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Abstract

BL-algebras were introduced by H.ajek as algebraic structures of Basic Logic. The aim of this
paper is to analyze the structure of 4nite BL-algebras. Extending the notion of ordinal sum, we
characterize a class of 4nite BL-algebras, actually BL-comets. Then, just using BL-comets, we
can represent any 4nite BL-algebra as a direct product of BL-comets. Furthermore we de4ne a
class of labelled trees, which can be one-to-one mapped onto 4nite BL-algebras.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

BL-algebras were introduced by H.ajek [4] as algebraic structures of Basic Logic.
A BL-algebra is an algebra A= (A;∧;∨;�;→; 0; 1) such that:

1. (A;∧;∨; 0; 1) is a lattice with 0 as least element and 1 as greatest element,
2. (A;�; 1) is a commutative monoid,
3. the following statements hold for every x; y; z∈A:

(a) z6x→y i< x� z6y,
(b) x∧y= x� (x→y),
(c) (x→y)∨ (y→ x) = 1.
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By former operations a negation operation ∗ is de4ned in the following way: x∗ =
x→ 0, for every x∈A. We will write xp instead of x � · · · � x︸ ︷︷ ︸

p

.

The set of all BL-algebras is a variety, whose subvariety de4ned by the further
axiom (x∗)∗ = x, for every x∈A, coincides with the variety of MV-algebras. Let A
be a BL-algebra and MV(A) = {x∈A|x∗∗ = x}. MV(A) is a subalgebra of A. It is the
greatest subalgebra of A that is an MV-algebra [4].

We say that the BL-algebra A is totally ordered or that the BL-algebra A is a chain
(shortly BL-chain) if the lattice (A; ∧; ∨; 0; 1) is totally ordered. Every BL-algebra is
a subdirect product of BL-chains [4].

We say that the BL-algebra A is 4nite if the cardinal of the set A is 4nite.
The aim of this paper is to analyze the structure of 4nite BL-algebras. In the case

of MV-algebras their structure is already well known. Every 4nite BL-chain is a 4nite
ordinal sum whose components are 4nite MV-chains (see [1, Theorem 3.6]). Extending
the notion of ordinal sum of BL-algebras (see Preliminaries), we characterize a class
of 4nite BL-algebras, actually BL-comets (see Section 4) which can be seen as a
generalization of 4nite BL-chains. Then, just using BL-comets, we can represent any
4nite BL-algebra A as a direct product of BL-comets. This result can be understood
as a generalization of the representation of 4nite MV-algebras as a direct product of
MV-chains (see [3]). Furthermore, in Section 5 we de4ne a class of labelled trees,
which can be one-to-one mapped onto 4nite BL-algebras. The class of all 4nite BL-
algebras will be denoted by FBL. For any unexplained notion on MV-algebras see [3],
on BL-algebras see [4].

2. Preliminaries

Let A be a 4nite BL-algebra, subdirect product of the BL-chains C1; C2; : : : ; Cn.
We say that the chain Ci; i∈In = {1; 2; : : : ; n}, is essential in the representation of A
i< A is not a subdirect product of C′

1; : : : ; C
′
i−1; C

′
i+1; : : : ; C

′
n, with C′

t
∼=Ct for every

t∈{1; : : : ; i − 1; i + 1; : : : ; n}. Let us assume that every chain Ci is essential in the
representation of A.

De�nition 1 (Agliano and Montagna [1]). Let Ai = (Ai; ∧i ; ∨i ; �i ; →i ; 0i ; 1) be
BL-chains for i∈{1; : : : ; r − 1} and a BL-algebra for i= r. Assume:

1. Ai ∩Aj = {1}, for i �= j.

Then the ordinal sum
⊎r

i=1 Ai = (
⋃r

i=1 Ai; ∧; ∨; �; →; 0; 1) is a new BL-algebra
whose operations ∧; ∨; � coincide with those of Ai, when applied on pairs of ele-
ments of Ai; i= 1; : : : ; r, and on the rest of pairs are de4ned as follows, for x∈Ai\{1},
y∈Aj and i¡j:

1. x∧ y=y∧ x= x,
2. x∨y=y∨ x=y,
3. x�y=y� x= x.
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Finally, the operation → is de4ned by

x→y=




1 if x6y;
x→i y if x; y∈Ai;
y if x∈Ai; y∈Aj and i¿j:

(1)

For i∈{1; : : : ; n} denote by 0i = �i;0¡�i;1¡ · · ·¡�i; ni¡�i; ni+1 = 1i the chain of the
idempotent elements of Ci, shortly I(Ci; ni + 1). By [1] Theorem 3.6, Ci is an or-
dinal sum of 4nite MV-chains, i.e. 4nite BL-chains that are MV-algebras, in sym-
bols Ci =

