Available online at www.sciencedirect.com

## DISCRETE

 MATHEMATICS
# Finite BL-algebras 

Antonio Di Nola ${ }^{\mathrm{a}}$, Ada Lettieri ${ }^{\mathrm{b}, *}$<br>${ }^{\text {a }}$ Dipartimento di Matematica e Informatica, Università di Salerno, Via S. Allende, Baronissi, Salerno, Italy<br>${ }^{\mathrm{b}}$ Dipartimento di Costruzioni e Metodi Matematici in Architettura, Università di Napoli "Federico II", Via Monteoliveto 3, 80134 Napoli, Italy

Received 24 June 2002; accepted 22 July 2002


#### Abstract

BL-algebras were introduced by Hájek as algebraic structures of Basic Logic. The aim of this paper is to analyze the structure of finite BL-algebras. Extending the notion of ordinal sum, we characterize a class of finite BL-algebras, actually BL-comets. Then, just using BL-comets, we can represent any finite BL-algebra as a direct product of BL-comets. Furthermore we define a class of labelled trees, which can be one-to-one mapped onto finite BL-algebras. (c) 2002 Elsevier B.V. All rights reserved.


Keywords: BL-algebra; BL-comet; Labelled tree

## 1. Introduction

BL-algebras were introduced by Hájek [4] as algebraic structures of Basic Logic.
A BL-algebra is an algebra $A=(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ such that:

1. $(A, \wedge, \vee, 0,1)$ is a lattice with 0 as least element and 1 as greatest element,
2. $(A, \odot, 1)$ is a commutative monoid,
3. the following statements hold for every $x, y, z \in A$ :
(a) $z \leqslant x \rightarrow y$ iff $x \odot z \leqslant y$,
(b) $x \wedge y=x \odot(x \rightarrow y)$,
(c) $(x \rightarrow y) \vee(y \rightarrow x)=1$.
[^0]By former operations a negation operation $*$ is defined in the following way: $x^{*}=$ $x \rightarrow 0$, for every $x \in A$. We will write $x^{p}$ instead of $\underbrace{x \odot \cdots}_{p}$.

The set of all BL-algebras is a variety, whose subvariety defined by the further axiom $\left(x^{*}\right)^{*}=x$, for every $x \in A$, coincides with the variety of MV-algebras. Let $A$ be a $\operatorname{BL}$-algebra and $\operatorname{MV}(A)=\left\{x \in A \mid x^{* *}=x\right\} . \operatorname{MV}(A)$ is a subalgebra of $A$. It is the greatest subalgebra of $A$ that is an MV-algebra [4].

We say that the BL-algebra $A$ is totally ordered or that the BL-algebra $A$ is a chain (shortly BL-chain) if the lattice $(A, \wedge, \vee, 0,1)$ is totally ordered. Every BL-algebra is a subdirect product of BL-chains [4].

We say that the BL-algebra $A$ is finite if the cardinal of the set $A$ is finite.
The aim of this paper is to analyze the structure of finite BL-algebras. In the case of MV-algebras their structure is already well known. Every finite BL-chain is a finite ordinal sum whose components are finite MV-chains (see [1, Theorem 3.6]). Extending the notion of ordinal sum of BL-algebras (see Preliminaries), we characterize a class of finite BL-algebras, actually BL-comets (see Section 4) which can be seen as a generalization of finite BL-chains. Then, just using BL-comets, we can represent any finite BL-algebra $A$ as a direct product of BL-comets. This result can be understood as a generalization of the representation of finite MV-algebras as a direct product of MV-chains (see [3]). Furthermore, in Section 5 we define a class of labelled trees, which can be one-to-one mapped onto finite BL-algebras. The class of all finite BLalgebras will be denoted by FBL. For any unexplained notion on MV-algebras see [3], on BL-algebras see [4].

## 2. Preliminaries

Let $A$ be a finite BL-algebra, subdirect product of the BL-chains $C_{1}, C_{2}, \ldots, C_{n}$. We say that the chain $C_{i}, i \in I_{n}=\{1,2, \ldots, n\}$, is essential in the representation of $A$ iff $A$ is not a subdirect product of $C_{1}^{\prime}, \ldots, C_{i-1}^{\prime}, C_{i+1}^{\prime}, \ldots, C_{n}^{\prime}$, with $C_{t}^{\prime} \cong C_{t}$ for every $t \in\{1, \ldots, i-1, i+1, \ldots, n\}$. Let us assume that every chain $C_{i}$ is essential in the representation of $A$.

Definition 1 (Agliano and Montagna [1]). Let $\mathscr{A}_{i}=\left(A_{i}, \wedge_{i}, \vee_{i}, \odot_{i}, \rightarrow_{i}, 0_{i}, 1\right)$ be BL-chains for $i \in\{1, \ldots, r-1\}$ and a BL-algebra for $i=r$. Assume:

1. $A_{i} \cap A_{j}=\{1\}$, for $i \neq j$.

Then the ordinal sum $\biguplus_{i=1}^{r} A_{i}=\left(\bigcup_{i=1}^{r} A_{i}, \wedge, \vee, \odot, \rightarrow, 0,1\right)$ is a new BL-algebra whose operations $\wedge, \vee, \odot$ coincide with those of $A_{i}$, when applied on pairs of elements of $A_{i}, i=1, \ldots, r$, and on the rest of pairs are defined as follows, for $x \in A_{i} \backslash\{1\}$, $y \in A_{j}$ and $i<j$ :

1. $x \wedge y=y \wedge x=x$,
2. $x \vee y=y \vee x=y$,
3. $x \odot y=y \odot x=x$.

Finally, the operation $\rightarrow$ is defined by

$$
x \rightarrow y= \begin{cases}1 & \text { if } x \leqslant y  \tag{1}\\ x \rightarrow i y & \text { if } x, y \in A_{i}, \\ y & \text { if } x \in A_{i}, y \in A_{j} \text { and } i>j .\end{cases}
$$

For $i \in\{1, \ldots, n\}$ denote by $0_{i}=\alpha_{i, 0}<\alpha_{i, 1}<\cdots<\alpha_{i, n_{i}}<\alpha_{i, n_{i}+1}=1_{i}$ the chain of the idempotent elements of $C_{i}$, shortly $\mathbb{\square}\left(C_{i}, n_{i}+1\right)$. By [1] Theorem 3.6, $C_{i}$ is an ordinal sum of finite MV-chains, i.e. finite BL-chains that are MV-algebras, in symbols $C_{i}=\biguplus_{h=1}^{n_{i}+1} M(\alpha, i, h)$, where $M(\alpha, i, h)=\left[\alpha_{i, h-1}, \alpha_{i, h}\left[\cup\left\{1_{i}\right\}\right.\right.$. Then for every $i \in I_{n}$ and $h \in\left\{1, \ldots, n_{i}+1\right\}$ the restrictions of the operations defined on $C_{i}$ to the subset $M(\alpha, i, h)$ make it into a finite MV-chain, hence it is isomorphic to the MV-algebra $S_{p}=\{0,1 / p, \ldots,(p-1) / p, 1\}$, for some $p \geqslant 1$. From now on, every time we will deal with a finite BL-algebra $A$, we will use the above notations to give a subdirect representation of $A$ by finite BL-chains and the decomposition of such chains as ordinal sum. Furthermore, in the sequel, every finite MV-chain will be identified with the subalgebra of $[0,1]$, which it is isomorphic to. For every $f \in A$, denote by $f_{i}$ the $i$ th component of $f$. Moreover, for every $x \in C_{i}$, set $\alpha(x)=\max \left\{y \in \mathbb{D}\left(C_{i}, n_{i}+1\right) \mid y \leqslant x\right\}$ and for every $f \in A$, set $\alpha(f)=\left(\alpha\left(f_{1}\right), \ldots, \alpha\left(f_{n}\right)\right)$. If $f \in A$, then $\alpha(f) \in A$. Indeed, let $f_{i} \in M\left(\alpha, i, h_{i}\right) \cong S_{p_{i}}$ and $\mu=\max \left\{p_{i}, i \in I_{n}\right\} ;$ then $f^{\mu}=\alpha(f)$. In the sequel we will mean $\alpha_{i, h}=\alpha_{j, k}$ if $h=k, h, k<\min \left\{n_{i}+1, n_{j}+1\right\}$. Moreover, we will denote by $\alpha_{h}$ the $n$-tuple $\left(\alpha_{1, h}, \ldots, \alpha_{n, h}\right)$, for every $h \leqslant \min \left\{n_{i}+1, i \in I_{n}\right\}$, by $\mathbf{1}$ the $n$-tuple, having its $i$ th component equal to $1_{i}$ and by $\mathbf{0}$ the $n$-tuple, having its $i$ th component equal to $0_{i}$, for every $i \in I_{n}$.

With the above notations we get.
Proposition 2. Let $A \in \mathbf{F B L}$ and $f, g \in A$ such that for some $(i, j) \in I_{n}^{2}$ :

1. $f_{i}=\alpha_{i, h}$ and $g_{i}=\alpha_{i, k}, h=0,1, \ldots, n_{i}+1, k=0,1, \ldots, n_{i}+1, h \neq k$,
2. $f_{j}=g_{j}=\alpha_{j, m}, m=0,1, \ldots, n_{j}+1$.

Then, for every $(x, y) \geqslant\left(\alpha_{i, t}, \alpha_{j, m}\right), t=\min \{h, k\}$, there is an element $l \in A$ such that $\left(l_{i}, l_{j}\right)=(x, y)$.

Proof. Assume $h<k$ and $(x, y) \geqslant\left(\alpha_{i, h}, \alpha_{j, m}\right)$. Let $u$ be an element of $A$, having its $i$ th component equal to $x$ and $v$ be an element of $A$, having its $j$ th component equal to $y$. Then $l=((g \rightarrow f) \vee u) \wedge(((g \rightarrow f) \rightarrow f) \vee v)$ verifies the claim.

Proposition 3. Let $A \in \mathbf{F B L}$ and $f \in A$ such that for some $(i, j) \in I_{n}^{2}$ :

$$
\left(f_{i}, f_{j}\right)=\left(\alpha_{i, h}, \alpha_{j, k}\right), h=0,1, \ldots, n_{i}+1, k=0,1, \ldots, n_{j}+1, h \neq k .
$$

Then there is $g \in A$ such that $\left(g_{i}, g_{j}\right)=\left(\alpha_{i, t}, \alpha_{j, t}\right), t=\min \{h, k\}$.
Proof. Assume $h<k$. If $h=0$, then it is trivial. For otherwise let $w$ be an element of $A$, having its $j$ th component equal to $\alpha_{j, h}$. Set $\alpha\left(w_{i}\right)=\alpha_{i, h_{1}}$ for a suitable $h_{1}$.

If $h_{1} \geqslant h$, then $g=w \wedge f \in A$ verifies the claim.

If $h_{1}<h$, we choose an element $w^{1} \in A$, having its $j$ th component equal to $\alpha_{j, h_{1}}$. Set $\alpha\left(w_{i}^{1}\right)=\alpha_{i, h_{2}}$. If $h_{2} \geqslant h_{1}$, then $w^{1} \wedge \alpha(w) \in A$, moreover $w_{i}^{1} \wedge \alpha\left(w_{i}\right)=\alpha_{i, h_{1}}$ and $w_{j}^{1} \wedge \alpha\left(w_{j}\right)$ $=\alpha_{j, h_{1}}$. Hence, the conclusion follows from Proposition 2. If $h_{2}<h_{1}$, proceeding as above, the thesis shall be attained as soon as we find an element $w^{r}$ such that $\alpha\left(w_{j}^{r}\right)=$ $\alpha_{j, h_{r}}, \alpha\left(w_{i}^{r}\right)=\alpha_{i, h_{r+1}}$ and $h_{r+1} \geqslant h_{r}$. If the last condition is never verified, then we get a strictly decreasing sequence $k>h>h_{1}>h_{2}>\cdots>h_{r}>\cdots$ of natural numbers; consequently there must ultimately be an $s$, such that $h_{s}=0$. Hence we will find an element $w^{s-1}$ such that $\left(\alpha\left(w_{i}^{s-1}\right), \alpha\left(w_{j}^{s-1}\right)\right)=\left(0_{i}, \alpha_{j, h_{s-1}}\right)$, where $\alpha_{j, h_{s-1}} \neq 0_{j}$. Also in this case the claim follows by Proposition 2.

