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No study has been performed on identifying microRNAs (miRNAs) and their targets in the medicinal plant,
Catharanthus roseus. In the present study, using the comparative genomics approach, we have predicted two
potential C. roseus miRNAs. Furthermore, twelve potential mRNA targets were identified in C. roseus genome
based on the characteristics that miRNAs exhibit perfect or nearly perfect complementarity with their targeted
mRNA sequences. Among themmany of the targets were predicted to encode enzymes that regulate the biosyn-
thesis of terpenoid indole alkaloids (TIA). In addition, most of the predicted targets were the gene coding for
transcription factors which are mainly involved in cell growth and development, signaling and metabolism.
This is the first in silico study to indicate that miRNA target gene encoding enzymes involved in vinblastine
and vincristine biosynthesis, which may help to understand the miRNA-mediated regulation of TIA alkaloid
biosynthesis in C. roseus.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license. 
1. Introduction

The medicinal plant Catharanthus roseus L. G. Don is of enormous
pharmaceutical potential because of the presence of N120 terpenoid
indole alkaloids (TIAs), some of which are known to exhibit strong
pharmacological activities [1]. Vinblastine and vincristine, the antineo-
plastic bisindole alkaloids are produced only in trace amounts; vinblas-
tine (0.01%) and vincristine (0.003%). Furthermore, with significant
international efforts cell cultures are also not yet a valid alternative for
production for these low yielding secondary metabolites [2]. Therefore,
a deeper understanding of the regulatory system governing TIA metab-
olism is of particular interest and could eventually make successful
metabolic engineering of alkaloid biosynthesis possible.

Several hundredmiRNAs have been identified in plants by computa-
tional and experimental approaches [3,4]. However, a little is known
about experimental or computational identification of miRNA in
C. roseus species. C. roseus belongs to Apocyanaceae family, reflecting a
disparity between the important values of this plant family and insuffi-
cient molecular and genetic studies, including small RNAmediated gene
regulation. So to gain insight intomiRNAs and their important regulatory
functions in terpenoid indole alkaloid biosynthetic pathway, we studied
hapatra).
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miRNA and their targets in C. roseus genome using computational
approach.

2. Materials & methods

2.1. miRNA reference set

To searchpotentialmiRNAs, a total of previously known328miRNAs
from Arabidopsis thalianawere obtained frommiRNA Registry Database
(Release 18.0, November 2011). Although some of these A. thaliana
miRNAswere initially identifiedby computational approaches, amajority
of them have been validated by experimental approaches including
direct cloning, PCR, Northern blotting, and/or 5′ rapid amplification of
cDNA end (5′RACE) [3]. To avoid the overlap of miRNAs, the redundant
miRNA sequences were removed manually and the remaining
sequences were used as a reference miRNA for homologous prediction
in C. roseus. We have referred to the previous work on computational
prediction of miRNAs [5].

2.2. Availability of software

Comparative software BLAST-2.2.14 was used from NCBI Genbank.
MFOLD 3.1 was used online to analyze secondary structure of RNAs.
MirEval (http://tagc.univ-mrs.fr/mireval)was used to predictmiRNApre-
cursor [6]. These precursor sequences were used for BLASTx analysis for
removing the protein-coding sequences and retained only non-protein
encoding sequences. BLASTn from NCBI (http://www.ncbi.nlm.nih.gov)
was used to analyze potential targets of miRNAs.
nse. 
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2.3. Prediction of miRNAs

Procedure for searching potential miRNAs in C. roseus is shown in
Fig. 1. The non-redundant miRNA sequences after initial screening
were subjected to BLASTn search for C. roseus miRNA homolog against
EST database. The adjusted BLASTn parameters setting were as follows:
expect value was set at 1000 to increase the hit chance for more poten-
tial sequences; low complexity was chosen as the sequence filter; the
number of descriptions and alignmentswere raised to 1000. The default
word match size between the query and a database sequence was 7.
RNA sequences were considered as miRNA candidates only if they fit
the following criteria: (1) at least 18 nt length were adopted between
the predicted and mature miRNAs and (2) allowed to have 0–3 nt
mismatches in sequence with all previously known plant mature
miRNAs. The ESTs that closely match the previously known plant
mature miRNAs were included in the set of miRNA candidates and
used for additional characterization by subjected to evaluation for
miRNA precursor prediction properties using mirEval software. These
precursor sequences were used for BLASTx analysis for removing the
protein-coding sequences and retaining only the non-protein-coding
sequences.

