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Abstract

We describe a relative-timed semantic model for Business Process Modelling Notation (BPMN). We define
the semantics in the language of Communicating Sequential Processes (CSP). This model augments our
untimed model by introducing the notion of relative time in the form of delays chosen non-deterministically
from a range. We illustrate the application by an example. We also show some properties relating the timed
semantics and BPMN’s untimed process semantics by exploiting CSP refinement. Our timed semantics
allows behavioural properties of BPMN diagrams to be mechanically verified via automatic model-checking
as provided by the FDR tool.

Keywords: business process, CSP, refinement, timed semantics, verification, workflow

1 Introduction

Modelling of business processes and workflows is an important area in software
engineering. Business Process Modelling Notation (BPMN) allows developers to
take a process-oriented approach to modelling of systems. In our previous work [16]
we have given an abstract syntax using Z [20] and an untimed process semantics
in the language of CSP [14] to a subset of BPMN [12]. However, due to the lack
of a notion of time, this semantics is not able to precisely model activities running
concurrently when temporality becomes a factor;

For example, Figure 1 shows a simplified breast cancer clinical trial adapted
from the Neo-tango trial protocol [4]. This BPMN representation of clinical trial is
based on a new observation workflow model and its corresponding transformation to
BPMN [18]. Note the clinical trial specification used throughout this paper is by no
means not an accurate representation of real trial. In a clinical study it is important
that interventions are carried out safely and effectively, and often interventions must
satisfy a set of oncological safety principles [7]. In this example we will focus on
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Fig. 1. A simplified clinical trial

the set of interventions A2 denoted as a BPMN subprocess state in Figure 1. An
expanded version of A2 is shown in Figure 2 and below we show the schedule of

Fig. 2. A set of clinical interventions

each drug administration, we have omitted dosage for simplicity.

• EC C - Cyclophosphamide, every 14 days to 20 days
• EC E - Epirubicin, every 18 days to 21 days
• TG - Paclitaxel, every 5 days to 10 days followed by Gemcitabine, upto 10 days

One of the safety principles is Sequencing and it ensures each intervention “order(s)
(essential) actions temporally for good effect and least harm”. Here we are interested
in the following particular instance of this principle for interventions A2.

No more than one dosage of gemcitabine (TG G) may be given after the admin-
istration of cyclophosphamide (EC C) and before epirubicin (EC E).

It is these types of properties that we would like to verify the BPMN representation
against, while careful calculation could reveal whether or not this trial specification
does indeed satisfy the property and hence is “safe”, we are going to show how the
semantic model introduced in this paper allows us to mechanically verify the trial
specification via automatic model-checking as provided by the FDR tool.

The rest of this paper is structured as follows. Section 2 gives an introduction
to BPMN; an introduction to CSP [14] and Z [20], which are used throughout this
paper, is given in the Appendix. In Section 3 gives an overview of our syntactic
description of BPMN. Section 4 describes briefly our relative timed semantics. In
Section 5 we show some properties relating the timed and untimed models based
on CSP refinements, and revisit the example to show how the relative-timed model
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may be used to verify against the sequencing rule. We conclude this paper with a
comparison with related work. The complete formal definition of the timed model
may be found in our longer paper [17].

2 BPMN

States in our subset of BPMN, shown in Figure 3, can either be pools, tasks, sub-
processes, multiple instances or control gateways, each linked by a normal sequence,
an exception sequence flow, or a message flow. A normal sequence flow can be ei-
ther incoming to or outgoing from a state and have associated guards; an exception
sequence flow, depicted by the states labelled task*, bpmn*, task** and bpmn**,
represents an occurrence of error within the state. While sequence flows represent
control flows within individual local diagrams, message flows represent unidirec-
tional communication between states in different local diagrams. A global diagram
hence is a collection of local diagrams connected via message flows.

Fig. 3. States of BPMN diagram

In Figure 3, there are two types of start state, start and stime. A start state
models the start of the business process in the current scope by initiating its out-
going transition; it has no incoming transition and only one outgoing transition.
The stime state is a variant start state; it initiates its outgoing transition when a
specified duration has elapsed. There are also two types of intermediate state, itime
and imessage. An itime state is a delay event; after its incoming transition is trig-
gered, the delay event waits for the specified duration before initiating its outgoing
transition. An imessage state is a message event; after its incoming transition is
triggered, the message event waits until a specified message has arrived before initi-
ating its outgoing transition. Both types of state have a maximum of one incoming
transition and one outgoing transition.