Corollary 4. Let $A \in \mathbf{F B L}$ and $f \in A$ such that for some $(i, j) \in I_{n}^{2}$ :

$$
\left(f_{i}, f_{j}\right)=\left(\alpha_{i, h}, \alpha_{j, k}\right), h \text { and } k \text { run from } 0,1, \ldots, \text { like in Proposition } 3 .
$$

Then for every $(x, y) \geqslant\left(\alpha_{i, t}, \alpha_{j, t}\right)$, with $t=\min \{h, k\}$, there is an element $l \in A$, such that $\left(l_{i}, l_{j}\right)=(x, y)$.

Proof. It follows by Propositions 2 and 3.
Corollary 5. Let $A \in$ FBL. Then, for every $h \leqslant \min \left\{n_{i}+1, i \in I_{n}\right\}, \alpha_{h}=\left(\alpha_{1, h}, \ldots, \alpha_{n, h}\right) \in A$.
Proof. We proceed by induction on $n$. Let $n=2, h \leqslant \min \left\{n_{1}+1, n_{2}+1\right\}$, and $x, y \in A$ such that $x_{1}=\alpha_{1, h}$ and $y_{2}=\alpha_{2, h}$. If $x$ and $y$ are incomparable, then either $x \vee y=\alpha_{h}$ or $x \wedge y=\alpha_{h}$. Otherwise, consider $\alpha\left(x_{2}\right)=\alpha_{2, t}$ and $\alpha\left(y_{1}\right)=\alpha_{1, l}$. If $t=h$ or $l=h$, then either $\alpha(x)=\alpha_{h}$ or $\alpha(y)=\alpha_{h}$. Assume either $l>h$ or $t>h$; in both cases the conclusion follows from Proposition 3.

Suppose now the corollary true for $n-1$. Set $I_{n}^{i}=I_{n}\left\{\{i\}\right.$ and let $A_{\uparrow\left\{I_{n}\right\}}$ be the set of the restrictions of all the elements of $A$ to $I_{n}^{i}, A_{\left\{\left\{\left\{_{n}^{i}\right\}\right.\right.}$ is a finite BL-algebra and it is, up to isomorphism, a subdirect product of $\left\{C_{i}, i \in I_{n}^{i}\right\}$. Fix $h \leqslant \min \left\{n_{i}+1, i \in I_{n}\right\}$. By induction, for every $i \in I_{n}$, there is an element $x^{i} \in A$ such that $\left(x^{i}\right)_{j}=\alpha_{j, h}$ for $j \neq i$. If two of the elements $x^{1}, x^{2}$ and $x^{3}$ are incomparable, say $x^{1}$ and $x^{2}$, then either $x^{1} \vee x^{2}$ or $x^{1} \wedge x^{2}$ satisfies the claim. Otherwise $x^{1}, x^{2}$ and $x^{3}$ are comparable. We safely can set $x^{1} \leqslant x^{2} \leqslant x^{3}$. Then we have $\alpha_{2, h} \leqslant x_{2}^{2} \leqslant \alpha_{2, h}$, that is $x_{2}^{2}=\alpha_{2, h}$. From that we get $x^{2}=\alpha_{h} \in A$.

Lemma 6. Let $A \in \mathbf{F B L}, i, j \in I_{n}, h=1, \ldots, n_{i}+1, k=1, \ldots, n_{j}+1$ and $h \neq k$. Then the following are equivalent:

1. there exists $f \in A$ such that $\left(f_{i}, f_{j}\right) \in M(\alpha, i, h) \times M(\alpha, j, k) \backslash\left\{\left(1_{i}, 1_{j}\right)\right\}$,
2. for every $(x, y) \geqslant\left(\alpha_{i, h-1}, \alpha_{j, k-1}\right)$ there is an element $g \in A$ such that $\left(g_{i}, g_{j}\right)=(x, y)$.

Proof. Let $f \in A$ such that $\left(f_{i}, f_{j}\right) \in M(\alpha, i, h) \times M(\alpha, j, k) \backslash\left\{\left(1_{i}, 1_{j}\right)\right\}$. Then

$$
\left(\alpha\left(f_{i}\right), \alpha\left(f_{j}\right)\right)= \begin{cases}\left(\alpha_{i, h-1}, \alpha_{j, k-1}\right) & \text { if } \alpha\left(f_{i}\right) \neq 1_{i} \text { and } \alpha\left(f_{j}\right) \neq 1_{j},  \tag{2}\\ \left(\alpha_{i, h-1}, 1_{j}\right) & \text { if } \alpha\left(f_{j}\right)=1_{j}, \\ \left(1_{i}, \alpha_{j, k-1}\right) & \text { if } \alpha\left(f_{i}\right)=1_{i} .\end{cases}
$$

Thus, the conclusion follows by Corollary 4 . Vice versa is obvious.

Lemma 7. Let $A \in \mathbf{F B L}, h \leqslant \min \left\{n_{i}+1, n_{j}+1: i, j \in I_{n}\right\}, M(\alpha, i, h) \cong S_{p}, M(\alpha, j, h) \cong S_{q}$ and $p \neq q$.

Then for every $(x, y) \geqslant\left(\alpha_{i, h-1}, \alpha_{j, h-1}\right)$, there is an element $g \in A$ such that $\left(g_{i}, g_{j}\right)=$ $(x, y)$.

Proof. Let $p<q$ and $f \in A$ such that $f_{j}=(q-1) / q \in M(\alpha, j, h)$.
If $f_{i}<\alpha_{i, h-1}$, we get $\left(\alpha\left(f_{i}\right), \alpha\left(f_{j}\right)\right)=\left(\alpha_{i, k}, \alpha_{j, h-1}\right), k<h-1$.
If $\alpha_{i, h-1} \leqslant f_{i}<\alpha_{i, h}$, then $\left(f^{p} \rightarrow \alpha_{h-1}\right)^{q}$ is an element of $A$, having its $i$ th component equal to $1_{i}$ and its $j$ th component equal to $\alpha_{j, h-1}$.
Finally, if $f_{i} \geqslant \alpha_{i, h}$, we get $\left(\alpha\left(f_{i}\right), \alpha\left(f_{j}\right)\right)=\left(\alpha_{i, l}, \alpha_{j, h-1}\right), l>h-1$.
In any case the claim follows by Corollary 4.
Lemma 8. Let $A \in \mathbf{F B L}, h \leqslant \min \left\{n_{i}+1, n_{j}+1: i, j \in I_{n}\right\}$.
If there is an element $f \in A$ such that:

1. $\left(f_{i}, f_{j}\right) \in M(\alpha, i, h) \times M(\alpha, j, h)$,
2. $f_{i} \neq f_{j}$,
then for every $(x, y) \geqslant\left(\alpha_{i, h-1}, \alpha_{j, h-1}\right)$, there is an element $g \in A$ such that $\left(g_{i}, g_{j}\right)$ $=(x, y)$.

Proof. If $M(\alpha, i, h) \cong S_{p}, M(\alpha, j, h) \cong S_{q}$ and $p \neq q$, it follows from Lemma 7. Therefore, it shall be understood $M(\alpha, i, h) \cong M(\alpha, j, h) \cong S_{p}$.

By Corollary 4, we get the claim in the following cases:

1. $f_{i}=1_{i}$ or $f_{j}=1_{j}$,
2. $f_{i}=\alpha_{i, h-1}$, hence the element $l=\left(f \rightarrow \alpha_{h-1}\right)^{p}$ has its $i$ th component equal to $1_{i}$ and its $j$ th component equal to $\alpha_{j, h-1}$,
3. $f_{j}=\alpha_{j, h-1}$, hence the element $m=\left(f \rightarrow \alpha_{h-1}\right)^{p}$ has its $j$ th component equal to $1_{j}$ and its $i$ th component equal to $\alpha_{i, h-1}$.

Assume now $f_{i}=r / p \in M(\alpha, i, h), f_{j}=s / p \in M(\alpha, j, h)$ and $0<r<s<p$. Then we get Case 1: $s=p-1$. Then the element $f^{p-1} \in A$ has its $i$ th component equal to $\alpha_{i, h-1}$ and its $j$ th component equal to $1 / p \in M(\alpha, i, h)$. Then we proceed as in 2 .

Case 2: $s<p-1$.
Let $g \in A$ such that $g_{j}=(p-1) / p \in M(\alpha, j, h)$.
(a) If $g_{i} \leqslant f_{i}$, then the element $h=((f \vee g) \rightarrow f)^{p}$, has its $i$ th component equal to $1_{i}$ and its $j$ th component equal to $\alpha_{j, h-1}$.
(b) If $g_{i} \geqslant \alpha_{i, h}$, then the element $k=\left((f \rightarrow f \odot g)^{p}\right.$, has its $i$ th component equal to $1_{i}$ and its $j$ th component equal to $\alpha_{j, h-1}$.
(c) Finally, if $f_{i}<g_{i}<\alpha_{i, h}$ then the element $d=\left(g^{r} \odot f\right) \rightarrow \alpha_{h}$ has its $i$ th component equal to $1_{i}$ and its $j$ th component equal to $\alpha_{j, h-1}$.

Again the conclusion follows from Corollary 4.

Proposition 9. Let $A \in \mathbf{F B L}$ and $J=\left\{i_{1}, \ldots, i_{r}\right\} \subseteq I_{n}$.
If, for every $i_{p}, i_{q} \in J$ and for every pair $\left(x_{i_{p}}, x_{i_{q}}\right) \geqslant\left(\alpha_{i_{p}, h_{p}}, \alpha_{i_{q}, h_{q}}\right)$, there is an element $g^{p, q} \in A$ such that $\left(g_{i_{p}}^{p, q}, g_{i_{q}}^{p, q}\right)=\left(x_{i_{p}}, x_{i_{q}}\right)$, then for every $r$-tuple $\left(x_{i_{1}}, \ldots, x_{i_{r}}\right) \geqslant\left(\alpha_{i_{1}, h_{1}}, \ldots\right.$, $\left.\alpha_{i_{r}, h_{r}}\right)$, there is an element $g \in A$ such that $\left(g_{i_{1}}, \ldots, g_{i_{r}}\right)=\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$.

Proof. The proposition is true for $r=2$. Let $r \geqslant 3$ and let us proceed by induction on the cardinality of $J$. Assume the proposition is true for $r-1$. Let $x=\left(x_{i_{1}}, \ldots, x_{i_{r}}\right) \geqslant\left(\alpha_{i_{1}, h_{1}}\right.$, $\ldots, \alpha_{i_{r}, h_{r}}$ ).