2.4. Prediction of secondary structure

Precursor sequences of these potential miRNA homologs were
subjected to hairpin structure prediction using the Zuker folding algo-
rithm with MFOLD 3.1 [7]. In brief, the following criteria were applied
in designating the RNA sequence as a miRNA homolog described by
(1) the sequence could fold into an appropriate stem-loop hairpin
secondary structure; (2) the small RNA sits in one arm of the hairpin
structure; (3) no more than 6 mismatches are between the predicted
mature miRNA sequence and its opposite miRNA (miRNA*) sequence
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Fig. 1. Procedure of potential C. roseusmiRNA gene search by ide
in the secondary structure; (4) no loop or break is in the miRNA or
miRNA* sequences, and (5) predicted secondary structure has higher
MFEI and negative MFE [8].

The MFEI was calculated using the following equation:

MFEI ¼ MFE=length of the RNA sequenceð Þ � 100½ �= Gþ Cð Þ %

MFE denotes the negative folding free energies ΔGð Þ:
2.5. Prediction of mRNA targets of miRNAs

In brief, we used the potential C. roseus miRNA BLAST analysis
against the C. roseus mRNA database to search sequences conforming
to the following standards as the C. roseus candidate targets gene. (1)
Themaximumnumber of mismatched nucleotides between themature
miRNA and its potential target geneswas four; (2) themaximumnumber
of mismatched nucleotides at positions 1–9 was one; (3) no mismatches
was allowed at positions 10–11; (4) more than two continuous mis-
matches at any position were not allowed [9].
2.6. Analysis of GO and KEGG pathway

To better understand the function of C. roseus miRNAs, Blast2go
[10,11] was employed to investigate the predicted target genes. First,
the identified miRNA targeted mRNAs were used to BLASTX against
NR database. Second, the best hits identified by BLASTX were further
searched against the GO and KEGG databases using default settings.
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3. Results

3.1. Potential miRNAs in C. roseus

Following the procedure depicted in Fig. 1, 19910 ESTs from C. roseus
were searched against 321 mature miRNA sequences of Arabidopsis. In
total, two potential miRNAs were predicted in C. roseus. The two identi-
fied C. roseus candidatemiRNAs belong tomiR5021 family. The two pre-
dictedmicroRNAs are havingmaximalmismatches of 2 & 3 respectively
against its homolog (Fig. 2). The length of the two EST is 611 nt and
592 nt while the precursor's length is 80 nt and 100 nt respectively
as identified by MirEval software. The mature miRNA sequences are
located at the 3′ end of the miRNA precursors. Minimal folding free
energy (MFE) is an important characteristic that determines the second-
ary structure of nucleic acids (DNA and RNA). The lower theMFE is, the
higher the thermodynamically stable secondary structure of the corre-
sponding sequence is [12]. The MFE value of the structures is estimated
to −17.90 kcal/mol and −34.70 kcal/mol respectively. We have also
calculated theMFE index (MFEI) for each sequence, to avoid false calling
of other RNAs as miRNA candidates. The MFE index (MFEI) for each
sequence was calculated as previously reported [13]. In this study, the
MFEI value is 0.57 and 0.83 respectively. During the screening of the po-
tential miRNAs, candidate miRNAs were evaluated for A + U content.
The sequences of the miRNA precursors have A + U content of 61.25%
and 58% respectively (Table 1), which is in agreementwith the previous
results [5]. It is estimated that in plants, approximately 10,000 ESTs
contain 1 miRNA [14]. Therefore, the total of 19,910 ESTs in C. roseus
examined in this study may contain 1–2 miRNAs. C. roseus belongs
to Apocyanaceae family. Unfortunately, not a single miRNA from
Apocyanaceae family has been deposited in the MiRbase [15]. We
Fig. 2. Mature and precursor sequences and the predicted stem and loop structures of newly
(EG560894; homolog of A. thaliana); B. miR5021 (EG558543; homolog of A.thaliana).
expect that as more miRNAs of this plant family are publicly available,
more miRNAs will be identified in C. roseus. ESTs are partially tran-
scribed gene sequences, which have been used to confirm the existence
and expression of potential miRNAs predicted by computational
approaches in Arabidopsis, rice and maize [16,17]. In this study, we
also tested the predicted C. roseus miRNAs individually against the EST
databases of GenBank. Our BLASTn search results indicated that several
predicted periwinkle miRNAs exist in C. roseus EST databases,
suggesting that these miRNAs were expressed in the Catharanthus
genome. Moreover, many of the reference set miRNAs from Arabidopsis
which are used for homology search in C. roseus have been validated
by experimental approaches. So the result from the computational
prediction will be useful to guide experimental design for biological
verification.