⊎ni+1
h=1 M (�; i; h), where M (�; i; h) = [�i; h−1; �i; h[∪{1i}. Then for every i∈In

and h∈{1; : : : ; ni + 1} the restrictions of the operations de4ned on Ci to the subset
M (�; i; h) make it into a 4nite MV-chain, hence it is isomorphic to the MV-algebra
Sp = {0; 1=p; : : : ; (p− 1)=p; 1}, for some p¿1. From now on, every time we will deal
with a 4nite BL-algebra A, we will use the above notations to give a subdirect rep-
resentation of A by 4nite BL-chains and the decomposition of such chains as ordinal
sum. Furthermore, in the sequel, every 4nite MV-chain will be identi4ed with the
subalgebra of [0; 1], which it is isomorphic to. For every f∈A, denote by fi the ith
component of f. Moreover, for every x∈Ci, set �(x) = max{y∈I(Ci; ni + 1) |y6x}
and for every f∈A, set �(f) = (�(f1); : : : ; �(fn)). If f∈A, then �(f)∈A. Indeed, let
fi∈M (�; i; hi)∼= Spi and �= max{pi; i∈In}; then f� = �(f). In the sequel we will
mean �i; h = �j;k if h= k; h; k¡min{ni + 1; nj + 1}. Moreover, we will denote by �h the
n-tuple (�1; h; : : : ; �n; h), for every h6min{ni + 1; i∈In}, by 1 the n-tuple, having its ith
component equal to 1i and by 0 the n-tuple, having its ith component equal to 0i, for
every i∈In.

With the above notations we get.

Proposition 2. Let A∈FBL and f; g∈A such that for some (i; j)∈I 2
n :

1. fi = �i; h and gi = �i; k , h= 0; 1; : : : ; ni + 1, k = 0; 1; : : : ; ni + 1, h �= k,
2. fj = gj = �j;m, m= 0; 1; : : : ; nj + 1.

Then, for every (x; y)¿(�i; t ; �j;m), t = min{h; k}, there is an element l∈A such that
(li; lj) = (x; y).

Proof. Assume h¡k and (x; y)¿(�i; h; �j;m). Let u be an element of A, having its ith
component equal to x and v be an element of A, having its jth component equal to y.
Then l= ((g→f)∨u)∧ (((g→f)→f)∨v) veri4es the claim.

Proposition 3. Let A∈FBL and f∈A such that for some (i; j)∈I 2
n :

(fi; fj) = (�i; h; �j; k), h= 0; 1; : : : ; ni + 1, k = 0; 1; : : : ; nj + 1, h �= k.

Then there is g∈A such that (gi; gj) = (�i; t ; �j; t), t = min{h; k}.

Proof. Assume h¡k. If h= 0, then it is trivial. For otherwise let w be an element of
A, having its jth component equal to �j; h. Set �(wi) = �i; h1 for a suitable h1.

If h1¿h, then g=w∧f∈A veri4es the claim.
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If h1¡h, we choose an element w1∈A, having its jth component equal to �j; h1 . Set
�(w1

i ) = �i; h2 . If h2¿h1, then w1 ∧ �(w)∈A, moreover w1
i ∧ �(wi) = �i; h1 and w1

j ∧ �(wj)
= �j; h1 . Hence, the conclusion follows from Proposition 2. If h2¡h1, proceeding as
above, the thesis shall be attained as soon as we 4nd an element wr such that �(wr

j ) =
�j; hr , �(w

r
i ) = �i; hr+1 and hr+1¿hr . If the last condition is never veri4ed, then we get a

strictly decreasing sequence k¿h¿h1¿h2¿ · · ·¿hr¿ · · · of natural numbers; conse-
quently there must ultimately be an s, such that hs = 0. Hence we will 4nd an element
ws−1 such that (�(ws−1

i ); �(ws−1
j )) = (0i ; �j; hs−1 ), where �j; hs−1 �= 0j. Also in this case

the claim follows by Proposition 2.

Corollary 4. Let A∈FBL and f∈A such that for some (i; j)∈I 2
n :

(fi; fj) = (�i; h; �j; k), h and k run from 0; 1; : : : ; like in Proposition 3.

Then for every (x; y)¿(�i; t ; �j; t), with t = min{h; k}, there is an element l∈A, such
that (li; lj) = (x; y).

Proof. It follows by Propositions 2 and 3.

Corollary 5. Let A∈FBL. Then, for every h6min{ni+1; i∈In}, �h=(�1; h; : : : ; �n; h)∈A.

Proof. We proceed by induction on n. Let n= 2, h6min{n1 + 1; n2 + 1}, and x; y∈A
such that x1 = �1; h and y2 = �2; h. If x and y are incomparable, then either x∨y= �h
or x∧y= �h. Otherwise, consider �(x2) = �2; t and �(y1) = �1; l. If t = h or l= h, then
either �(x) = �h or �(y) = �h. Assume either l¿h or t¿h; in both cases the conclusion
follows from Proposition 3.