For every $i_{u} \in J$, denote by $x^{u}$ the ( $r-1$ )-tuple obtained from ( $x_{i_{1}}, \ldots, x_{i_{r}}$ ), by deleting the $i_{u}$ th component of $x$. By induction, there is an element $g^{u} \in A$ such that $g_{i_{m}}^{u}=x_{i_{m}}$, for every $m \in\{1, \ldots, u-1, u+1, \ldots, r\}$. If the restrictions to $J$ of two among these elements, say $g^{u_{1}}$ and $g^{u_{2}}$, are not comparable, then we have: either

1. $\left(g^{u_{1}}\right)_{u_{1}} \leqslant\left(g^{u_{2}}\right)_{u_{1}}=x_{u_{1}}$ and $x_{u_{2}}=\left(g^{u_{1}}\right)_{u_{2}} \geqslant\left(g^{u_{2}}\right)_{u_{2}}$
or
2. $\left(g^{u_{1}}\right)_{u_{1}} \geqslant\left(g^{u_{2}}\right)_{u_{1}}=x_{u_{1}}$ and $x_{u_{2}}=\left(g^{u_{1}}\right)_{u_{2}} \leqslant\left(g^{u_{2}}\right)_{u_{2}}$.

In the former case $\left(g^{u_{1}} \vee g^{u_{2}}\right)_{i_{m}}=x_{i_{m}}$, for every $m \in\{1, \ldots, r\}$. In the latter case $x$ is given by the restriction to $J$ of $g^{u_{1}} \wedge g^{u_{2}}$.

Assume that the restrictions to $J$ of all the elements $g^{u}$ are each other comparable, then we safely can write $g^{1} \leqslant g^{2} \leqslant g^{3}$. From that $x_{i_{2}}=\left(g^{1}\right)_{i_{2}} \leqslant\left(g^{2}\right)_{i_{2}} \leqslant\left(g^{3}\right)_{i_{2}}=x_{i_{2}}$. Then it is $\left(g^{2}\right)_{i_{m}}=x_{i_{m}}$ for every $m \in\{1, \ldots, r\}$.

Corollary 10. Let $A \in \mathbf{F B L}, M(\alpha, i, 1) \cong S_{p_{i}}$ and $S_{p_{i}} \neq S_{p_{j}}$ for every $(i, j) \in I_{n}^{2}$. Then $A=C_{1} \times \cdots \times C_{n}$.

Proof. This follows by Lemma 7 and Proposition 9.
Corollary 11. Let $A \in \mathbf{F B L}$. Then the following implication holds:
(for every $i \in I_{n}$ there is an element $f^{i} \in A$ such that $\alpha\left(f^{i}\right) \neq \mathbf{0}$ and $\alpha\left(f_{i}^{i}\right)=$ $0_{i} \Rightarrow\left(A=C_{1} \times \cdots \times C_{n}\right)$.

Proof. This follows by Propositions 2 and 9.

## 3. Direct decomposition

Let $A \in$ FBL. It is known that $\operatorname{MV}(A)=A \cap \prod_{i=1}^{n} M(\alpha, i, 1)$ [1]. Define on $I_{n}$ the following equivalence relation:
$i \equiv j$ iff for every $f \in \operatorname{MV}(A), f_{i}=f_{j}$.
Let $\pi=\left\{J_{1}, \ldots, J_{r}\right\}$ be the partition of $I_{n}$ yielded by this relation.
Remark 12. The above definition is equivalent to the following: $i \equiv{ }^{\prime} j$ iff $f_{i}=f_{j}$ for every $f \in A$ such that $\left(f_{i}, f_{j}\right) \in M(\alpha, i, 1) \times M(\alpha, j, 1)$.

Indeed, let $i \equiv j, f \in A$, and $\left(f_{i}, f_{j}\right) \in M(\alpha, i, 1) \times M(\alpha, j, 1)$. Since $f^{* *} \in \operatorname{MV}(A)$, we get $f_{i}=f_{i}^{* *}=f_{j}^{* *}=f_{j}$, hence $i \equiv^{\prime} j$.

For a positive integer $k$ denote by $A_{J_{k}}$ the set of the restrictions to $J_{k}$ of all the elements of $A ; A_{J_{k}}$ is a BL-algebra and it is, up to isomorphism, subdirect product of $\left\{C_{i}, i \in J_{k}\right\}$. In the sequel the restriction of $f \in A$ to $J_{k}$ will be denoted by $f_{J_{k}}$.

The following result is crucial:
Theorem 13. Let $A \in \mathbf{F B L}$. Then $A$ is isomorphic to the direct product $A_{J_{1}} \times \cdots \times A_{J_{r}}$.
Proof. The map $\phi: f \in A \rightarrow\left(f_{J_{1}}, \ldots, f_{J_{r}}\right) \in A_{J_{1}} \times \cdots \times A_{J_{r}}$ is a homomorphism. Now we shall prove that $\phi$ is bijective.

Claim 1. $\phi$ is injective.
Indeed, if $f \neq g$, then $f_{i} \neq g_{i}$ for some $i$. Let $i \in J_{k}$, then $f_{J_{k}} \neq g_{J_{K}}$ hence $\phi(f) \neq \phi(g)$.
Claim 2. $\phi$ is surjective.
We will prove the surjectivity of $\phi$ by induction on the cardinal of the set $\pi$. It is trivial if $|\pi|=1$. Assume that it is true for $|\pi|=r-1$ and set:
$\phi^{\prime}: f \in A_{J_{1} \cup \cdots \cup J_{r-1}} \rightarrow\left(f_{J_{1}}, \ldots, f_{J_{r-1}}\right) \in A_{J_{1}} \times \cdots \times A_{J_{r-1}} . \quad$ By induction, $\quad \phi^{\prime} \quad$ is surjective.

Let $\left(f_{J_{1}}^{1}, \ldots, f_{J_{r}}^{r}\right) \in\left(A_{J_{1}} \times \cdots \times A_{J_{r-1}}\right) \times A_{J_{r}}$ and $f \in A$ such that $\phi^{\prime}\left(f_{J_{I} \cup \ldots \cup J_{r-1}}\right)=$ $\left(f_{J_{1}}^{1}, \ldots, f_{J_{r-1}}^{r-1}\right)$; moreover let $g \in A$ such that $g_{J_{r}}=f_{J_{r}}^{r}$.
Fix a subset $J$ of $I_{n}$ containing exactly a single representative element from each class of $\pi$, that is $J=\left\{i_{1}, \ldots, i_{r}\right\}$ and $i_{m} \in J_{m}, m \in\{1, \ldots, r\}$. By Lemmas 7 and 8 and Proposition 9, for every $r$-tuple $\left(x_{i_{1}}, \ldots, x_{i_{r}}\right) \in M\left(\alpha, i_{1}, 1\right) \times \cdots \times M\left(\alpha, i_{r}, 1\right)$, there is an element $g^{\prime} \in A \cap \prod_{i=1}^{n} M(\alpha, i, 1)$, such that $\left(g_{i_{1}}^{\prime}, \ldots, g_{i_{r}}^{\prime}\right)=\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$.

Therefore, let $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ such that:

1. $\left(a_{i_{1}}, \ldots, a_{i_{r}}\right),\left(b_{i_{1}}, \ldots, b_{i_{r}}\right) \in M\left(\alpha, i_{1}, 1\right) \times \cdots \times M\left(\alpha, i_{r}, 1\right)$,
2. $a_{i_{h}}<b_{i_{h}}$ for $h=1, \ldots, r-1$,
3. $a_{i_{r}}>b_{i_{r}}$.

Then we have

$$
(a \rightarrow b)_{i}= \begin{cases}1_{i} & \text { if } i \in J_{1} \cup \cdots \cup J_{r-1}  \tag{3}\\ a_{i_{r}}^{*} \oplus b_{i_{r}} \in M(\alpha, i, 1) & \text { if } i \in J_{r} .\end{cases}
$$

Set $c=\alpha(a \rightarrow b)$. Then $c_{i}=1_{i}$ for $i \in J_{1} \cup \cdots \cup J_{r-1}$ and $c_{i}=0_{i}$ for $i \in J_{r}$. On other side,

$$
(b \rightarrow a)_{i}= \begin{cases}b_{i}^{*} \oplus a_{i} \in M(\alpha, i, 1) \backslash\left\{1_{i}\right\} & \text { if } i \in J_{1} \cup \cdots \cup J_{r-1},  \tag{4}\\ 1_{i} & \text { if } i \in J_{r} .\end{cases}
$$

Let $w=\alpha(b \rightarrow a)$. Then $w_{i}=1_{i}$ for $i \in J_{r}$ and $w_{i}=0_{i}$ for $i \in J_{1} \cup \cdots \cup J_{r-1}$. Thus $(c \odot f) \vee(w \odot g) \in A$ and $\phi((c \odot f) \vee(w \odot g))=\left(f_{J_{1}}, \ldots, f_{J_{r}}\right)$.

Corollary 14. Let $A \in \mathbf{F B L}$. Then the following are equivalent:

1. for every $(i, j)$ and $i \neq j$ there is an element $f \in \operatorname{MV}(A)$ such that $f_{i} \neq f_{j}$,
2. $A=\prod_{i=1}^{n} C_{i}$.

Proof. Assume that for every $(i, j)$ and $i \neq j$ there is an element $f \in \operatorname{MV}(A)$ such that $f_{i} \neq f_{j}$. Then $\pi=I$. Let $A_{\backslash\{i\}}$ be the BL-algebra of the restrictions to $\{i\}$ of all the elements in $A$. The $A_{\lceil\{i\}} \cong C_{i}$, for every $i \in\{1,2, \ldots, n\}$. Hence the conclusion follows by Theorem 13. Vice versa is obvious.

## 4. BL-comet

In this section we will introduce the concept of BL-comet and we will prove the main result according to any finite BL-algebra is a direct product of BL-comets (Corollary 28). To this aim we hold to describe the structure of the algebra $A_{J_{h}}$, that is the structure of a finite BL-algebra $A=(A, \wedge, \vee, \odot, \rightarrow, \mathbf{0}, \mathbf{1})$, having the further following property:

$$
\begin{equation*}
\text { every } f \in A \cap \prod_{i=1}^{n} M(\alpha, i, 1)=\operatorname{MV}(A) \text { is constant on } I_{n} \text {. } \tag{5}
\end{equation*}
$$

Such an algebra will be denoted by $A_{c}$ and the class of all the algebras $A_{c}$ will be denoted by $\mathbf{A}_{\mathbf{c}}$.

Lemma 15. Let $A_{c} \in \mathbf{A}_{\mathbf{c}}$. Then, for every $(i, j) \in I_{n}^{2}, M(\alpha, i, 1) \cong M(\alpha, j, 1)$.
Proof. Suppose there is $(i, j) \in I_{n}^{2}$ such that $M(\alpha, i, 1) \not \neq M(\alpha, j, 1)$. We can safely assume $|M(\alpha, i, 1)|<|M(\alpha, j, 1)|$. By Lemma 7, we find an element $g \in A_{c}$ such that $g_{i}=0_{i}$ and $g_{j} \in M(\alpha, j, 1) \backslash\left\{0_{j}\right\}$. Hence $g^{*} \in \operatorname{MV}(A)$ and it is not constant on $I_{n}$, absurd.

Set $M\left(\alpha, i, h_{1}^{m}\right)=\biguplus_{h=1}^{m} M(\alpha, i, h)$ and, for every $A_{c}$, define:
$\delta_{A_{c}}=\max \left\{m \in N \mid\right.$ for every $f \in A_{c} \cap \prod_{i=1}^{n} M\left(\alpha, i, h_{1}^{m}\right), f$ is constant on $\left.I_{n}\right\}$. We get $1 \leqslant \delta_{A_{c}} \leqslant \min \left\{n_{i}+1 \mid i \in I_{n}\right\}$.