There are two types of end state, end and abort. An end state models the
successful termination of an instance of the business process in the current scope by
initialisation of its incoming transition; it has only one incoming transition with no
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outgoing transition. The abort state is a variant end state; it models an unsuccessful
termination, usually an error of an instance of the business process in the current
scope.

Our subset of BPMN contains two types of decision state, xgate and agate. Each
of them has one or more incoming sequence flows and one or more outgoing sequence
flows. An xgate state is an exclusive gateway, accepting one of its incoming flows
and taking one of its outgoing flows; the semantics of this gateway type can be
described as an exclusive choice and a simple merge. An agate state is a parallel
gateway, which waits for all of its incoming flows before initialising all of its outgoing
flows.

A task state describes an atomic activity, and has exactly one incoming and
one outgoing transition. It takes a unique name for identifying the activity. In the
environment of the timed semantic model, each atomic task must take a positive
amount of time to complete. A bpmn state describes a subprocess state. It is a
business process by itself and so it models a flow of BPMN states. In this paper,
we assume all our subprocess states are expanded [12]; this means we model the
internal behaviours of the subprocesses. The state labelled bpmn in Figure 3 depicts
a collapsed subprocess state where all internal details are hidden; this state has
exactly one incoming and one outgoing transition.

Also in Figure 3 there are graphical notations labelled task*, bpmn*, task**,
bpmn**, task*** and bpmn***, which depict a task state and a subprocess state
with an exception sequence flow. There are three types of exception associated with
task and subprocess states in our subset of BPMN states. Both states task* and
bpmn* are examples of states with an ierror exception flow that models an inter-
ruption due to an error within the task or subprocess state; the states task** and
bpmn** are examples of states with a timed exception flow, and model an inter-
ruption due to an elapse of the specified duration; the states task*** and bpmn***
are examples of states with a message exception flow, and model an interruption
upon receiving the specified message. Each task and subprocess state can have a
maximum of one timed exception flow, although it may have multiple error and
message exception flows.

Each task and subprocess may also be defined as multiple instances. There are
two types of multiple instances in BPMN: the miseq state type represents serial
multiple instances, where the specified task is repeated in sequence; in the mipar
state type the specified task is repeated in parallel. The types miseqs and mipars
are their subprocess counterparts.

The graphical notation pool in Figure 3 forms the outermost container for each
local diagram, representing a single business process; only one execution instance
is allowed at any one time. Each local diagram contained in a pool can also be a
participant within a business collaboration (global diagram) involving multiple busi-
ness processes. While sequence flows are restricted to an individual pool, message
flows represent communications between pools.
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3 Abstract Syntax

In this section we describe the abstract syntax of BPMN using Z notation [20].
For reasons of space, this section provides partial definitions of BPMN’s abstract
syntax; readers may refer to our longer paper [17] for full definitions.

We first introduce some maximal sets of values to represent constructs such as
lines, task and subprocess name, defined as Z basic types:

[PName,Task ,Line,Channel ,Guard ,Msg ]

where PName is the set of diagram’s names. In this paper we will only consider the
semantics of BPMN timed events describing time cycles (duration) and not absolute
time stamps. We define schema type Time to record each duration; this schema
models a strictly positive subset of the six-dimensional space of the XML schema
data type duration [21, Section 3.2.6].

Time =̂ [year ,month, day , hour ,minute, second : N]

Each type of state shown in Figure 3 is defined using the free type Type where each
of its constructors describes a particular type of state. For example, the type of an
atomic task state is defined by task t where t is a unique name that identifies that
task state. Below is the partial definition.