Suppose now the corollary true for n − 1. Set I in = In\{i} and let A↑{I in} be the set
of the restrictions of all the elements of A to I in; A�{I in} is a 4nite BL-algebra and it
is, up to isomorphism, a subdirect product of {Ci; i∈I in}. Fix h6min{ni + 1; i∈In}.
By induction, for every i∈In, there is an element xi∈A such that (xi)j = �j; h for j �= i.
If two of the elements x1; x2 and x3 are incomparable, say x1 and x2, then either
x1 ∨ x2 or x1∧ x2 satis4es the claim. Otherwise x1; x2 and x3 are comparable. We safely
can set x16x26x3. Then we have �2; h6x2

26�2; h, that is x2
2 = �2; h. From that we get

x2 = �h∈A.

Lemma 6. Let A∈FBL, i; j∈In, h= 1; : : : ; ni +1, k = 1; : : : ; nj +1 and h �= k. Then the
following are equivalent:

1. there exists f∈A such that (fi; fj)∈M (�; i; h)×M (�; j; k)\{(1i ; 1j)},
2. for every (x; y)¿(�i; h−1; �j; k−1) there is an element g∈A such that (gi; gj) = (x; y).

Proof. Let f∈A such that (fi; fj)∈M (�; i; h)×M (�; j; k)\{(1i ; 1j)}. Then

(�(fi); �(fj)) =




(�i; h−1; �j; k−1) if �(fi) �= 1i and �(fj) �= 1j;
(�i; h−1; 1j) if �(fj) = 1j;
(1i ; �j; k−1) if �(fi) = 1i :

(2)

Thus, the conclusion follows by Corollary 4. Vice versa is obvious.
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Lemma 7. Let A∈FBL, h6min{ni+1; nj +1 : i; j∈In}, M (�; i; h)∼= Sp, M (�; j; h)∼= Sq
and p �= q.
Then for every (x; y)¿(�i; h−1; �j; h−1), there is an element g∈A such that (gi; gj) =

(x; y).

Proof. Let p¡q and f∈A such that fj = (q− 1)=q ∈ M (�; j; h).

If fi¡�i; h−1, we get (�(fi); �(fj)) = (�i; k ; �j; h−1); k¡h− 1.
If �i; h−16fi¡�i; h, then (fp → �h−1)q is an element of A, having its ith component
equal to 1i and its jth component equal to �j; h−1.
Finally, if fi¿�i; h, we get (�(fi); �(fj)) = (�i; l; �j; h−1); l¿h− 1.

In any case the claim follows by Corollary 4.

Lemma 8. Let A∈FBL, h6min{ni + 1; nj + 1 : i; j∈In}.
If there is an element f∈A such that:

1. (fi; fj)∈M (�; i; h)×M (�; j; h),
2. fi �=fj,

then for every (x; y)¿(�i; h−1; �j; h−1), there is an element g∈A such that (gi; gj)
= (x; y).

Proof. If M (�; i; h)∼= Sp, M (�; j; h)∼= Sq and p �= q, it follows from Lemma 7. There-
fore, it shall be understood M (�; i; h)∼=M (�; j; h)∼= Sp.

By Corollary 4, we get the claim in the following cases:

1. fi = 1i or fj = 1j,
2. fi = �i; h−1, hence the element l= (f→ �h−1)p has its ith component equal to 1i and

its jth component equal to �j; h−1,
3. fj = �j; h−1, hence the element m= (f→ �h−1)p has its jth component equal to 1j

and its ith component equal to �i; h−1.

Assume now fi = r=p∈M (�; i; h), fj = s=p∈M (�; j; h) and 0¡r¡s¡p. Then we get
Case 1: s=p− 1. Then the element fp−1∈A has its ith component equal to �i; h−1

and its jth component equal to 1=p∈M (�; i; h). Then we proceed as in 2.
Case 2: s¡p− 1.
Let g∈A such that gj = (p− 1)=p∈M (�; j; h).

(a) If gi6fi, then the element h= ((f∨ g)→f)p, has its ith component equal to 1i
and its jth component equal to �j; h−1.

(b) If gi¿�i; h, then the element k = ((f→f� g)p, has its ith component equal to 1i
and its jth component equal to �j; h−1.

(c) Finally, if fi¡gi¡�i; h then the element d= (gr �f)→ �h has its ith component
equal to 1i and its jth component equal to �j; h−1.

Again the conclusion follows from Corollary 4.
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Proposition 9. Let A∈FBL and J = {i1; : : : ; ir}⊆ In.
If, for every ip; iq∈J and for every pair (xip ; xiq)¿(�ip; hp ; �iq; hq), there is an element

gp;q∈A such that (gp;qip ; gp;qiq ) = (xip ; xiq), then for every r-tuple (xi1 ; : : : ; xir )¿(�i1 ; h1 ; : : : ;
�ir ; hr ), there is an element g∈A such that (gi1 ; : : : ; gir ) = (xi1 ; : : : ; xir ).