With the above notations we have:
Lemma 16. Let $A_{c} \in \mathbf{A}_{\mathbf{c}}$. Then, for every $(i, j) \in I_{n}^{2}$ and for every $1 \leqslant m \leqslant \delta_{A_{c}}, M\left(\alpha, i, h_{1}^{m}\right)$ $\cong M\left(\alpha, j, h_{1}^{m}\right)$.

Proof. By Lemma 15 it is true for $m=1$, then we proceed by induction. Assume $M\left(\alpha, i, h_{1}^{m-1}\right) \cong M\left(\alpha, j, h_{1}^{m-1}\right)$, for every $(i, j) \in I_{n}^{2}$. Suppose there is $(i, j)$ such that $M(\alpha, i, m) \neq M(\alpha, j, m)$. Arguing as in Lemma 15 , we find an element $g \in A_{c}$ such that $g_{i}=\alpha_{i, m-1}$ and $g_{j} \in M(\alpha, j, m) \backslash\left\{\alpha_{j, m-1}\right\}$. Hence $\left(g \rightarrow \alpha_{m-1}\right) \in \prod_{i=1}^{n} M\left(\alpha, i, h_{1}^{\delta_{A_{c}}}\right)$ and it is not constant on $I_{n}$, absurd. Since $M\left(\alpha, i, h_{1}^{m}\right) \cong M\left(\alpha, i, h_{1}^{m-1}\right) \uplus M(\alpha, i, m)$, for every $i \in I_{n}$, the desired conclusion immediately follows.

In the sequel, when there is no misunderstanding, we will denote $\delta_{A_{c}}$ simply by $\delta$.
Lemma 17. Let $A_{c} \in \mathbf{A}_{\mathbf{c}}$. Then $A_{c} \backslash\left(\prod_{i=1}^{n} M\left(\alpha, i, h_{1}^{\delta}\right) \backslash\left\{1_{i}\right\}\right)=\left\{x \in A_{c} \mid x \geqslant \alpha_{\delta}\right\}$.
Proof. The inclusion $\left\{x \in A_{c} \mid x \geqslant \alpha_{\delta}\right\} \subseteq A_{c} \backslash\left(\prod_{i=1}^{n} M\left(\alpha, i, h_{1}^{\delta}\right) \backslash\left\{1_{i}\right\}\right)$ is immediate.
Assume now $x \in A_{c} \backslash\left(\prod_{i=1}^{n} M\left(\alpha, i, h_{1}^{\delta}\right) \backslash\left\{1_{i}\right\}\right)$ and $x \geqslant \alpha_{\delta}$.
Then the subsets:

$$
\begin{aligned}
& I_{1}=\left\{i \in I_{n} \mid x_{i} \geqslant \alpha_{i, \delta}\right\}, \\
& I_{2}=\left\{i \in I_{n} \mid x_{i}<\alpha_{i, \delta}\right\}
\end{aligned}
$$

are not empty and

$$
\left(\alpha_{\delta} \rightarrow x\right)_{i}= \begin{cases}1_{i} & \text { if } i \in I_{1},  \tag{6}\\ x_{i} & \text { if } i \in I_{2} .\end{cases}
$$

Consequently $\alpha_{\delta} \rightarrow x \in \prod_{i=1}^{n} M\left(\alpha, i, h_{1}^{\delta}\right)$, but $\alpha_{\delta} \rightarrow x$ is not a constant function on $I_{n}$, absurd.

Corollary 18. Let $A_{c} \in \mathbf{A}_{\mathbf{c}}$. Then $A_{c} \cap \prod_{i=1}^{n} M\left(\alpha, i, h_{1}^{\delta}\right)$ is a totally ordered subalgebra of $A_{c}$ and it is isomorphic to $M\left(\alpha, i, h_{1}^{\delta}\right)$ for every $i \in I_{n}$.

Proof. By subdirect product properties and by Lemma 17 it follows that, for every $i \in I_{n}, p_{i}: f \in A_{c} \cap \prod_{i=1}^{n} M\left(\alpha, i, h_{1}^{\delta}\right) \rightarrow f_{i}$ is a bijective map from $A_{c} \cap \prod_{i=1}^{n} M\left(\alpha, i, h_{1}^{\delta}\right)$ on $M\left(\alpha, i, h_{1}^{\delta}\right)$. Indeed $p_{i}$ is the claimed isomorphism.

Remark 19. As a consequence of Lemma 17 and Corollary $18 \quad \delta_{A_{c}}<v=$ $\min \left\{n_{i}+1 \mid i \in I_{n}\right\}$. Indeed set $I_{v}=\left\{i \in I_{n} \mid n_{i}+1=v\right\}$. If $\delta_{A_{c}}=v$, then, for every $x \in A_{c} \backslash\left(\prod_{i=1}^{n} M\left(\alpha, i, h_{1}^{\delta}\right) \backslash\left\{1_{i}\right\}\right), x_{i}=1_{i}$, for each $i \in I_{v}$. Whence the function $p_{v}$ mapping any element $f$ to its restriction to $I_{n} \backslash I_{v}, f_{I_{n} \backslash I_{v}}$ is an isomorphism between $A_{c}$ and $\left(A_{c}\right)_{I_{n} \backslash I_{v}}$. Whereas, under our assumptions, any chain $C_{i}, i \in I_{n}$, has to be essential in the representation of $A_{c}$.

Proposition 20. Let $A_{c} \in \mathbf{A}_{\mathbf{c}}$. Set

1. $B=A_{c} \backslash\left(\prod_{i=1}^{n} M\left(\alpha, i, h_{1}^{\delta}\right) \backslash\left\{1_{i}\right\}\right)$,
2. $0_{B}=\alpha_{\delta}$,
3. $1_{B}=\mathbf{1}$,
4. $\odot_{B}$ be the restriction of the product of $A_{c}$ to $B$,
5. $\rightarrow_{B}$ be the restriction of the operation $\rightarrow$ of $A_{c}$ to $B$.

Then $B=\left(B, \wedge, \vee, \odot_{B}, \rightarrow_{B}, 0_{B}, 1_{B}\right)$ is a BL-algebra.
Proof. By Lemma $17, B=\left(B, \wedge, \vee, 0_{B}, 1_{B}\right)$ is a lattice with $0_{B}$ as least element and $1_{B}$ as greatest element. Moreover

$$
\begin{aligned}
& \text { if } x \geqslant \alpha_{\delta} \text { and } y \geqslant \alpha_{\delta} \text { then } x \odot y \geqslant \alpha_{\delta}, \\
& \text { if } f \geqslant \alpha_{\delta} \text { and } g \geqslant \alpha_{\delta} \text { then } f \rightarrow g \geqslant g \geqslant \alpha_{\delta} .
\end{aligned}
$$

Let $A$ be a BL-algebra. By $\llbracket(A)$ we denote the set of all idempotent elements of $A$. We remark that $\mathbb{\square}\left(A_{c}\right) \neq\{\mathbf{0}, \mathbf{1}\}$ for every finite BL-algebra $A$ that is not a MV-chain. For otherwise $A$ is locally finite, hence it is an MV-chain [5].

The above remark suggests the following considerations:
Let $A \in \mathbf{F B L}$, for $x \in \rrbracket(A)$, denote by $\mathbb{C}(x)$ the subset of $\mathbb{Q}(A)$ whose elements are comparable with $x$. Define $K(A) \subseteq \square(A)$ as follows:
$x \in K(A)$ iff the following conditions are satisfied:

1. $\mathbb{C}(x)=\rrbracket(A)$;
2. $\{y \in \square(A) \mid y \leqslant x\}$ is a chain.

We stress that $K(A)$ is not empty: indeed $\mathbf{0} \in K(A)$.
The above notations and remarks allow us to introduce the main following definitions:

Definition 21. Let $A$ be a nontrivial element of FBL. Then $A$ is called BL-comet if $\max K(A) \neq \mathbf{0}$.

Definition 22. Let $A$ be is a BL-comet, then $\max K(A)$ is called pivot of $A$ and it will be denoted by $\operatorname{pivot}(A)$.

Set $\rho=\max \left\{n_{i}+1, i \in I_{n}\right\}$. For every $h \leqslant \rho$ we will denote by $\alpha_{(h)}$ the $n$-tuple $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where

$$
\alpha_{i}= \begin{cases}1_{i} & \text { if } h \geqslant n_{i}+1,  \tag{7}\\ \alpha_{i, h} & \text { if } h<n_{i}+1 .\end{cases}
$$

With above notations we introduce the following:
Definition 23. Let $A \in \mathbf{F B L}$ and $\beta \in \mathbb{Q}(A) . \beta$ is called pseudoconstant on $I_{n}$ if there is $h \leqslant \rho$ such that $\beta=\alpha_{(h)}$.

By (7) every idempotent $\alpha_{h} \in A$, constant on $I_{n}$, is pseudoconstant on $I_{n}$; moreover $\alpha_{(h)}=\mathbf{1}$ iff $h=\rho$.

Lemma 24. Let $A \in \mathbf{F B L}$. Then, for every $h \leqslant \rho, \alpha_{(h)} \in A$.
Proof. If $h \leqslant v$ (see Remark 19), the claim is already proved (see Corollary 5). Then we can safely assume $v<h<\rho$. Suppose $n=2$ and $n_{1}+1<h<n_{2}+1$. Let $x \in A$ such that $x_{2}=\alpha_{2, h}$. Set $\alpha\left(x_{1}\right)=\alpha_{1, k}$, for some $k \leqslant n_{1}+1$. Then, by applying Corollary 5 , $\left(\alpha(x) \rightarrow \alpha_{k}\right) \vee x=\alpha_{(h)} \in A$. Proceeding by induction, let the lemma be true for $n-1$. Analogously to Corollary 5 , for every $i \in I_{n}$, we find an element $x^{i} \in A$ such that for $j \neq i$

$$
\left(x^{i}\right)_{j}= \begin{cases}1_{j} & \text { if } h \geqslant n_{j}+1,  \tag{8}\\ \alpha_{j, h} & \text { if } h<n_{j}+1 .\end{cases}
$$

If two of the elements $x^{1}, x^{2}$ and $x^{3}$ are incomparable, say $x^{1}$ and $x^{2}$, then either $x^{1} \vee x^{2}$ or $x^{1} \wedge x^{2}$ satisfies the claim. For otherwise $x^{1}, x^{2}$ and $x^{3}$ are comparable. We safely
can set $x^{1} \leqslant x^{2} \leqslant x^{3}$. Then by (8) we have
if $h \geqslant n_{2}+1$, then $1_{2}=\left(x^{1}\right)_{2} \leqslant\left(x^{2}\right)_{2}$, hence $\left(x^{2}\right)_{2}=1_{2}$;
if $h<n_{2}+1$, then $\left(x^{1}\right)_{2}=\alpha_{2, h} \leqslant x_{2}^{2} \leqslant\left(x^{3}\right)_{2}=\alpha_{2, h}$, hence $x_{2}^{2}=\alpha_{2, h}$.
In both cases $x^{2}=\alpha_{(h)} \in A$.
Lemma 25. Let $A \in \mathbf{F B L}$ and $\mathbb{\square}(A)$ be a chain. Then for every $x \in A$ there exists $h \leqslant \rho$ such that:

$$
x_{i}= \begin{cases}1_{i} & \text { if } h \geqslant n_{i}+1,  \tag{9}\\ \in M(\alpha, i, h+1) \backslash\left\{1_{i}\right\} & \text { if } h<n_{i}+1 .\end{cases}
$$

Consequently $\square(A)$ is the set of all the pseudoconstant elements of $A$.
Proof. Let $x \in A \backslash\{\mathbf{1}\}$ and

$$
\begin{aligned}
& I_{1}=\left\{i \in I_{n} \mid x_{i}=1_{i}\right\}, \\
& I_{2}=\left\{i \in I_{n} \mid x_{i}<1_{i}\right\} .
\end{aligned}
$$

If for some $(i, j) \in I_{2}^{2}, x_{i} \in M(\alpha, i, h+1) \backslash\left\{1_{i}\right\}, x_{j} \in M(\alpha, j, k+1) \backslash\left\{1_{j}\right\}$ and $h<k$, then, by applying Corollary 4 for $f=\alpha(x)$, we find $a, b \in A$ such that $\left(a_{i}, a_{j}\right)=\left(1_{i}, \alpha_{j, h}\right)$ and $\left(b_{i}, b_{j}\right)=\left(\alpha_{i, h}, 1_{j}\right)$. So $\alpha(a)$ and $\alpha(b)$ have to be two incomparable elements of $\mathbb{\square}(A)$, absurd. Consequently, there is an $h<\rho$ such that $x_{i} \in M(\alpha, i, h+1) \backslash\left\{1_{i}\right\}$, for every $i \in I_{2}$. Let now $I_{1} \neq \emptyset$ and $h<n_{i}+1$ for some $i \in I_{1}$. By Lemma $24, \alpha(x) \rightarrow \alpha_{(h)} \in \rrbracket(A)$, but it is not comparable with $\alpha(x)$. This contradiction shows that $x$ verifies (9).