Type ::= start | stime〈〈Time〉〉 | end〈〈N〉〉 | abort〈〈N〉〉 | task〈〈Task〉〉 |
xgate | bpmn〈〈BName〉〉 | miseq〈〈Task × N〉〉

According to the BPMN specification [12], each state type has other associated
attributes describing its properties; our syntactic definition has included only some
of these attributes. For example, the number of loops of a sequence multiple instance
state type is recorded by the natural number in the constructor function miseq . In
this paper we call both sequence flows and exception flows ‘transitions’; states are
linked by transition lines representing flows of control, which may have associated
guards. We give the type of a sequence flow or an exception flow, and a message
flow by the following schema definitions.

Trans =̂ [guard : Guard ; line : Line]
Mgeflow =̂ [msg : Msg ; chn : Channel ]

Each atomic task state specifies a delay range, min . .max , of type Range, denoting
a non-deterministic choice of a delay within those bounds. Each task resolves its
choice internally when it is being enacted.

Range =̂ [min,max : Time | min ≤T max ]

We record the type, transitions and messageflows of each state by the schema State.
Here we show a partial definition of the schema State, omitting the inclusion of
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schema components for message flows for reasons of space.

State =̂ [type : Type; in, out , error : P Trans; loop : N; ran : Range]

Here we provide the syntactic definition of the task state EC E from the example
in Figure 2.

〈| type � task EC E , in � t1, out � t2, error � ∅, loop � 0,

ran � 〈|min � 〈|year ,month, hour ,minute, second � 0, day � 18 |〉,
max � 〈|year ,month, hour ,minute, second � 0, day � 21 |〉 |〉 |〉

Each BPMN diagram encapsulated by a pool is a local diagram and represents
an individual business participant in a collaboration, built up from a well-configured
finite set of well-formed states [17]. While we associate each local diagram with a
unique name, a global diagram, representing a business collaboration, is built up
from a finite set of names, each associated with its local diagram; we also associate
each global diagram with a unique name.

4 Timed Semantics

We define a timed semantic function which takes a syntactic description of a global
diagram, describing a collaboration, and returns the CSP process that models the
timed behaviour of that diagram. That is, the function takes one or more pool
states, each encapsulating a local diagram representing an individual participant
within a business collaboration, and returns a parallel composition of processes
each corresponding to the timed behaviour of one of the individual participants.

For each local diagram, the relative-timed semantics is the partial interleaving
of two processes defined by an enactment and a coordination function. The en-
actment function returns the parallel composition of processes, each corresponding
to the untimed aspect of a state of the local diagram; this is essentially our un-
timed semantics of local diagrams [16]. The coordination function returns a single
process for coordinating that diagram’s timed behaviour; it essentially implements
a variant of the two-phase functioning approach adopted by real-time systems and
timed coordination languages [10]. Our timed model permits automatic translation,
requiring no user interaction. We will now give a brief overview of the coordination
function; again for reasons of space we only present function types accompanied
with informal descriptions. The complete formal definition of both the enactment
and coordination functions may be found in our longer paper [17].

Informally the coordination process carries out the following steps: branch out
and enact all untimed events and gateways until the BPMN process has reached
time stability, that is when all active BPMN states are timed; order all immediate
active states in some sequence 〈t1 . . tn〉 according to their shortest delay; enact
all the time-ready states according to their timing information; then remove the
enacted states from the sequence. The process implements these steps repeatedly
until the enactment terminates.
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We define the function clock to implement the coordination, where TimeState is
set of timed BPMN states, function allstates recursively returns a set of states con-
tained in a local diagram, including those contained within the diagram’s subprocess
states, and begin returns the set of start states of a local diagram.

clock : PName �→ Local �→ Process

This function takes the name of the diagram of type PName and its specification
environment (a mapping between diagram/subprocess names and their set of states)
of type Local , and returns a process, which first triggers the outgoing transition of
one of the start states, determined by the enactment. The process then behaves as
defined by the function stable.

stable : (P State �→ Process) �→ PName �→ Local �→
P State �→ P State �→ Process

The function stable is a higher order function; it takes some function f (for example,
constructed from the function timer below) and a set of active states, and returns
a process, which recursively enacts all untimed active states until the local diagram
is time-stable [17] i.e. when all active states of a local diagram are timed. Going
back to the example in Figure 2, states EC C , EC E , TG T and TG G are timed
and when the function stable is applied to the syntax of the diagram initially, the
process it returns will enact all states according to the sequence flows until the set
of active states are {EC C ,EC E ,TG T }, that is the diagram being time-stable.
After which the function behaves as defined by the function f ; in the definition of
clock , f is the function timer applied with its first four arguments where the third
and forth arguments are initially empty.