Proof. The proposition is true for r = 2. Let r¿3 and let us proceed by induction on
the cardinality of J . Assume the proposition is true for r−1. Let x= (xi1 ; : : : ; xir )¿(�i1 ; h1 ;
: : : ; �ir ;hr ).

For every iu∈J , denote by xu the (r−1)-tuple obtained from (xi1 ; : : : ; xir ), by deleting
the iuth component of x. By induction, there is an element gu∈A such that guim = xim ,
for every m∈{1; : : : ; u − 1; u + 1; : : : ; r}. If the restrictions to J of two among these
elements, say gu1 and gu2 , are not comparable, then we have: either

1. (gu1 )u16(gu2 )u1 = xu1 and xu2 = (gu1 )u2¿(gu2 )u2

or

2. (gu1 )u1¿(gu2 )u1 = xu1 and xu2 = (gu1 )u26(gu2 )u2 .

In the former case (gu1∨ gu2 )im = xim , for every m∈{1; : : : ; r}. In the latter case x is
given by the restriction to J of gu1∧ gu2 .

Assume that the restrictions to J of all the elements gu are each other comparable,
then we safely can write g16g26g3. From that xi2 = (g1)i26(g2)i26(g3)i2 = xi2 . Then
it is (g2)im = xim for every m∈{1; : : : ; r}.

Corollary 10. Let A∈FBL, M (�; i; 1)∼= Spi and Spi �= Spj for every (i; j)∈I 2
n . Then

A=C1 × · · · ×Cn.

Proof. This follows by Lemma 7 and Proposition 9.

Corollary 11. Let A∈FBL. Then the following implication holds:
( for every i∈In there is an element fi∈A such that �(fi) �= 0 and �(fi

i ) =
0i ⇒ (A=C1 × · · · ×Cn).

Proof. This follows by Propositions 2 and 9.

3. Direct decomposition

Let A∈FBL. It is known that MV(A) =A∩ ∏n
i=1 M (�; i; 1) [1]. De4ne on In the

following equivalence relation:
i≡ j i< for every f∈MV(A); fi =fj.
Let #= {J1; : : : ; Jr} be the partition of In yielded by this relation.

Remark 12. The above de4nition is equivalent to the following: i≡ ′j i< fi =fj for
every f∈A such that (fi; fj)∈M (�; i; 1)×M (�; j; 1).
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Indeed, let i≡ j, f∈A, and (fi; fj)∈M (�; i; 1)×M (�; j; 1). Since f∗∗∈MV(A), we
get fi =f∗∗

i =f∗∗
j =fj, hence i≡′ j.

For a positive integer k denote by AJk the set of the restrictions to Jk of all the
elements of A; AJk is a BL-algebra and it is, up to isomorphism, subdirect product of
{Ci; i∈Jk}. In the sequel the restriction of f∈A to Jk will be denoted by fJk .

The following result is crucial:

Theorem 13. Let A∈FBL. Then A is isomorphic to the direct product AJ1 × · · · ×AJr .

Proof. The map $ :f∈A→ (fJ1 ; : : : ; fJr )∈AJ1 × · · · ×AJr is a homomorphism. Now
we shall prove that $ is bijective.

Claim 1. $ is injective.
Indeed, if f �= g, then fi �= gi for some i. Let i∈Jk , then fJk �= gJK hence $(f) �=$(g).

Claim 2. $ is surjective.

We will prove the surjectivity of $ by induction on the cardinal of the set #. It is
trivial if |#|= 1. Assume that it is true for |#|= r − 1 and set:
$′ :f∈AJ1 ∪ ··· ∪ Jr−1 → (fJ1 ; : : : ; fJr−1 )∈AJ1 × · · · ×AJr−1 . By induction, $′ is

surjective.
Let (f1

J1 ; : : : ; f
r
Jr )∈(AJ1 × · · · ×AJr−1 )×AJr and f∈A such that $′(fJ1 ∪ ··· ∪ Jr−1 ) =

(f1
J1 ; : : : ; f

r−1
Jr−1

); moreover let g∈A such that gJr =fr
Jr .

Fix a subset J of In containing exactly a single representative element from each
class of #, that is J = {i1; : : : ; ir} and im∈Jm, m∈{1; : : : ; r}. By Lemmas 7 and 8 and
Proposition 9, for every r-tuple (xi1 ; : : : ; xir )∈M (�; i1; 1)× · · · ×M (�; ir ; 1), there is an
element g′∈A∩ ∏n

i=1 M (�; i; 1), such that (g′i1 ; : : : ; g
′
ir ) = (xi1 ; : : : ; xir ).

Therefore, let a= (a1; : : : ; an) and b= (b1; : : : ; bn) such that:

1. (ai1 ; : : : ; air ), (bi1 ; : : : ; bir )∈M (�; i1; 1)× · · · ×M (�; ir ; 1),
2. aih¡bih for h= 1; : : : ; r − 1,
3. air¿bir .