Proposition 26. Let $A$ be a nontrivial element of FBL. Then the following are equivalent:

1. $A$ is a BL-chain,
2. $A$ is a BL -comet and $\operatorname{pivot}(A)=\mathbf{1}$.

Proof. $1 \Rightarrow 2$ is trivial. In order to show $2 \Rightarrow 1$ set, for every $x \in A, I_{x}=\left\{i \in I_{n} \mid x_{i}=1_{i}\right\}$.
Claim 1. The family $\left(I_{x}\right)_{x \in A}$ is totally ordered by inclusion.
Actually let $x, y \in A, x \neq y, i \in I_{x} \backslash I_{y}$ and $j \in I_{y} \backslash I_{x}$. Then $\left(\alpha\left(x_{i}\right), \alpha\left(x_{j}\right)\right)=\left(1_{i}, \alpha_{j, h}\right)<$ $\left(1_{i}, 1_{j}\right)$ and $\left(\alpha\left(y_{i}\right), \alpha\left(y_{j}\right)\right)=\left(\alpha_{i, k}, 1_{j}\right)<\left(1_{i}, 1_{j}\right)$, for suitable $h$ and $k$. Consequently $\alpha(x)$ and $\alpha(y)$ are two incomparable elements of $\square(A)$, which contradicts the hypothesis $\operatorname{pivot}(A)=1$.

Claim 2. $I_{x} \subsetneq I_{y} \Rightarrow x<y$.
We can safely assume $y<\mathbf{1}$. Then by Lemma 25 there are suitable $h, k<\rho$ such that:
for every $i \in I_{n} \backslash I_{x}, x_{i} \in M(\alpha, i, h+1) \backslash\left\{1_{i}\right\}$
and
for every $i \in I_{n} \backslash I_{y}, \quad y_{i} \in M(\alpha, i, k+1) \backslash\left\{1_{i}\right\}$.
Let now $j \in I_{y} \backslash I_{x}$; by (9) $h<n_{j}+1 \leqslant k$, whence $x<y$.

Claim 3. $I_{x}=I_{y} \Rightarrow x$ and $y$ comparable.
If $x=\mathbf{1}$ or $y=\mathbf{1}$, the claim is trivial. Then assume $x<\mathbf{1}$ and $y<\mathbf{1}$. Let $h$ and $k$ be as in the previous claim.

> If $h<k$, then $x<y$,
> If $k<h$, then $y<x$.

Assume now $h=k$. Since $\mathbb{\square}(A)$ is a chain, as a consequence of Lemma 8 the restrictions of $x$ and $y$ to $I_{n} \backslash I_{y}$ are constant, which implies $x$ and $y$ comparable.

The conclusion now follows from Claims 1-3.
Theorem 27. Let $A$ be a nontrivial element of FBL. Then the following are equivalent:

1. $A$ is $a$ BL-comet,
2. $A \in \mathbf{A}_{\mathbf{c}}$.

Proof. $1 \Rightarrow 2$ : If $\operatorname{pivot}(A)=1$, then the implication follows by Proposition 26. Then assume $\beta=\operatorname{pivot}(A)<\mathbf{1}$. Rejecting the thesis, by Lemma 8 there is $f \in A$ such that $\left(f_{i}, f_{j}\right)=\left(0_{i}, \mathbf{1}_{j}\right)$, for some $(i, j) \in I_{n}^{2}$. We can safely assume $f \in \operatorname{MV}(A)$. Since $\alpha(f)$ and $\alpha\left(f^{*}\right)$ are two incomparable elements of $\mathbb{\square}(A)$, necessarily we get $\alpha(f), \alpha\left(f^{*}\right) \geqslant \beta$. From that $\mathbf{0}=\alpha(f) \wedge \alpha\left(f^{*}\right) \geqslant \beta$, a contradiction.
$2 \Rightarrow 1$ : By Lemma 17 and Corollary 18 it follows $\alpha_{\delta} \in K(A)$, whence $\alpha_{\delta} \leqslant \max K(A)$ $=\operatorname{pivot}(A)$. By definition $\alpha_{\delta}>\mathbf{0}$, so $\max K(A) \neq \mathbf{0}$.

Corollary 28. Let A be a nontrivial element of FBL. Then A is isomorphic to a direct product of BL-comets.

Proof. It follows by Theorems 13 and 27.
Proposition 29. Let $A_{c} \in \mathbf{A}_{\mathbf{c}}$. Then $\operatorname{pivot}\left(A_{\mathbf{c}}\right)=\alpha_{\delta}$.
Proof. If $\operatorname{pivot}\left(A_{c}\right)=\mathbf{1}$, it follows by Proposition 26. Assume $\operatorname{pivot}\left(A_{c}\right)<\mathbf{1}$. In the proof of Theorem $27(2 \Rightarrow 1)$ it is proved that $\alpha_{\delta} \leqslant \operatorname{pivot}\left(A_{c}\right)$. On other hand by definition of $\delta$ and by Lemma 8 we can find $f \in A_{c}$ such that for some $(i, j) \in I_{n}^{2}$, $\left(f_{i}, f_{j}\right)=\left(\alpha_{i, \delta}, 1_{j}\right)$. Since $\alpha(f)$ and $\alpha(f) \rightarrow \alpha_{\delta}$ are two incomparable elements of $\llbracket(A)$, it follows $\alpha(f), \alpha(f) \rightarrow \alpha_{\delta} \geqslant \operatorname{pivot}\left(A_{c}\right)$. Hence $\operatorname{pivot}\left(A_{c}\right) \leqslant \alpha(f) \wedge\left(\alpha(f) \rightarrow \alpha_{\delta}\right)=\alpha_{\delta}$.

Corollary 30. Let $A_{c} \in \mathbf{A}_{\mathbf{c}}$ and $\operatorname{pivot}\left(A_{c}\right)<\mathbf{1}$. Then $A_{c}$ is the ordinal sum of a finite BL-chain and a finite BL-algebra that is not a BL-comet.

Proof. It follows by Corollary 18, and Propositions 20 and 29.

## 5. Labelled trees

Now we recall some definitions about partially ordered sets.

Definition 31. A partial ordered set $(T, \leqslant)$ is called tree if $T$ has a minimum element $T_{0}$ and, for every $x \in T$, the set $T_{x}=\{y \in T: y \leqslant x\}$ is totally ordered. The elements of a tree are called nodes.

Definition 32. Let $(T, \leqslant)$ be a finite tree, $x \in T$ and $x \neq T_{0}$. The greatest element of $T_{x} \backslash\{x\}$ is called the previous element of $x$ and it shall be denoted by $\operatorname{pr}(x)$.

Definition 33. Let $(T, \leqslant)$ be a finite tree, the elements $x, y \in T$. We say that $y$ covers $x$ if $\operatorname{pr}(y)=x$. In this case we write $x \prec y$.

Definition 34. Let $(T, \leqslant)$ be a finite tree and $x \in T$. We say that $x$ is a simple node if there is exactly one element covering $x$. If $x$ is not simple or if $x=T_{0}, x$ will be called a multiple node.

Definition 35. Let $(T, \leqslant)$ be a finite tree. We call height of an element $x \in T$, in symbols $l(x)$, the cardinal of the set of all multiple nodes of the chain $\left.] T_{0}, x\right]$.

Definition 36. Let $(T, \leqslant)$ be a finite tree. We call height of $T$, in symbols $l(T)$, the non negative integer equal to $\max \{l(x): x \in T\}$.

Definition 37. Let ( $T, \leqslant$ ) be a finite tree, $x \in T$ and $x \neq T_{0}$. The greatest multiple node of $T_{x} \backslash\{x\}$ is called multiple node previous of $x$, and it shall be denoted by $\operatorname{prm}(x)$.

Let $N$ be the set of all the positive integers; then we set:

$$
\mathbf{N}=\{0\} \cup\left(\bigcup_{r \in N} N^{r}\right)
$$

and, for every integer positive number $p, \mathbf{N}_{p}=\left(\{0\} \cup\left(\bigcup_{r \in N} N^{r}\right)\right)^{p}$
Definition 38. A labelled tree is a triple $(T, \leqslant, h)$, verifying the following:

$$
\begin{aligned}
& (T, \leqslant) \text { is a finite tree, } \\
& h \text { is a map from } T \text { to } \bigcup_{p \in N} \mathbf{N}_{p}, \\
& h(x)=0 \text { iff } x=T_{0} .
\end{aligned}
$$

If $h(T) \subseteq\{0\} \cup N$, then $(T, \leqslant, h)$ is called a simply labelled tree.
By definition, a simply labelled tree is a tree, having every node marked by an integer number $m$. Such a number $m$ represents the MV-chain with $m+1$ elements.

Our aim now is to map finite simply labelled trees on finite BL-algebras.
Let $(T, \leqslant, h)$ be a simply labelled tree and $\left(T_{f}, \leqslant\right)$ the subtree of $(T, \leqslant)$ of all multiple nodes. Define the map $h_{f}: T_{f} \rightarrow \mathbf{N}_{1}=\{0\} \cup\left(\bigcup_{r \in N} N^{r}\right)$ as follows:

$$
h_{f}(x)= \begin{cases}\left(h\left(x_{1}\right), \ldots, h\left(x_{r}\right), h(x)\right) & \text { if } x \text { is a multiple node different from } T_{0} \text { and } \\ 0 & \left.\left(x_{1}, \ldots, x_{r}, x\right)=\operatorname{prm}(x), x\right], \subseteq T \\ & \text { if } x=T_{0}\end{cases}
$$

Then the triple $\left(T_{f}, \leqslant, h_{f}\right)$ is a labelled finite tree. Each (multiple) node is marked by $h_{f}$ with a finite sequence of positive integers $n_{1}, \ldots, n_{t}$. Such a sequence represents the BL-chain which is a finite ordinal sum whose components are the finite MV-chains with $n_{1}+1, \ldots, n_{t}+1$ elements, respectively: $h_{f}(x)=S_{n_{1}} \uplus \cdots \uplus S_{n_{t}}$.