4. Discussion

4.1. C. roseus miRNA targets and their functions

The miRNA-regulated genes control a variety of biological and
metabolic processes. Gaining insight into the miRNA targets will help
us to understand the spectrum of miRNA regulation and elucidate the
functional importance of miRNAs. Increasing evidences have demon-
strated that most plant miRNAs bind to their target mRNA sequences
with perfect or near-perfect sequence complementarity [18,19]. This
provides a powerful strategy for discovering potential miRNA targets
by comparing and aligning miRNAs with mRNAs sequences. Here, we
performed more stringent criterion [19] to identify potential C. roseus
targets. After a set of screening criteria as described in the method, we
achieved 12 target genes. Out of these 12 target genes many they have
identified miRNAs in C. roseus. The mature miRNAs are highlighted in cyan. A. miR5021



Table 1
Newly identified miRNAs from ESTs of C. roseus.

miRNA Refererence species Gene ID EST length (nt) NM (nt) LM (nt) LP (nt) Side A + U (%) MFE MFEI

miR-5021 A. thaliana EG560894 697 2 20 80 3′ 61.25 17.90 0.57
A. thaliana EG558543 795 3 20 100 3′ 58 34.70 0.83

Note: NM, number of mismatch; LM, length of mature miRNAs; LP, length of precursor; MFE, minimal folding free energy; MFEI, minimal folding free energy index.

Table 2
Potential targets of the identified miRNAs in C. roseus.

miRNA family Target accession ID Target description Function

mir-5021 (EG558543) EF625593 MYB transcription factor Transcription factor
EF625552 ADP-ribosylation factor 1 Protein transport
EF625539 Geranylgeranyl diphosphate synthase Isoprenoid biosynthetic process
EF625523 Gamma-tocopherol methyltransferase related protein Methyltranferase activity
EF625416 GCPE protein Terpenoid biosynthetic process

mir-5021 (EG560894) EF625531 UDP-glucose glucosyltransferase Transferase activity
EF625513 Cytochrome c oxidase subunit I Oxidative phosphorylation
EF625489 Type-A response regulator Regulation of Transcription
EF625469 UDP-glucose iridoid glucosyltransferase Transferase activity
EF625448 Magnesium chelatase subunit H Biological process
EF625362 Chloroplast terpenoid cyclase Terpene synthase activity
EF661875 Putative secretory peroxidase Response to oxidative stress

Table 3
GO analysis of miRNA targets in C. roseus.

miRNAs Biological Process Accession IDs
for the targets

GOs

mir-5021
(EG558543)

DNA binding EF625593 GO: 0003677
GTP binding EF625552 GO: 0005525
Geranyltranstransferase activity EF625539 GO: 0004337
Methyltransferase activity EF625523 GO: 0008168
Iron ion binding EF625416 GO: 0005506

mir-5021
(EG560894)

Transferase activity EF625531 GO: 0016758
Oxidative phosphorylation EF625513 GO: 0004129
Regulation of transcription EF625489 GO: 0000156
Transferase activity EF625469 GO: 0016758
Biological process EF625448 GO: 0009058
Terpene synthase activity EF625362 GO: 0010333
Response to oxidative stress EF661875 GO: 0004601
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different biological functions, including the terpenoid biosynthesis,
transcription regulation, cell growth and development (Table 2).
These predicted mRNA targets are statistically significant in compare
to the other mRNA targets with least Expect (E) value.

Out of severalmRNA targets predicted; one target gene identified for
C. roseusmiRNA (EG560894) is UDP-glucose iridoid glucosyltransferase.
This enzyme is responsible for glucosylation step in the biosynthetic
pathway of the secondary metabolite, iridoid in higher plants [20].
They are pharmacologically active principles in variousmedicinal plants
and key intermediates in the biosynthesis of monoterpenoid indole
alkaloids as well as quinoline alkaloids. In addition, strictosidine
synthase is another potential of target of miR5021 in C. roseus. The tran-
scriptionally regulated strictosidine synthase condenses tryptamine
and the iridoid secologanin to yield strictosidine, the universal precur-
sor of TIA [21]. Interestingly, another Arabidopsis miR5021 homolog in
C. roseus is predicted to target GCPE protein. GCPE protein is involved
in the terpenoiod biosynthesis process [22].

It is expected that freeing the expression of key enzymatic activities
form the strict regulation to which they are normally subjected is
expected to increase the flux through the pathway and product forma-
tion. Therefore, the next major steps are to successfully apply metabolic
engineering approach, to regulate the enzymes throughmiRNAmediated
regulation. This will help to explore unconventional alternate strategies
that are economically viable for the commercial production of indole
alkaloids.

In addition EG560894 was also predicted to target type-A response
regulator (EF625489), which is involved in the final steps of a
histidine-to-aspartate phosphorelay in cytokinin (CK) signaling in
C. roseus. CKs are plant growth regulators with pleiotropic functions in
plants. They can also control some secondary metabolite biosynthetic
pathways in Arabidopsis [23] and terpenoid indole alkaloids (TIAs) in
periwinkle cells [24].