Then we have

(a→ b)i =
{

1i if i∈J1 ∪ · · · ∪ Jr−1;
a∗ir ⊕ bir ∈M (�; i; 1) if i∈Jr:

(3)

Set c= �(a→ b). Then ci = 1i for i∈J1 ∪ · · · ∪ Jr−1 and ci = 0i for i∈Jr . On other
side,

(b→ a)i =
{
b∗i ⊕ ai∈M (�; i; 1)\{1i} if i∈J1 ∪ · · · ∪ Jr−1;
1i if i∈Jr:

(4)

Let w= �(b→ a). Then wi = 1i for i∈Jr and wi = 0i for i∈J1 ∪ · · · ∪ Jr−1. Thus
(c�f)∨ (w� g)∈A and $((c�f)∨ (w� g)) = (fJ1 ; : : : ; fJr ).
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Corollary 14. Let A∈FBL. Then the following are equivalent:

1. for every (i; j) and i �= j there is an element f∈MV(A) such that fi �=fj,
2. A=

∏n
i=1 Ci.

Proof. Assume that for every (i; j) and i �= j there is an element f∈MV(A) such that
fi �=fj. Then #= I . Let A�{i} be the BL-algebra of the restrictions to {i} of all the
elements in A. The A�{i} ∼=Ci, for every i∈{1; 2; : : : ; n}. Hence the conclusion follows
by Theorem 13. Vice versa is obvious.

4. BL-comet

In this section we will introduce the concept of BL-comet and we will prove the
main result according to any 4nite BL-algebra is a direct product of BL-comets (Corol-
lary 28). To this aim we hold to describe the structure of the algebra AJh , that is the
structure of a 4nite BL-algebra A= (A; ∧; ∨; �; →; 0; 1), having the further following
property:

every f∈A∩
n∏

i=1

M (�; i; 1) = MV(A) is constant on In: (5)

Such an algebra will be denoted by Ac and the class of all the algebras Ac will be
denoted by Ac.

Lemma 15. Let Ac∈Ac. Then, for every (i; j)∈I 2
n , M (�; i; 1)∼=M (�; j; 1).

Proof. Suppose there is (i; j)∈I 2
n such that M (�; i; 1) �∼=M (�; j; 1). We can safely

assume |M (�; i; 1)|¡|M (�; j; 1)|. By Lemma 7, we 4nd an element g∈Ac such that
gi = 0i and gj∈M (�; j; 1)\{0j}. Hence g∗∈MV(A) and it is not constant on In,
absurd.

Set M (�; i; hm1 ) =
⊎m

h=1 M (�; i; h) and, for every Ac, de4ne:
)Ac = max{m∈N |for every f∈Ac ∩

∏n
i=1 M (�; i; hm1 ); f is constant on In}. We get

16)Ac6min{ni + 1|i∈In}.
With the above notations we have:

Lemma 16. Let Ac∈Ac. Then, for every (i; j)∈I 2
n and for every 16m6)Ac , M (�; i; hm1 )

∼=M (�; j; hm1 ).

Proof. By Lemma 15 it is true for m= 1, then we proceed by induction. Assume
M (�; i; hm−1

1 )∼=M (�; j; hm−1
1 ), for every (i; j)∈I 2

n . Suppose there is (i; j) such that
M (�; i; m) �∼=M (�; j; m). Arguing as in Lemma 15, we 4nd an element g∈Ac such
that gi = �i;m−1 and gj∈M (�; j; m)\{�j;m−1}. Hence (g→ �m−1)∈

∏n
i=1 M (�; i; h)Ac1 )

and it is not constant on In, absurd. Since M (�; i; hm1 )∼=M (�; i; hm−1
1 )�M (�; i; m), for

every i∈In, the desired conclusion immediately follows.
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In the sequel, when there is no misunderstanding, we will denote )Ac simply by ).

Lemma 17. Let Ac∈Ac. Then Ac\(
∏n

i=1 M (�; i; h)1)\{1i}) = {x∈Ac| x¿�)}.

Proof. The inclusion {x∈Ac | x¿�)}⊆Ac\(
∏n

i=1 M (�; i; h)1)\{1i}) is immediate.
Assume now x∈Ac\(

∏n
i=1 M (�; i; h)1)\{1i}) and x �¿�).

Then the subsets:

I1 = {i∈In | xi¿�i; )},
I2 = {i∈In | xi¡�i; )}

are not empty and

(�) → x)i =
{

1i if i∈I1;
xi if i∈I2:

(6)

Consequently �) → x∈∏n
i=1 M (�; i; h)1), but �) → x is not a constant function on In,

absurd.

Corollary 18. Let Ac∈Ac. Then Ac ∩
∏n

i=1 M (�; i; h)1) is a totally ordered subalgebra
of Ac and it is isomorphic to M (�; i; h)1) for every i∈In.

