first- and second-order
orientation processing (Allen, Hess, Mansouri, & Dakin,
2003; Mareschal & Baker, 1999; Smith, Clifford, & Wende-
roth, 2001), recent imaging data in humans show that ori-
entation-selective first-order adaptation originates in V1,
whereas second-order stimulus orientation is extracted by
additional extra-striate processing beyond V1 (Larsson,
Landy, & Heeger, 2006).

The present findings of comparable number and band-
width of orientation channels and spatial channels at lower
spatial frequencies for first- and second-order mechanisms
in human vision are not unexpected. In the early stages of
cortical processing where cells exhibit selectivity for both
spatial frequency and orientation, it has been shown that
single-cells process both first- and second-order informa-
tion via separate intracellular circuits (Mareschal & Baker,
1998; Zhu & Baker, 1993). A sizeable proportion of both
simple and complex cells exhibit such a ‘‘double-duty’’ in
which the spatial frequency and orientation tuning to the
first- and second-order characteristics of the stimulus are
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matched (particularly for position of optima but also to a
lesser extent, bandwidth) on a cell by cell basis (Mareschal
& Baker, 1999; Song & Baker, 2004).

From a computational point of view, a recent analysis of
the correlations between first- and second-order structure
in natural scenes (Johnson & Baker, 2004) shows that there
is a strong correlation between first- and second-order
information contained in similar regions of a natural scene.
In fact, these correlations occur for information within
similar spatial frequency and orientation bands and are
thought to be the basis of a mechanism to distinguish
between real edges that are characterized by correlated
changes in luminance (first-order) and contrast/texture
(second-order) from shadows that do not contain such a
correlation between first- and second-order image structure
(Martin, Fowlkes, & Malik, 2004). Having comparable sets
of spatial frequency and orientationally tuned first- and
second-order mechanisms would seem to an important pre-
requisite for such an analysis. Furthermore, such a nice
correspondence between the spatial frequency and orienta-
tion architecture of the early filters for these two types of
visual information processing potentially facilitates future
comparison of how their outputs are combined for supra-
threshold discriminations.
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