Now denote by
$\mathbf{T}_{\mathrm{s}, 1}$ the set of all finite simply labelled trees,
and
$\mathbf{T}_{\mathbf{m}, 1}$ the set of all finite labelled trees $(T, \leqslant, h)$ such that:
every $x \in T$ is multiple,

$$
h(T) \subseteq \mathbf{N}_{1} .
$$

With the above notations and arguments we can claim the following theorem:
Theorem 39. The map $f$, defined by $f(T, \leqslant, h)=\left(T_{f}, \leqslant, h_{f}\right)$, is a bijective map between $\mathbf{T}_{\mathrm{s}, \mathbf{1}}$ and $\mathbf{T}_{\mathbf{m}, \mathbf{1}}$.

Proof. It is obvious.
In the sequel, when there is no misunderstanding, we will denote $f(T, \leqslant, h)$ by $f(T)$ or $T_{f}$.

Next we will define a function $\sigma$, mapping every element of $\mathbf{T}_{\mathbf{m}, 1}$ on a finite BL-algebra.

First let $(T, \leqslant, h) \in \mathbf{T}_{\mathbf{m}, \mathrm{l}}, l(T)=1$ and $T_{1}=T \backslash\left\{T_{0}\right\}$. Then we define:

$$
\sigma(T)= \begin{cases}h\left(T_{1}\right) & \text { if }\left|T_{1}\right|=1,  \tag{10}\\ \prod_{x \in T_{1}} h(x) & \text { if }\left|T_{1}\right|>1\end{cases}
$$

Assume now $l(T)=n>1$ and set:

$$
\begin{aligned}
& T_{i}=\{x \in T: l(x)=i\}, i=1, \ldots, n, \\
& T^{r}=\bigcup_{i=0}^{n-r} T_{i}, r=1, \ldots, n-1, \\
& \text { and } \\
& \mathrm{M} \text { equal to the set of all maximal elements of } T .
\end{aligned}
$$

Define a mapping $h^{1}: T^{1}=\bigcup_{i=0}^{n-1} T_{i} \rightarrow \bigcup_{p \in N} \mathbf{N}_{p}$, by

$$
h^{1}(x)= \begin{cases}(h(x),(h(y), x \prec y)) & \text { if } l(x)=n-1 \text { and } x \notin \mathrm{M},  \tag{11}\\ h(x) & \text { otherwise. }\end{cases}
$$

In the labelled tree ( $T^{1}, \leqslant, h^{1}$ ), every (multiple) node, such that $l(x)=n-1$ and $x \notin \mathrm{M}$, is marked by $h^{1}$ with a pair: $(h(x),(h(y), x \prec y)) . h(x)$ is a sequence of positive integers, representing the BL-algebra $h(x)=S_{n_{1}} \uplus \cdots \uplus S_{n_{t}}$. The second component is a finite family of sequence of positive integers $(h(y), x \prec y)$, representing the BL-algebra $(h(y), x \prec y)=\prod_{x \prec y} h(y)$. The pair $h^{1}(x)$ shall represent the finite BL-algebra which is an ordinal sum of BL-algebras: $h^{1}(x)=h(x) \uplus(h(y), x \prec y)=\left(S_{n_{1}} \uplus \cdots \uplus S_{n_{t}}\right) \uplus$ $\prod_{x \prec y} h(y)$.

Define now an application $h^{2}: T^{2}=\bigcup_{i=0}^{n-2} T_{i} \rightarrow \bigcup_{p \in N} \mathbf{N}_{p}$, as follows:

$$
h^{2}(x)= \begin{cases}\left(h^{1}(x),\left(h^{1}(y), x \prec y\right)\right) & \text { if } l(x)=n-2 \text { and } x \notin \mathrm{M},  \tag{12}\\ h^{1}(x) & \text { otherwise } .\end{cases}
$$

In the tree $\left(T^{2}, \leqslant, h^{2}\right)$, every (multiple) node $x$, such that $l(x)=n-2$ and $x \notin \mathrm{M}$, is marked by $h^{2}$ with a pair: $\left(h^{1}(x),\left(h^{1}(y), x \prec y\right)\right)$. The pair $h^{2}(x)$ shall represent the finite BL-algebra that is an ordinal sum of BL-algebras: $h^{2}(x)=h^{1}(x) \uplus \prod_{x \prec y} h^{1}(y)$.

Proceeding as above, at step $(n-1)$ th, we get a map $h^{n-1}: T^{n-1}=T_{1} \cup\left\{T_{0}\right\} \rightarrow \bigcup_{p \in N}$ $\mathbf{N}_{p}$, by

$$
h^{n-1}(x)= \begin{cases}\left(h^{n-2}(x),\left(h^{n-2}(y), x \prec y\right)\right) & \text { if } x \notin \mathrm{M},  \tag{13}\\ h^{n-2}(x) & \text { otherwise }\end{cases}
$$

Finally we define

1. $\sigma(T)=h^{n-1}\left(T_{1}\right)$ if $\left|T_{1}\right|=1$,
2. $\sigma(T)=\prod_{x \in T_{1}} h^{n-1}(x)$, otherwise.

Theorem 40. There is a map $\Gamma$ from $\mathbf{T}_{\mathrm{s}, \mathbf{1}}$ to $\mathbf{F B L}$.
Proof. It is sufficient to set $\Gamma=\sigma \circ f$. Then $\Gamma$ furnishes the claimed map.

## 6. Idempotent irreducible elements

Let $A \in \mathbf{F B L}$. In the lattice $(A, \wedge, \vee, \mathbf{0}, \mathbf{1})$ an element $x$ is called irreducible if $x=u \vee v$ implies $x=u$ or $x=v$. Denote by $\operatorname{Irr}(\mathbb{D}(A))$ the ordered set of all idempotent irreducible elements of $A$.

Proposition 41. Let $A \in \mathbf{F B L}$ and $x \in \operatorname{Irr}(\mathbb{(}(A))$. Then the set $A_{x}=\{y \in A: y \leqslant x\}$ is a chain of irreducible elements.

Proof. Let $x \in \operatorname{Irr}(\mathbb{\square}(A))$ and $h, k \in A$ such that $h<x$ and $k<x$. Then we have $x=x \wedge \mathbf{1}=$ $x \wedge((h \rightarrow k) \vee(k \rightarrow h))=(x \wedge(h \rightarrow k)) \vee(x \wedge(k \rightarrow h))$. By hypothesis we get either $x=$ $(x \wedge(h \rightarrow k))$ or $x=(x \wedge(k \rightarrow h))$. Assume $x=(x \wedge(h \rightarrow k))$, then $x \leqslant h \rightarrow k$ and $h=h$ $\odot x \leqslant h \odot(h \rightarrow k) \leqslant k$. So $h$ and $k$ are comparable. Analogously if $x=x \wedge(k \rightarrow h)$.

From the above proposition we immediately obtain:
Corollary 42. Let $A \in \mathbf{F B L}$. The ordered set $(\operatorname{Irr}(\mathbb{(}(A)), \leqslant)$ is a finite tree, having $\mathbf{0}$ as least element.

Proposition 43. Let $A$ be a BL-comet. Then $\operatorname{pivot}(A)$ is a multiple node of ( Irr $(\mathbb{D}(A)), \leqslant)$.

Proof. By Theorem 27, Proposition 29 and Corollary $18 \alpha_{\delta}=\operatorname{pivot}(A) \in \operatorname{Irr}(\mathbb{D}(A))$. To show that $\alpha_{\delta}$ is a multiple node, we observe that, by definition of $\delta$ and by Lemma 8 , we can find $f \in A$ such that for some $(i, j) \in I_{n}^{2},\left(f_{i}, f_{j}\right)=\left(\alpha_{i, \delta}, 1_{j}\right)$. Then $\alpha(f) \rightarrow \alpha_{\delta}$ and $\left(\alpha(f) \rightarrow \alpha_{\delta}\right) \rightarrow \alpha_{\delta}$ are incomparable and both greater than $\alpha_{\delta}$. Moreover $\left(\alpha(f) \rightarrow \alpha_{\delta}\right) \wedge$ $\left[\left(\alpha(f) \rightarrow \alpha_{\delta}\right) \rightarrow \alpha_{\delta}\right]=\alpha_{\delta}$. Whence $\alpha_{\delta}$ is a multiple node.

Proposition 44. Let $A \in \mathbf{F B L}, \alpha \in \operatorname{Irr}(\mathbb{\square}(A)) \backslash\{\mathbf{0}\}$. Set

1. $C=[\operatorname{pr}(\alpha), \alpha]$,
2. $0_{C}=\operatorname{pr}(\alpha)$,
3. $1_{C}=\alpha$,
4. $\odot_{C}$ be the restriction to $C$ of the product defined on $A$,
5. $x^{*} c=\alpha \odot(x \rightarrow \operatorname{pr}(\alpha))$, for every $x \in C$.

Then $C=\left(C, \odot_{C}, *_{C}, 0_{C}, 1_{C}\right)$ is an MV-chain.

## Proof. Indeed,

if $\operatorname{pr}(\alpha) \leqslant x \leqslant \alpha$ and $\operatorname{pr}(\alpha) \leqslant y \leqslant \alpha$, then $\operatorname{pr}(\alpha) \leqslant x \odot y \leqslant \alpha$, $0_{C}^{* C}=\alpha \odot(\operatorname{pr}(\alpha) \rightarrow \operatorname{pr}(\alpha))=\alpha=1_{C}$, and $1_{C}^{* C}=\alpha \odot(\alpha \rightarrow \operatorname{pr}(\alpha))=\alpha \wedge \operatorname{pr}(\alpha)=\operatorname{pr}(\alpha)=0_{C}$.
Since for every $i \in\{1, \ldots, n\}$ either $(\operatorname{pr}(\alpha))_{i}=\operatorname{pr}\left(\alpha_{i}\right)$ or $(\operatorname{pr}(\alpha))_{i}=\alpha_{i}$, it follows that $\operatorname{pr}(\alpha) \leqslant x \leqslant \alpha$ implies $\operatorname{pr}(\alpha) \leqslant x^{*} \leqslant \alpha$ and $\left(x^{* c}\right)^{* c}=x$.

Remark 45. By the above proposition, we get $[\operatorname{pr}(\alpha), \alpha] \cong S_{m}$, for some $m \in N$.
Let $i: \operatorname{Irr}(\mathbb{l}(A)) \rightarrow N$ be the map defined by: $i(\mathbf{0})=0$ and $i(x)=m$, if $x \neq \mathbf{0}$ and $[\operatorname{pr}(x), x] \cong S_{m}$. Then $(\operatorname{Irr}(\square(A)), \leqslant, i)$ is a simply labelled tree.

With above notations we have:
Theorem 46. There is a map $\Lambda$ from $\mathbf{F B L}$ to $\mathbf{T}_{\mathrm{s}, \mathrm{l}}$.
Proof. Let $A$ be a finite BL-algebra, set $\Lambda(A)=(\operatorname{Irr}(\mathbb{C}(A)), \leqslant, i)$. Then $\Lambda$ maps every finite BL-algebra into a simply labelled tree.

Proposition 47. Let $A_{i} \in \mathbf{F B L}, i=1, \ldots, r$ and $x=\left(x_{1}, \ldots, x_{r}\right) \in \prod_{i=1}^{r} A_{i}$. Then the following are equivalent:

1. $x \in \operatorname{Irr}\left(\mathbb{\square}\left(\prod_{i=1}^{r} A_{i}\right)\right)$,
2. there is $i \in\{1, \ldots, r\}$ such that $x_{i} \in \operatorname{Irr}\left(\mathbb{V}\left(A_{i}\right)\right)$ and $x_{j}=0_{j}$ for every $j \neq i$.