Proof. By subdirect product properties and by Lemma 17 it follows that, for every
i∈In; pi :f∈Ac ∩

∏n
i=1 M (�; i; h)1)→fi is a bijective map from Ac ∩

∏n
i=1 M (�; i; h)1)

on M (�; i; h)1). Indeed pi is the claimed isomorphism.

Remark 19. As a consequence of Lemma 17 and Corollary 18 )Ac¡+=
min{ni + 1 | i∈In}. Indeed set I+ = {i∈In | ni + 1 = +}. If )Ac = +, then, for every
x∈Ac\(

∏n
i=1 M (�; i; h)1)\{1i}), xi = 1i, for each i∈I+. Whence the function p+ mapping

any element f to its restriction to In\I+, fIn\I+ is an isomorphism between Ac and
(Ac)In\I+ . Whereas, under our assumptions, any chain Ci; i∈In, has to be essential in the
representation of Ac.

Proposition 20. Let Ac∈Ac. Set

1. B=Ac\(
∏n

i=1 M (�; i; h)1)\{1i}),
2. 0B = �),
3. 1B = 1,
4. �B be the restriction of the product of Ac to B,
5. →B be the restriction of the operation → of Ac to B.

Then B= (B; ∧; ∨; �B; → B; 0B; 1B) is a BL-algebra.

Proof. By Lemma 17, B= (B; ∧; ∨ ; 0B; 1B) is a lattice with 0B as least element and
1B as greatest element. Moreover

if x¿�) and y¿�) then x�y¿�),
if f¿�) and g¿�) then f→ g¿g¿�):
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Let A be a BL-algebra. By I(A) we denote the set of all idempotent elements of A.
We remark that I(Ac) �= {0; 1} for every 4nite BL-algebra A that is not a MV-chain.
For otherwise A is locally 4nite, hence it is an MV-chain [5].

The above remark suggests the following considerations:
Let A∈FBL, for x∈I(A), denote by C(x) the subset of I(A) whose elements are

comparable with x. De4ne K(A)⊆ I(A) as follows:
x∈K(A) i< the following conditions are satis4ed:

1. C(x) = I(A);
2. {y∈I(A)|y6x} is a chain.

We stress that K(A) is not empty: indeed 0∈K(A).
The above notations and remarks allow us to introduce the main following

de4nitions:

De�nition 21. Let A be a nontrivial element of FBL. Then A is called BL-comet if
max K(A) �= 0.

De�nition 22. Let A be is a BL-comet, then max K(A) is called pivot of A and it will
be denoted by pivot(A).

Set -= max{ni + 1; i∈In}. For every h6- we will denote by �(h) the n-tuple
(�1; : : : ; �n) where

�i =
{

1i if h¿ni + 1;
�i; h if h¡ni + 1:

(7)

With above notations we introduce the following:

De�nition 23. Let A∈FBL and .∈I(A). . is called pseudoconstant on In if there is
h6- such that .= �(h).

By (7) every idempotent �h∈A, constant on In, is pseudoconstant on In; moreover
�(h) = 1 i< h= -.

Lemma 24. Let A∈FBL. Then, for every h6-, �(h)∈A.

Proof. If h6+ (see Remark 19), the claim is already proved (see Corollary 5). Then
we can safely assume +¡h¡-. Suppose n= 2 and n1 + 1¡h¡n2 + 1. Let x∈A such
that x2 = �2; h. Set �(x1) = �1; k , for some k6n1 + 1. Then, by applying Corollary 5,
(�(x)→ �k)∨ x= �(h)∈A. Proceeding by induction, let the lemma be true for n − 1.
Analogously to Corollary 5, for every i∈In, we 4nd an element xi∈A such that for
j �= i

(xi)j =
{

1j if h¿nj + 1;
�j; h if h¡nj + 1:

(8)

If two of the elements x1; x2 and x3 are incomparable, say x1 and x2, then either x1 ∨ x2

or x1 ∧ x2 satis4es the claim. For otherwise x1; x2 and x3 are comparable. We safely
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can set x16x26x3. Then by (8) we have

if h¿n2 + 1; then 12 = (x1)26(x2)2; hence (x2)2 = 12;

if h¡n2 + 1; then (x1)2 = �2; h6x2
26(x3)2 = �2; h; hence x2

2 = �2; h:

In both cases x2 = �(h)∈A.

Lemma 25. Let A∈FBL and I(A) be a chain. Then for every x∈A there exists h6-
such that:

xi =
{

1i if h¿ni + 1;
∈M (�; i; h + 1)\{1i} if h¡ni + 1:

(9)

Consequently I(A) is the set of all the pseudoconstant elements of A.

Proof. Let x∈A\{1} and

I1 = {i∈In | xi = 1i},
I2 = {i∈In | xi¡1i}.