timer : PName �→ Local �→ P State �→ P State �→ P State �→ Process

Generally the function timer takes the diagram’s name and specification envi-
ronment, a set of timed states that are active before the previous time stability
(initially empty), a set of timed states that have delayed their enactment non-
determinisistically (initially empty), and a set of timed states that are active during
the current time stability. It orders the set of currently active timed states accord-
ing to their timing information. Informally the ordering process carries out the
following two steps:

• creates a subset of active timed states that has the shortest delay, we denote these
states as time-ready [17], in our example after the first time being time-stable,
the only time-ready state is state TG T , which has the minimum delay of 5 days;

• subtracts the shortest delay from the delay of all timed states that are not time-
ready to represent that at least that amount of time has passed, in our example,
as TG T is the time-ready, other active timed states EC C and EC E will have
delays 9 to 15 days and 13 to 16 days respectively.
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The function then behaves as defined by the function trun over the set of time-
ready states and the set of active but not time-ready states.

trun : PName �→ Local �→ P State �→ P State �→ Process
trun ′ : PName �→ Local �→ P State �→ Process
record : PName �→ Local �→ P State �→ P State �→ P State �→ Process

The function trun returns a process that recursively enacts a subset of the currently
active timed states within a given BPMN process that are time-ready. Coordinat-
ing time-ready states is achieved by partially interleaving the execution process
returned by the function trun ′ with the recording process returned by the record-
ing function record . The function trun ′ takes the diagram’s name, specification
environment and its set of time-ready states, and returns a process that interleaves
the enactment of a set of processes, corresponding to its set of time-ready state.
These processes terminate if either their corresponding states terminate, are can-
celled, or are delayed. For each of these situations, the process will communicate a
corresponding coordination event to the recording process After all the interleaved
processes terminate, the function trun ′ terminates and behaves like the process
run(A) = � a : A • a → run(A), over the same set of coordination events, so that
if any subsequent coordination contains the same time-ready states due to cycle,
this process will not cause blocking. Below we show trun ′ applied to the time-
ready state TG T , where the event starts.TG T represents the enactment of state
TG T (administration of Paclitaxel), init .TG G represents the control flow from
state TG T to TG G , and finish.TG T and delayed .TG T are terminated and
delayed events of TG T .

starts.TG T → init .TG G → finish.TG T → Skip
� delayed .TG T → run({finish.TG T , delayed .TG T })

The function record takes the diagram’s name, specification environment, its
set of time-ready states and set of active timed states, and returns a process that
repeatedly waits for coordination events from the execution process and recalcu-
lates the set of active states accordingly. The following rules describe the function
informally:

(i) if all time-ready states have delayed their enactments and there are no other
currently active states, record re-calculates these states so that the states, of
which the delay range has the shortest upper bound, are to be enacted;

(ii) if all time-ready states have either been enacted or delayed, then this completes
a cycle of timed coordination, and the process then behaves as defined by stable
and proceeds with the next cycle;

(iii) if there exist time-ready states that have not been enacted or delayed, record
waits for coordination events from the execution process.

In our example when the time-ready state TG T is applied to record , the process
it returns either waits for TG T to be enacted or delayed. If TG T is enacted,
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it behaves as stable over a empty set of untimed states and the set of timed states
{EC C ,EC E ,TG G } since the immediately succeeding state of TG T is TG G ,
which is a timed state (rule ii). Otherwise it will also behave as stable since the
set of currently active states are not empty (rule ii). The coordination terminates
after it enacts an end state of the top level diagram, for a complete definition of
the semantic function, it may be found in our longer paper [17].

5 Analysis

We have implemented the semantics described in this paper as a prototype tool us-
ing the functional programming language Haskell. Readers may find a copy of the
implementation from our web site 3 . The tool inputs a XML serialised representa-
tion of BPMN diagram from the JViews BPMN Modeler [9], enriched with timing
information as custom properties, and translates it into an ASCII file containing
CSP processes representing its behaviours expressed in machine-readable CSP [14].