Recent studies have shown that miRNAs are also involved in plant
adaptation to environmental stresses, such as cold [25,26], salt [27],
drought [28], andnutrient deficiency [29,30]. Interestingly,we identified
one target of miR-5021 is putative secretory peroxidase [EF661875]
which response to oxidative stress. Further analysis of Gene ontology
(GO) suggested that they are involved in peroxidase activity.

C. roseus miRNA also target a gene chloroplast geranylgeranyl
diphosphate synthase (EF625539) that is involved in isopernoid
biosynthesis. Isoprenoids are a large and highly diverse group of
natural products with many functions in plant primary and secondary
metabolism [31]. Another Arabidopsis miR-5021 homolog of C. roseus,
EG558543 targets ADP-ribosylation factor 1. It is a GTP binding protein
involved in the regulation of vesicle-mediated protein transport
through the secretory pathway [32].

ManymiRNA targets identified by bioinformatics and/or experimen-
tal methods were transcription factors that help control plant growth
and development. In this study we found a target of miR-5021 called
MYB transcription factor. MYB proteins are key factors in regulatory
networks controlling development, metabolism and responses to biotic
and abiotic stresses [33]. In Arabidopsis, the other functions of MYB
transcription factor are (i) primary and secondary metabolism, (ii) cell
fate and identity, (iii) developmental processes and (iv) responses to
biotic and abiotic stresses. Magnesium chelatase subunit H is also pre-
dicted to be a target for mir5021 homolog in C. roseus. Previous studies
have shown that magnesium-protoporphyrin IX (ProtoIX) chelatase
large subunit (Mg chelatase H subunit; CHLH) is an ABA receptor. It
mediates ABA responses in seed germination, post germination growth,
and stomatalmovement [34]. CHLHhasmultiple functions in plant cells.
As a subunit of the Mg-chelatase, CHLH catalyzes the introduction of
Mg to ProtoIX, a key regulatory step of chlorophyll biosynthesis. In addi-
tion, CHLH plays a key role in mediating plastid-to-nucleus retrograde
signaling [35].



Table 4
KEGG analysis of miRNA targets in C. roseus (Homology Search in A. thaliana).

miRNAs Accession ID for targets Target description Enzyme Pathways

mir-5021 (EG558543) EF625416 GCPE protein EC: 1.17.7.1 Terpenoid backbone biosynthesis
EF625539 Geranylgeranyl diphosphate synthase, type II EC: 2.5.1.1 Terpenoid backbone biosynthesis

mir-5021 (EG560894) EF625531 UDP-glucose: glycoprotein glucosyltransferase EC: 2.4.1.- Protein processing in ER
EF625513 Cytochrome c oxidase subunit 1 EC: 1.9.3.1 Oxidative phosphorylaion
EF625448 Magnesium chelatase subunit H EC: 6.6.1.1 Porphyrin and chlorophyll metabolism
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To further understand the function of C. roseusmiRNAs, thepredicted
target mRNAswere subjected to analysis by GO and Kyoto Encyclopedia
of Genes and Genomes (KEGG), a database for analyzing gene functions
systematically [36]. The result suggested that C. roseus miRNAs were
involved in various biological processes such as oxidation–reduction
process, regulation of transcription, transport, growth and development,
metabolism and translation (Table 3). Pathway enrichment analysis,
based on the KEGG database, demonstrates that the identified miRNAs
participated in four metabolic networks. These networks were involved
in terpenoid backbone biosynthesis, protein processing, porphyrin
and chlorophyll metabolism, oxidative phosphorylation, and other
secondary metabolites biosynthesis process (Table 4). Obviously; our
study will help further understanding of the important regulatory
roles of miRNAs in C. roseus growth and development, stress response,
and likewise in research and development to augment the production
of vinblastine and vincristine biosynthesis.

5. Conclusion

C. roseus (periwinkle) is the sole source of anticancerous alkaloids
vinblastine and vincristine which today is widely used for treatment
of cancer. Ajmalicine is used as an antihypertensive alkaloid. Recent
report demonstrates that, in addition to its anticancerous properties,
the extracts from the leaves of this plant can be used as prophylactic
agent in many infectious diseases. The unfortunately low yield of the
antineoplastic bisindole alkaloids and with the failure of the alternative
production systems, for example by in vitro culture of C. roseus cells, an
attempt can be made for the genetic manipulation of the alkaloid bio-
synthesis pathway for higher production levels. Our study is the first
in silico study to identify miRNAs and their targets in C. roseus, which
we hope could help to better understand miRNA-mediated regulation
of genes related to terpenoid indole alkaloids biosynthesis.
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