If for some (i; j)∈I 2
2 ; xi∈M (�; i; h+1)\{1i}; xj∈M (�; j; k+1)\{1j} and h¡k, then,

by applying Corollary 4 for f= �(x), we 4nd a; b∈A such that (ai; aj) = (1i ; �j; h) and
(bi; bj) = (�i; h; 1j). So �(a) and �(b) have to be two incomparable elements of I(A),
absurd. Consequently, there is an h¡- such that xi∈M (�; i; h+1)\{1i}, for every i∈I2.
Let now I1 �= ∅ and h¡ni + 1 for some i∈I1. By Lemma 24, �(x)→ �(h)∈I(A), but it
is not comparable with �(x). This contradiction shows that x veri4es (9).

Proposition 26. Let A be a nontrivial element of FBL. Then the following are
equivalent:

1. A is a BL-chain,
2. A is a BL-comet and pivot(A) = 1.

Proof. 1⇒ 2 is trivial. In order to show 2⇒ 1 set, for every x∈A, Ix = {i∈In | xi = 1i}.
Claim 1. The family (Ix)x∈A is totally ordered by inclusion.

Actually let x; y∈A, x �=y, i∈Ix\Iy and j∈Iy\Ix. Then (�(xi); �(xj)) = (1i ; �j; h)¡
(1i ; 1j) and (�(yi); �(yj)) = (�i; k ; 1j)¡(1i ; 1j), for suitable h and k. Consequently �(x)
and �(y) are two incomparable elements of I(A), which contradicts the hypothesis
pivot(A) = 1.

Claim 2. Ix ( Iy ⇒ x¡y.

We can safely assume y¡1. Then by Lemma 25 there are suitable h; k¡- such that:

for every i∈In\Ix; xi∈M (�; i; h + 1)\{1i}
and
for every i∈In\Iy; yi∈M (�; i; k + 1)\{1i}.

Let now j∈Iy\Ix; by (9) h¡nj + 16k, whence x¡y.
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Claim 3. Ix = Iy ⇒ x and y comparable.

If x= 1 or y= 1, the claim is trivial. Then assume x¡1 and y¡1. Let h and k be
as in the previous claim.

If h¡k; then x¡y,
If k¡h; then y¡x.

Assume now h= k. Since I(A) is a chain, as a consequence of Lemma 8 the
restrictions of x and y to In\Iy are constant, which implies x and y comparable.

The conclusion now follows from Claims 1–3.

Theorem 27. Let A be a nontrivial element of FBL. Then the following are equivalent:

1. A is a BL-comet,
2. A∈Ac.

Proof. 1⇒ 2: If pivot(A) = 1, then the implication follows by Proposition 26. Then
assume .= pivot(A)¡1. Rejecting the thesis, by Lemma 8 there is f∈A such that
(fi; fj) = (0i ; 1j), for some (i; j)∈I 2

n . We can safely assume f∈MV(A). Since �(f)
and �(f∗) are two incomparable elements of I(A), necessarily we get �(f); �(f∗)¿..
From that 0= �(f)∧ �(f∗)¿., a contradiction.

2⇒ 1: By Lemma 17 and Corollary 18 it follows �)∈K(A), whence �)6maxK(A)
= pivot(A). By de4nition �)¿0, so maxK(A) �= 0.

Corollary 28. Let A be a nontrivial element of FBL. Then A is isomorphic to a direct
product of BL-comets.

Proof. It follows by Theorems 13 and 27.

Proposition 29. Let Ac∈Ac. Then pivot(Ac) = �).

Proof. If pivot(Ac) = 1, it follows by Proposition 26. Assume pivot(Ac)¡1. In the
proof of Theorem 27 (2⇒ 1) it is proved that �)6pivot(Ac). On other hand by
de4nition of ) and by Lemma 8 we can 4nd f∈Ac such that for some (i; j)∈I 2

n ,
(fi; fj) = (�i; ); 1j). Since �(f) and �(f)→ �) are two incomparable elements of I(A),
it follows �(f); �(f)→ �)¿pivot(Ac). Hence pivot(Ac)6�(f)∧ (�(f)→ �)) = �).

Corollary 30. Let Ac∈Ac and pivot(Ac)¡1. Then Ac is the ordinal sum of a >nite
BL-chain and a >nite BL-algebra that is not a BL-comet.

Proof. It follows by Corollary 18, and Propositions 20 and 29.

5. Labelled trees

Now we recall some de4nitions about partially ordered sets.
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De�nition 31. A partial ordered set (T;6) is called tree if T has a minimum element
T0 and, for every x∈T , the set Tx = {y∈T : y6x} is totally ordered. The elements of
a tree are called nodes.

De�nition 32. Let (T;6) be a 4nite tree, x∈T and x �=T0. The greatest element of
Tx\{x} is called the previous element of x and it shall be denoted by pr(x).

De�nition 33. Let (T;6) be a 4nite tree, the elements x; y∈T . We say that y covers
x if pr(y) = x. In this case we write x≺y.