The following are some results of the timed model. We say a diagram is timed
if it contains timing information and untimed otherwise; every timed diagram is
a timed variant of another untimed diagram, i.e. an untimed diagram augmented
with timing information. Below is an intuitive property about timed variation.

Proposition 5.1 Untimed Invariance. For any untimed local diagram, there
exists an (infinite) set of timed variant diagrams such that all of the diagrams in
the set are failures-equivalent under the untimed semantics.

The CSP behaviour models traces (T ), stable failures (F) and failures-divergences
(N ) admit refinement orderings based upon reverse containment [14]. A behavioural
specification R can be expressed by constructing the “least” – that is, the most
non-deterministic – process satisfying it, called the characteristic process PR. Any
process Q that satisfies specification R has to refine PR, denoted by PR 	 Q . One
common behavioural property for any process might be deadlock freedom. We de-
fine the process DF to specify a deadlock freedom specification for local diagrams
where events fin.n and aborts.n denote successful execution and interruption re-
spectively [17].

DF = (� i : Σ \ {|fin, aborts|} • i → DF )

� (�n : N • fin.n → Skip) � (�n : N • aborts.n → Stop)

Definition 5.2 A local diagram is deadlock free iff the process corresponding to
the diagram’s behaviour failures-refines DF .

One of the results of using a common semantic domain for both timed and
untimed models is that we can transfer certain behavioural properties from the
untimed to the timed world. We achieve this by showing for any timed variation
of any local diagram, the timed coordination process is a responsive plug-in [13] to
the enactment process. Informally process Q is a responsive plug-in to P if Q is

3 http://www.comlab.ox.ac.uk/peter.wong/observation/
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prepared to cooperate with the pattern set out by P for their shared interface. We
now formally present Reed et al.’s definition of the binary relation RespondsTo over
CSP processes using the stable failures model.

Definition 5.3 For any processes P and Q where there exists a set J of shared
events, Q RespondsTo P iff for all traces s ∈ seq(αP ∪ αQ) and event sets X

(s � αP ,X ) ∈ failures(P) ∧ (initials(P/s) ∩ J�) \ X �= ∅
⇒ (s � αQ , (initials(P/s) ∩ J�) \ X ) /∈ failures(Q)

where initials(P/s) is the set of possible events for P after trace s and A� is a set
of events A ∪ {� }; � denotes successful termination in CSP.

Proposition 5.4 Responsiveness. For any local diagram p under the relative
timed model where its enactment and coordination are modelled by processes E and
T respectively, T RespondsTo E.

Proof. (Sketch.) We proceed by considering each of the functions which define the
coordination process, and show that for any local diagram p, if there is a set of
states which may be performed by p’s enactment after some process instance, then
the coordination of p must cooperate in at least one of those states. We do this by
showing that if the process defined by each function cooperates with p’s enactment,
then the sequential composition of them also cooperates with p’s enactment. �

A direct consequence of Proposition 5.4 is that deadlock freedom is preserved
from the untimed to the timed setting.

Proposition 5.5 Deadlock Freedom Preservation. For any process P, mod-
elling the behaviour of an untimed local diagram, and for any process Q modelling
the behaviour of a timed variant of that diagram,

DF 	F P ⇒ DF 	F Q

We say a behavioural property is time-independent if the following holds.

Definition 5.6 Time Independence. A behavioural specification process S is
time-independent with respect to some untimed local diagram whose behaviour is
given by process P iff for any process Q modelling the behaviour of a timed variant
of that diagram,

S 	F P ⇒ S 	F Q

As a consequence of Propositions 5.4 and 5.5 and refinements over T , we can
generalise time-independent specifications by the following result.

Proposition 5.7 A specification process S is time-independent with respect to some
untimed local diagram whose behaviour is given by the process P iff

S 	F P ⇔ traces(S ) ⊇ traces(P) ∧ deadlocks(S ) ⊇ deadlocks(P)
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where traces(P) is the set of possible traces of process P and deadlocks(P) is the
set of traces on which P can deadlock.