Proof. $1 \Rightarrow 2$ : Let $x=\left(x_{1}, \ldots, x_{r}\right) \in \operatorname{Irr}\left(\mathbb{\square}\left(\prod_{i=1}^{r} A_{i}\right)\right)$. Assume $x_{i_{1}} \neq 0_{i_{1}}$ and $x_{i_{2}} \neq 0_{i_{2}}$ for $i_{1} \neq i_{2}$. Then choose two elements:
$y=\left(y_{1}, \ldots, y_{r}\right)$, setting $y_{i_{1}}=0_{i_{1}}$ and $y_{i}=x_{i}$, for $i \neq i_{1}$, and $z=\left(z_{1}, \ldots, z_{r}\right)$, setting $z_{i_{2}}=0_{i_{2}}$ and $z_{i}=x_{i}$, for $i \neq i_{2}$.

Then we get $x \neq y, x \neq z$ and $x=y \vee z$, absurd. If $x_{i}$ is the only non-zero component of $x$, it is obvious that $x_{i} \in \operatorname{Irr}\left(\mathbb{D}\left(A_{i}\right)\right)$.
$2 \Rightarrow 1$ : Let $x=\left(x_{1}, \ldots, x_{r}\right) \in \prod_{i=1}^{r} A_{i}$. Assume there is $i \in\{i=1, \ldots, r\}$ such that $x_{i} \in \operatorname{Irr}\left(\mathbb{\square}\left(A_{i}\right)\right)$ and $x_{j}=0_{j}$ for every $j \neq i$. Thus from $x=y \vee z$ it follows $x_{i}=y_{i} \vee z_{i}$ and $x_{j}=y_{j}=z_{j}=0_{j}$ for every $j \neq i$. By hypothesis $x_{i}=y_{i}$ or $x_{i}=z_{i}$, whence $x=y$ or $x=z$, that is $x \in \operatorname{Irr}\left(\square\left(\prod_{i=1}^{r} A_{i}\right)\right)$.

Theorem 48. Let $A$ be a non-trivial element of $\mathbf{F B L}$. If $\operatorname{Irr}(\mathbb{Q}(A))$ is a chain, then $A$ is a BL-chain.

Proof. First we prove that $A$ is a BL-comet.
By Corollary $28 A=A_{1} \times \cdots \times A_{r}$ and, $i \in\{1, \ldots, r\}, A_{i} \neq\left\{0_{i}\right\}$ is a BL-comet. Let $r>1$ and $a=\left(a_{1}, 0, \ldots, 0\right)$ and $b=\left(0, b_{2}, 0, \ldots, 0\right)$ be two elements of $\operatorname{Irr}(\mathbb{C}(A))$. Then either $a_{1}=0_{1}$ or $b_{2}=0_{2}$. That is either $\operatorname{Irr}\left(\mathbb{D}\left(A_{1}\right)\right)=\left\{0_{1}\right\}$ or $\operatorname{Irr}\left(\mathbb{D}\left(A_{2}\right)\right)=\left\{0_{2}\right\}$, absurd. Thus $r=1$ and $A$ is a BL-comet.

Assume $\operatorname{pivot}(A)<1$.
Then, by Corollary $30, A=C \uplus B$, with $C$ a BL-chain and $B$ a finite BL-algebra that is not a BL-comet; hence $\operatorname{Irr}(\mathbb{\square}(B)) \subseteq \operatorname{Irr}(\mathbb{Q}(A))$. Consequently $\operatorname{Irr}(\mathbb{\square}(B))$ has to be a chain and, by previous claim, $B$ is a BL-comet, absurd. From that $\operatorname{pivot}(A)=\mathbf{1}$, therefore, by Proposition 26, $A$ is a BL-chain.

## 7. Dualizing BL-algebras and labelled trees

Following [2], we recall that, if $(C, \leqslant)$ is a finite chain and $\left(T, \leqslant^{\prime}\right)$ is a finite tree, $C$ and $T$ disjoint sets, then the ordinal sum of $C$ and $T$, in symbols $C \dot{+} T$, is the finite tree, $\left(T^{\prime \prime}, \leqslant^{\prime \prime}\right)$, where $T^{\prime \prime}=C \cup T \backslash T_{0}$ and $\leqslant^{\prime \prime}$ is defined by $x \leqslant^{\prime \prime} y$ for every $x \in C$ and for every $y \in T$, while the order of the elements in $C$ and the order of the elements in $T$ are unchanged.

Proposition 49. Let $A$ be a finite BL-chain and $B \in \mathbf{F B L}$. Then $(\operatorname{Irr}(\mathbb{\square}(A \uplus B), \leqslant) \cong$ $(\operatorname{Irr}(\square(A)), \leqslant) \dot{+}(\operatorname{Irr}(\square(B)), \leqslant)$.

Proof. It follows by definitions.
Let $(S, \leqslant)$ and $\left(T, \leqslant^{\prime}\right)$ be two trees. The direct product of $S$ and $T$ [2], in symbols $C \otimes T$, need not be a tree. Then we introduce the following definition:

Definition 50. We call 0 -product of the two trees $(S, \leqslant)$ and ( $T, \leqslant^{\prime}$ ), in symbols $C \odot T$, the ordered subset of $C \otimes T$, whose elements are the pairs $(x, y)$ such that $x=S_{0}$ or $y=T_{0}$.

The above definition can be extended to a finite number of trees as follows:
Definition 51. We call 0 -product of the trees $\left(S^{i}, \leqslant^{i}\right), i=1, \ldots, r$, in symbols $\bigodot_{i=1}^{r}\left(S^{i}, \leqslant^{i}\right)$, the ordered subset of $\bigotimes_{i=1}^{r} S^{i}$, whose elements are the $r$-tuples $\left(x_{1}, \ldots, x_{r}\right)$ such that there is $i_{0} \in\{1, \ldots, r\}$ and $x_{i}=S_{0}^{i}$ for every $i \neq i_{0}$.

Remark 52. There are natural embeddings $g_{i}: S^{i} \rightarrow S=\bigodot_{i=1}^{r} S^{i}$. Identifying $S^{i}$ and $g_{i}\left(S^{i}\right)$, we get $S^{i} \cap S^{j}=\left\{S_{0}\right\}$, for $i \neq j$ and $S=\bigcup_{i=1}^{r} S^{i}$.

Proposition 53. The 0-product of a finite number of trees is a tree.
Proof. It is a trivial.
Proposition 54. Let $A_{i} \in \mathbf{F B L}, i=1, \ldots, r$. Then $\quad\left(\operatorname{Irr}\left(\mathbb{(}\left(\prod_{i=1}^{r} A_{i}\right)\right), \leqslant\right) \cong$ $\left.\bigodot_{i=1}^{r}\right) \operatorname{Irr}\left(\left(\begin{array}{l}\left.\left.\left(A_{i}\right)\right), \leqslant\right) \text {. } . . . . . ~\end{array}\right.\right.$

Proof. Let $x=\left(x_{1}, \ldots, x_{r}\right) \in \operatorname{Irr}\left(\mathbb{(}\left(\prod_{i=1}^{r} A_{i}\right)\right)$. By Proposition 47, there is $i \in\{1, \ldots, r\}$ such that $x_{i} \in \operatorname{Irr}\left(\mathbb{Q}\left(A_{i}\right)\right)$ and $x_{j}=0_{j}$ for every $j \neq i$. Thus, the map $f: \operatorname{Irr}\left(\mathbb{0}\left(\prod_{i=1}^{r} A_{i}\right)\right) \rightarrow$ $\bigodot_{i=1}^{r} \operatorname{Irr}\left(\mathbb{\square}\left(A_{i}\right)\right)$, defined by $f\left(\left(0_{1}, \ldots, x_{i}, \ldots, 0_{r}\right)\right)=\left(\operatorname{Irr}\left(\mathbb{\square}\left(A_{1}\right)\right)_{0}, \ldots, x_{i}, \ldots, \operatorname{Irr}\left(\mathbb{D}\left(A_{r}\right)\right)_{0}\right)$, is the claimed order isomorphism.

Definition 55. Let $(S, \leqslant, h)$ be a labelled chain and $\left(T, \leqslant^{\prime}, k\right)$ be a labelled tree. The ordinal sum of $(S, \leqslant, h)$ and $\left(T, \leqslant^{\prime}, k\right)$ is the labelled tree $\left(R, \leqslant^{\prime \prime}, d\right)$ such that $\left(R, \leqslant^{\prime \prime}\right)$ is the ordinal sum of $(S, \leqslant)$ and $\left(T, \leqslant^{\prime}\right)$ and $d$ is defined by

$$
\mathrm{d}(x)= \begin{cases}h(x) & \text { if } x \in S,  \tag{14}\\ k(x) & \text { if } x \in T\end{cases}
$$

Definition 56. Let $(S, \leqslant, h)$ and $\left(T, \leqslant^{\prime}, k\right)$ be two labelled trees. The labelled 0 -product of $(S, \leqslant, h)$ and $\left(T, \leqslant^{\prime}, k\right)$ is the labelled tree $\left(R, \leqslant^{\prime \prime}, d\right)$ such that $\left(R, \leqslant^{\prime \prime}\right)$ is the 0 -product of ( $S, \leqslant$ ) and ( $T, \leqslant^{\prime}$ ) and $d$ is defined by

$$
\mathrm{d}(x, y)= \begin{cases}h(x) & \text { if }(x, y)=\left(x, T_{0}\right)  \tag{15}\\ k(y) & \text { if }(x, y)=\left(S_{0}, y\right)\end{cases}
$$

The above definition of a labelled 0-product can be extended to a finite number of trees in the obvious way. In the sequel we shall denote the ordinal sum and the 0 -product of two labelled trees, $S$ and $T$, by $S \dot{+} T$ or $S \odot T$, respectively.

Let $f$ be defined as in Theorem 39. Then we get:
Proposition 57. Let $(T, \leqslant, h)$ be a simply labelled chain and, for $i \in\{1, \ldots, r\}$, let $\left(T^{i}, \leqslant^{i}, h^{i}\right) \in \mathbf{T}_{\mathrm{s}, \mathrm{I}}$. Then

1. $f\left(T \dot{+} T^{i}\right)=f(T) \dot{+} f\left(T^{i}\right), i \in\{1, \ldots, r\}$,
2. $f\left(\bigodot_{i=1}^{r} T^{i}\right)=\bigodot_{i=1}^{r} f\left(T^{i}\right)$.

Proof. It follows by the definitions.
With arguments and notations of Section 5, we get:
Proposition 58. For $i \in\{1, \ldots, r\}$, let $\left(T^{i}, \leqslant^{i}, h^{i}\right) \in \mathbf{T}_{\mathbf{m}, \mathbf{l}}$. Then $\sigma\left(\bigodot_{i=1}^{r} T^{i}\right)=$ $\prod_{i=1}^{r} \sigma\left(T^{i}\right)$.

Proof. Set $\bigodot_{i=1}^{r} T^{i}=(S, \leqslant, d), l(S)=n$ and $l\left(T^{i}\right)=n_{i}$, for $i=1, \ldots, r$. If $x \in T^{i}$ and $x \neq S_{0}$, then $\{y \in S \mid x \prec y\} \subseteq T^{i}$. Hence $\left(h^{i}\right)^{n_{i}-1}(x)=d^{n-1}(x)$, for $i \in\{1, \ldots, r\}$ and $x \in$ $T^{i}$. Therefore, $\sigma(S)=\prod_{x \in S_{1}} d^{n-1}(x)=\prod_{x \in\left(T^{1}\right)_{1}}\left(h^{1}\right)^{n-1}(x) \times \prod_{x \in\left(T^{2}\right)_{1}}\left(h^{2}\right)^{n-1}(x) \times \cdots$ $\times \prod_{x \in\left(T^{r}\right)_{1}}\left(h^{r}\right)^{n-1}(x)=\sigma\left(T^{1}\right) \times \sigma\left(T^{2}\right) \times \cdots \times \sigma\left(T^{r}\right)=\prod_{i=1}^{r} \sigma\left(T^{i}\right)$.

In the next theorems $\Gamma$ and $\Lambda$ are defined as in Theorems 40 and 46, respectively.
Theorem 59. Let $(T, \leqslant, h) \in \mathbf{T}_{\mathrm{s}, \mathbf{1}}$. Then $\Lambda(\Gamma(T))$ is isomorphic to $(T, \leqslant, h)$.
Proof. We will prove the theorem for induction on $l(T)$. Suppose $l(T)=1$ and consider the set $T_{1}=\{x \in T: l(x)=1\}$.

Case 1: $\left|T_{1}\right|=1$. Let $\left.] T_{0}, T_{1}\right]=\left\{x_{1}, \ldots, x_{r}\right\}, x_{1}<x_{2} \cdots<x_{r}$. By definition of $\sigma, \Gamma(T)=$ $S_{n_{1}} \uplus \cdots \uplus S_{n_{r}}$, where $n_{i}=h\left(x_{i}\right), i=1, \ldots, r$. Then $\Lambda(\Gamma(T))=\operatorname{Irr}\left(\square\left(S_{n_{1}} \uplus \cdots \uplus S_{n_{r}}\right)\right) \cong T$.

Case 2: $\left|T_{1}\right|=p>1$. Set $T_{1}=\left\{t_{1}, \ldots, t_{p}\right\}$ and $\left.] T_{0}, t_{i}\right]=\left\{x_{i, 1}, \ldots, x_{i, q_{i}}\right\}, x_{i, 1}<x_{i, 2} \ldots<$ $x_{i, q_{i}}$, for every $i=1, \ldots, p$. Then $T \cong \bigodot_{i=1}^{p}\left(\left[T_{0}, t_{i}\right] \leqslant^{i}, h^{i}\right)$, with $t_{i} \in T_{1}$ and $\leqslant^{i}, h^{i}$ restrictions of $\leqslant$ and $h$ to $\left[T_{0}, t_{i}\right]$ respectively. By Propositions 57 and 58, $\Gamma(T)=$ $\sigma\left(\bigodot_{i=1}^{p} f\left(\left[T_{0}, t_{i}\right]\right)\right)=\prod_{i=1}^{p} h_{f}\left(t_{i}\right)=\prod_{i=1}^{p}\left(S_{n_{i, 1}} \uplus \cdots \uplus S_{n_{i, q_{i}}}\right)$, where $n_{i, s}=h\left(x_{i, s}\right), x_{i, s}$ $\in\left[T_{0}, t_{i}\right]$, for $i=1, \ldots, p$ and $s=1, \ldots, q_{i}$. From that and Proposition 54, $\Lambda(\Gamma(T))=$ $\operatorname{Irr}\left(\square\left(\prod_{i=1}^{p}\left(S_{n_{i, 1}} \uplus \cdots \uplus S_{n_{i, q_{i}}}\right)\right)\right)=\bigodot_{i=1}^{p} \operatorname{Irr}\left(\square\left(S_{n_{i, 1}} \uplus \cdots \uplus S_{n_{i, q_{i}}}\right)\right)$.

Using the arguments and the conclusion of the previous case, we get:
$\left.\operatorname{Irr}\left(\square\left(S_{n_{i, 1}}\right)\right) \uplus \cdots \uplus S_{n_{i, q_{i}}}\right)=\Lambda\left(\Gamma\left(\left[T_{0}, t_{i}\right]\right) \cong\left[T_{0}, t_{i}\right]\right.$, hence $\Lambda(\Gamma(T)) \cong \bigodot_{i=1}^{p}\left[T_{0}, t_{i}\right] \cong T$.
Suppose now $l(T)=n>1$.
If $\left|T_{1}\right|=1$, then $T \backslash\left[T_{0}, T_{1}\left[\right.\right.$ is a tree and $T=\left[T_{0}, T_{1}\right] \dot{+} T \backslash\left[T_{0}, T_{1}\left[\right.\right.$. Since $l\left(T \backslash\left[T_{0}, T_{1}[)\right.\right.$ $=n-1$, by induction hypothesis and the above results we get: $\Lambda\left(\Gamma\left(T \backslash\left[T_{0}, T_{1}[)\right) \cong\right.\right.$ $T \backslash\left[T_{0}, T_{1}\left[\right.\right.$ and $\Lambda\left(\Gamma\left(\left[T_{0}, T_{1}\right]\right)\right) \cong\left[T_{0}, T_{1}\right]$. By Proposition $57, \Gamma(T)=\Gamma\left(\left[T_{0}, T_{1}\right]\right) \uplus \Gamma(T$ $\backslash\left[T_{0}, T_{1}[)\right.$. Therefore, by Proposition 49, $\Lambda(\Gamma(T))=\Lambda\left(\Gamma\left(\left[T_{0}, T_{1}\right]\right)\right) \dot{+} \Lambda\left(\Gamma\left(T \backslash\left[T_{0}, T_{1}[)\right)\right.\right.$ $\cong\left[T_{0}, T_{1}\right] \dot{+} T \backslash\left[T_{0}, T_{1}[\cong T]\right.$.

Let now $\left|T_{1}\right|=p>1$ and $T_{1}=\left\{t_{1}, \ldots, t_{p}\right\}$. Set $R^{i}=\left\{x \in T: x \geqslant t_{i}\right\}$ and $S^{i}=\left[T_{0}, t_{i}\right] \dot{+}$ $R^{i}$. Then we get $T \cong \bigodot_{i=1}^{p} S^{i}$. Thus, by Propositions 57, 58 and 47, it follows $\Lambda(\Gamma(T))$ $\cong \bigodot_{i=1}^{p} \Lambda\left(\Gamma\left(S^{i}\right)\right)$. Since $\left|\left\{x \in S^{i}: l(x)=1\right\}\right|=1, \Lambda(\Gamma(T)) \cong \bigodot_{i=1}^{p} S^{i} \cong T$.

Theorem 60. Let $A \in \mathbf{F B L}$. Then $\Gamma(\Lambda(A)) \cong A$.
Proof. We will prove the theorem by induction on $n=l(\operatorname{Irr}(\square(A)))$. Assume $l(\operatorname{Irr}(\mathbb{\square}$ $(A)))=1$ and set $I_{1}=\{\alpha \in \operatorname{Irr}(\mathbb{(}(A)): l(\alpha)=1\}$.

Let us consider two cases:
Case 1: Let $\left|I_{1}\right|=1$. Then $\operatorname{Irr}(\mathbb{(}(A))$ is a chain, and, by Theorem 48, $A$ is a BL-chain. Hence $A$ is an ordinal sum of MV-chains. From that $\Gamma(\operatorname{Irr}(\mathbb{l}(A)))=\Gamma(\Lambda(A)) \cong A$.

Case 2: Let $\left|I_{1}\right|=p>1$. Applying Corollary 28 and Propositions 54, $\operatorname{Irr}(\mathbb{0}$ $(A) \cong \operatorname{Irr}\left(\mathbb{\square}\left(A_{1}\right) \odot \cdots \odot \operatorname{Irr}\left(\mathbb{\square}\left(A_{r}\right)\right.\right.$, where for each $i=1, \ldots, r, A_{i}$ is a BL-comet. By assumption $l(\operatorname{Irr}(\mathbb{\square}(A)))=1$ and by Proposition 43, it follows $l\left(\operatorname{Irr}\left(\mathbb{\square}\left(A_{i}\right)\right)\right)=1$. Thus $A_{i}$ is a BL-chain, for $i=1, \ldots, r$. Then (see Case 1) $\Gamma\left(\operatorname{Irr}\left(\mathbb{\square}\left(A_{i}\right)\right)\right)=\Gamma\left(\Lambda\left(A_{i}\right)\right) \cong A_{i}$. Using Proposition 49, 57 and 58, we have: $\Gamma(\Lambda(A))=\Gamma\left(\Lambda\left(A_{1} \times \cdots \times A_{r}\right)\right)=\Gamma\left(\operatorname{Irr}\left(\mathbb{\square}\left(A_{1}\right)\right) \odot\right.$ $\cdots \odot \operatorname{Irr}\left(\left[\left(A_{r}\right)\right)=\Gamma\left(\Lambda\left(A_{1}\right)\right) \times \cdots \times \Gamma\left(\Lambda\left(A_{r}\right)\right) \cong A_{1} \times \cdots \times A_{r}=A\right.$.

Assume now $l(\operatorname{Irr}(\mathbb{(}(A)))=n>1$.
Suppose first that $A$ is a BL-comet. Let pivot $(A)<1$. By Corollary 30 and Proposition $49, \quad \operatorname{Irr}(\mathbb{Q}(A)) \cong \operatorname{Irr}\left(\mathbb{\square}\left(A_{1}\right)\right) \dot{+} \operatorname{Irr}\left(\mathbb{\square}\left(A_{2}\right)\right)$. Thus by Proposition 57, $\Gamma(\Lambda(A)) \cong$ $\Gamma\left(\Lambda\left(A_{1}\right)\right) \uplus \Gamma\left(\Lambda\left(A_{2}\right)\right)$. We recall that $A_{1}$ is a BL-chain and that, by Proposition 43, $l\left(\operatorname{Irr}\left(\square\left(A_{2}\right)\right)\right)=n-1$. Thus by induction hypothesis $\Gamma(\Lambda(A)) \cong A_{1} \uplus A_{2} \cong A$.

Finally let $A \in$ FBL. By Corollary 28, $A=A_{1} \times \cdots \times A_{r}$, with $A_{1}, \ldots, A_{r}$ BL-comets. By Proposition 54, $\operatorname{Irr}(\mathbb{\square}(A)) \cong \operatorname{Irr}\left(\mathbb{\square}\left(A_{1}\right)\right) \odot \cdots \odot \operatorname{Irr}\left(\square\left(A_{r}\right)\right)$. Therefore, by Propositions 57 and $58, \quad \Gamma(\operatorname{Irr}(\mathbb{\square}(A))) \cong \Gamma\left(\operatorname{Irr}\left(\mathbb{Q}\left(A_{1}\right)\right) \odot \cdots \odot \operatorname{Irr}\left(\mathbb{\square}\left(A_{r}\right)\right)\right)$, that is $\Gamma(\Lambda(A)) \cong$ $\Gamma\left(\Lambda\left(A_{1}\right)\right) \times \cdots \times \Gamma\left(\Lambda\left(A_{r}\right)\right) \cong A_{1} \times \cdots \times A_{r}=A$.

## Acknowledgements

The authors wish to thank the reviewer for his helpful suggestions.

## References

[1] P. Agliano, F. Montagna, Varieties of BL algebras I: general properties, Technical Report, University of Siena.
[2] G. Birkhoff, Lattice Theory, American Mathematical Society, Providence, RI, 1984.
[3] R.L.O. Cignoli, I.M.L. D'ottaviano, D. Mundici, Algebraic Foundations of Many-valued Reasoning (Trends in Logic, Studia Logica Library), Kluwer, Dordrecht, 2000.
[4] P. Hájek, Metamathematics of Fuzzy Logic (Trends in Logic, Studia Logica Library), Kluwer, Dordrecht, 1998.
[5] E. Turunen, BL-algebras of Basic Fuzzy logic, Mathware Soft Comput. 6 (1999) 49-61.


[^0]:    * Corresponding author.

    E-mail addresses: dinola@unisa.it (A. Di Nola), lettieri@unina.it (A. Lettieri).