Now we revisit the example given in Figure 2. For reasons of space, both XML
representation of the diagram in figure and its corresponding generated CSP script
may also be found from our web site. In this section we assume the process A2 to
be the relative-timed behaviour of the diagram in the figure. Here we use the CSP
events starts.N where N is a value over the datatype Node to denote administration
of the respective drug.

Node ::= TG T | TG G | EC C | EC E

The CSP events fin.i where i ranging over N are special events denoting the suc-
cessful termination of subprocesses and diagrams, in our example we use the event
fin.0 to denote the successful termination of the diagram.

To verify the set of clinical intervention against the sequencing rule in Section 1,
we exploit CSP’s stable failures semantics, that is we turn the question of property
verification into a question of refinement. The following process S is the most
non-deterministic CSP process satisfying the sequencing rule,

S = starts.TG G → S � starts.EC E → S
� starts.EC C → T � fin.0 → Skip

T = starts.EC E → S � starts.EC C → T

and here is the corresponding failures refinement assertion.

S 	F A2 \ {fin.1,fin.2,fin.3, starts.TG T }

We have abstracted the behaviour of the diagram by hiding part of A2’s al-
phabet because the property we are interested in only covers the set of events
{ starts.TG G , starts.EC E , starts.EC C ,fin.0 }, i.e. the alphabet of the process
S . When we ask FDR to check this assertion the following counterexample in
terms of trace is given 〈starts.EC C , starts.TG G〉. This tells us that the event
starts.TG G , denoting a dosage of gemcitabine can be given after a dosage cy-
clophosphamide is given, this trace is sufficient to disprove the correctness of our
example against the sequence rule since a dosage of epirubicin must be after gemc-
itabine according to the syntactic structure of the diagram.

A more detailed analysis reveals that while cyclophosphamide may be adminis-
tered after 14 days and epirubicin may only be administered after 18 days, paclitaxel
may be delayed for as long as 10 days before being administered, and since gem-
citabine is allowed to be administered within the 10 days, it may be given after 5
days, that is before epirubicin and after cyclophosphamide. A possible solution to
this is by either restricting the duration in which cyclophosphamide and epirubicin
may be administered, or delay the administration of gemcitabine. We have chosen
the latter as it minimises the change of the overall clinical interventions. We achieve
this by including a delay event, an itime state, in between states TG T and TG G
for a delay of 16 days.
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As well as describing individual business processes, BPMN may also be used to
specify business collaboration where more than one business processes (participants)
communicate via message flows, informally we say a participant is compatible with
respect to a collaboration if it cooperates on the pattern of message flow communi-
cations. Similar to the notion of compatibility defined over untimed model [19], we
formalise time-compatibility using CSP’s responsiveness.

Definition 5.8 Time-Compatibility. Given some collaboration described by the
CSP process,

C = ( ‖ i : { 1 . . n } • αTi ◦ Ti) \ M

where n ranges over N and M is the set of events corresponding to the message flows
between its participants, whose timed behaviour are modelled by the processes
Ti , participant Ti is time-compatible with respect to the collaboration C iff

∀ j : { 1 . . n } \ { i } • Ti RespondsTo Tj

One result of formalising compatibility under our timed semantics is that, since
responsiveness is refinement-closed under F [13], time-compatibility is also refinement-
closed.

Proposition 5.9 Given that the participants Pi , where i ranges over some index
set, are time-compatible in some collaboration C , their refinements under F are
also time-compatible in C .

However, refinement closure does not capture all possible compatible partici-
pants within a collaboration. Specifically, for each participant in a collaboration
there exists a time-compatible class of participants of which any member may re-
place it and preserve time-compatibility. This class may be formalised via the stable
failures equivalence. This notion augments our earlier definitions in the untimed
setting [16].

Definition 5.10 Time-Compatible Class. Given some local diagram name p
and its specification l , we define its time-compatible class of participants cfT (p, l)
axiomatically as a set of pairs where each pair specifies a BPMN diagram by its
environment and the name which identifies it.

cfT : (PName × Local) �→ P(PName × Local)

∀ p : PName; l : Local •
cfT (p, l) =

{ p′ : PName; l ′ : Local |
(((tsem p l) \ (αprocess p l \ mg p l))

	F ((tsem p ′ l ′) \ (αprocess p ′ l ′ \ mg p ′ l ′)))
∨ (tsem p ′ l ′ \ (αprocess p ′ l ′ \ mg p ′ l ′))

	F (tsem p l \ (αprocess p l \ mg p l)) }
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where the function mg takes a description of a local diagram and returns a set of
CSP events corresponding to the message flows of that diagram.

This naturally leads to the definition of the characteristic or the most abstract
time-compatible participant with respect to a collaboration.

Definition 5.11 Characteristic Participant. Given the time-compatible class
cp of some participant p, specified in some environment l , for some collaboration c,
the characteristic participant of cp, specified by a pair of name and the environment,
is given by the function charT applied to cp.

charT : P(PName × Local) �→ (PName × Local)

charT = (λ ps : P(PName × Local) •
(μ(p ′, l ′) : (PName × Local) |

mg p′ l ′ = αprocess p ′ l ′ ∧ (∀(p, l) : ps •
(tsem p ′ l ′ 	F (tsem p l(αprocess p ′ l ′ \ mg p ′ l ′))))))

The following result is a direct consequence of Proposition 5.9, and Defini-
tions 5.10 and 5.11.

Proposition 5.12 If a characteristic participant p of a time-compatible class cp,
specified in some environment l , is time-compatible with respect to some collabora-
tion c, then all participants in cp are also time-compatible with respect to c.

6 Related Work and Conclusion

In this paper we introduced a relative-timed semantics for BPMN in CSP to model
and reason about collaborations described in BPMN. We have adopted a variant
of the two-phase functioning approach widely used in real-time systems and timed
coordination languages [10]. We showed properties relating the untimed and timed
models of BPMN for both local and global diagrams by using CSP’s notion of
responsiveness, and presented an example to demonstrate the application of the
semantic model. We have subsequently implemented a prototype of the semantic
function in Haskell.

To the best of our knowledge, this paper describes the first relative-timed model
for a collaborative graphical notation like BPMN. Some attempts have been made
to provide timed models for similar notations such as UML activity diagrams [6,8]
and Workflow nets [11]. Both Guelifi et al. [6] and Eshuis [8] have defined their
discrete timed semantic models in Clocked Transition System of which behavioural
specifications are expressed as temporal logic formulae and verification are carried
out via model checking; in Ling et al.’s work, they defined a formal semantics for a
timed extension of van der Aalst’s Workflow nets [15] in terms of timed Petri nets.
Nevertheless, their semantics do not provide the level of abstraction required to
model time explicitly in that they model discrete units of times which we believe may

P.Y.H. Wong, J. Gibbons / Electronic Notes in Theoretical Computer Science 229 (2009) 59–75 71



not be directly applicable to the business process developers whereas our definition
captures the six-dimensional space defined by W3C standards [21, Section 3.2.6].
Also unlike BPMN, their target graphical notations and hence their semantic models
are not designed for analyses of collaborations where more than one diagram is under
consideration. Furthermore, our semantic model has been defined in correspondence
to our earlier untimed model [16] so that timed-independent behavioural properties
may be preserved across both models.

As in the untimed settings, there exists many approaches in which new process
calculi have been introduced to capture the notion of compatibility in collabora-
tions and choreographies. Notable works include Carbone et al.’s End-Point and
Glocal Calculi for formalising WS-CDL [2] and Bravetti et al.’s choreography calcu-
lus capturing the notion of choreography conformance [1]. Both these works tackled
the problem of ill-formed choreographies, a class of choreographies of which correct
projection is impossible. While the notion of ill-formed choreographies is similar
to our definition of compatibility and the notion of contract refinement defined
by Bravetti et al. [1] bears similarity to our definition of compatible class, they
have defined their choreographies solely in terms of process calculi with no obvious
graphical specification notation that could be more accessible to domain specialists.

Future work will include characterising the class of timed-independent behavioural
properties suitable for BPMN; applying Dwyer et al’s property specification pat-
terns [3] to assist domain specialists to specify behavioural properties for BPMN
processes; and applying the timed model to reason about empirical studies such as
clinical trials against safety properties [18].

The authors are grateful to Bill Roscoe for his insightful advice on responsiveness
during this work.The authors would also like to thank anonymous referees for useful
suggestions and comments. The work is funded by Microsoft Research.
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Appendix

CSP

In CSP [14], a process is a pattern of behaviour; a behaviour consists of events,
which are atomic and synchronous between the environment and the process. The
environment in this case can be another process. Events can be compound, con-
structed using the dot operator ‘.’; often these compound events behave as channels
communicating data objects synchronously between the process and the environ-
ment. For reasons of space we only describe a subset of the syntax of the language
of CSP that is used throughout this paper.

P ,Q ::= P |[A ]| Q | P |[A | B ]| Q | P \ A |
P � Q | P � Q | e → P | Skip | Stop

e ::= x | x .e

Process P |[ A ]| Q denotes the partial interleaving of processes P and Q sharing
events in set A. Process P |[A |B ]|Q denotes parallel composition, in which P and
Q can evolve independently but must synchronise on every event in the set A ∩ B ;
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the set A is the alphabet of P and the set B is the alphabet of Q , and no event in
A and B can occur without the cooperation of P and Q respectively.

Process P \ A is obtained by hiding all occurrences of events in set A from the
environment of P . Process P � Q denotes the external choice between processes P
and Q ; the process is ready to behave as either P or Q . Process P � Q denotes the
internal choice between processes P or Q , ready to behave as at least one of P and
Q but not necessarily offer either of them. An internal choice over a set of indexed
processes is written � i : I • P(i).

Process e → P denotes a process capable of performing event e, after which
it will behave like process P . The process Stop is a deadlocked process and the
process Skip is a successful termination.

CSP has three denotational semantics: traces (T ), stable failures (F) and
failures-divergences (N ) models, in order of increasing precision. In this paper
our process definitions are divergence-free, so we will concentrate on the stable fail-
ures model. The traces model is insufficient for our purposes, because it does not
record the availability of events and hence only models what a process can do and
not what it must do [14]. Notable is the semantic equivalence of processes P � Q
and P � Q under the traces model. In order to distinguish these processes, it is
necessary to record not only what a process can do, but also what it can refuse
to do. This information is preserved in refusal sets, sets of events from which a
process in a stable state can refuse to communicate no matter how long it is offered.
The set refusals(P) is P ’s initial refusals. A failure therefore is a pair (s,X ) where
s ∈ traces(P) is a trace of P leading to a stable state and X ∈ refusals(P/s) where
P/s represents process P after the trace s. We write traces(P) and failures(P) as
the set of all P ’s traces and failures respectively.

We write Σ to denote the set of all event names, and CSP to denote the syntactic
domain of process terms. We define the semantic function F to return the set of all
traces and the set of all failures of a given process, whereas the semantic function
T returns solely the set of traces of the given process.

F : CSP → (P seq Σ × P(seq Σ × P Σ))
T : CSP → P seq Σ

These models admit refinement orderings based upon reverse containment; for ex-
ample, for the stable failures model we have

	F : CSP ↔ CSP

∀P ,Q : CSP •
P 	F Q ⇔ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q)

While traces only carry information about safety conditions, refinement under the
stable failures model allows one to make assertions about a system’s safety and
availability properties. These assertions can be automatically proved using a model
checker such as FDR [5], exhaustively exploring the state space of a system, either
returning one or more counterexamples to a stated property, guaranteeing that no
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counterexample exists, or until running out of resources.

Z notation

The Z notation [20] has been widely used for state-based specification. It is based
on typed set theory coupled with a structuring mechanism: the schema. A schema
is essentially a pattern of declaration and constraint. Schemas may be named using
the following syntax:

Name =̂ [declaration | constraint ]

The mathematical language within Z provides a syntax for set expressions, pred-
icates and definitions. Types can either be basic types ([Type]), maximal sets
within the specification, each defined by simply declaring its name, or be free types
(Type ::= element1 | ... | elementn), introduced by identifying each of the distinct
members, introducing each element by name. By using an axiomatic definition we
can introduce a new symbol x , an element of S , satisfying predicate p.

x : S

p
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