De�nition 34. Let (T;6) be a 4nite tree and x∈T . We say that x is a simple node if
there is exactly one element covering x. If x is not simple or if x=T0; x will be called
a multiple node.

De�nition 35. Let (T;6) be a 4nite tree. We call height of an element x∈T , in
symbols l(x), the cardinal of the set of all multiple nodes of the chain ]T0; x].

De�nition 36. Let (T;6) be a 4nite tree. We call height of T , in symbols l(T ), the
non negative integer equal to max{l(x): x∈T}.

De�nition 37. Let (T;6) be a 4nite tree, x∈T and x �=T0. The greatest multiple node
of Tx\{x} is called multiple node previous of x, and it shall be denoted by prm(x).

Let N be the set of all the positive integers; then we set:

N= {0}∪
( ⋃

r∈N

N r

)

and, for every integer positive number p, Np = ({0}∪ (
⋃

r∈N N r))p

De�nition 38. A labelled tree is a triple (T;6; h), verifying the following:

(T;6) is a 4nite tree,
h is a map from T to

⋃
p∈N Np,

h(x) = 0 i< x=T0.

If h(T )⊆{0}∪N , then (T;6; h) is called a simply labelled tree.
By de4nition, a simply labelled tree is a tree, having every node marked by an

integer number m. Such a number m represents the MV-chain with m + 1 elements.
Our aim now is to map 4nite simply labelled trees on 4nite BL-algebras.
Let (T;6; h) be a simply labelled tree and (Tf;6) the subtree of (T;6) of all

multiple nodes. De4ne the map hf :Tf →N1 = {0}∪ (
⋃

r∈N N r) as follows:

hf(x) =




(h(x1); : : : ; h(xr); h(x)) if x is a multiple node di<erent from T0 and
(x1; : : : ; xr ; x) = ]prm(x); x];⊆T;

0 if x=T0:
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Then the triple (Tf;6; hf) is a labelled 4nite tree. Each (multiple) node is marked
by hf with a 4nite sequence of positive integers n1; : : : ; nt . Such a sequence represents
the BL-chain which is a 4nite ordinal sum whose components are the 4nite MV-chains
with n1 + 1; : : : ; nt + 1 elements, respectively: hf(x) = Sn1 � · · · � Snt .

Now denote by

Ts;1 the set of all 4nite simply labelled trees,
and
Tm;1 the set of all 4nite labelled trees (T;6; h) such that:

every x∈T is multiple,
h(T )⊆N1.

With the above notations and arguments we can claim the following theorem:

Theorem 39. The map f, de>ned by f(T;6; h) = (Tf;6; hf), is a bijective
map between Ts;1 and Tm;1.

Proof. It is obvious.

In the sequel, when there is no misunderstanding, we will denote f(T;6; h) by
f(T ) or Tf.

Next we will de4ne a function 1, mapping every element of Tm; l on a 4nite
BL-algebra.

First let (T;6; h)∈Tm; l; l(T ) = 1 and T1 =T\{T0}. Then we de4ne:

1(T ) =




h(T1) if |T1|= 1;∏
x∈T1

h(x) if |T1|¿1: (10)

Assume now l(T ) = n¿1 and set:

Ti = {x∈T : l(x) = i}; i= 1; : : : ; n,
T r =

⋃n−r
i=0 Ti; r = 1; : : : ; n− 1,

and
M equal to the set of all maximal elements of T .

De4ne a mapping h1 :T 1 =
⋃n−1

i=0 Ti →
⋃

p∈N Np, by

h1(x) =
{

(h(x); (h(y); x≺y)) if l(x) = n− 1 and x �∈M;
h(x) otherwise:

(11)

In the labelled tree (T 1;6; h1), every (multiple) node, such that l(x) = n − 1 and
x =∈M, is marked by h1 with a pair: (h(x); (h(y); x≺y)). h(x) is a sequence of positive
integers, representing the BL-algebra h(x) = Sn1 � · · · � Snt . The second component is a
4nite family of sequence of positive integers (h(y); x≺y), representing the BL-algebra
(h(y); x≺y) =

∏
x≺ y h(y). The pair h1(x) shall represent the 4nite BL-algebra which

is an ordinal sum of BL-algebras: h1(x) = h(x)� (h(y); x≺y) = (Sn1 � · · · � Snt )�∏
x≺ y h(y).
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De4ne now an application h2 : T 2 =
⋃n−2

i=0 Ti →
⋃
p∈N Np, as follows:

h2(x) =
{

(h1(x); (h1(y); x≺y)) if l(x) = n− 2 and x �∈M;
h1(x) otherwise:

(12)

In the tree (T 2;6; h2), every (multiple) node x, such that l(x) = n − 2 and x �∈M,
is marked by h2 with a pair: (h1(x); (h1(y); x≺y)). The pair h2(x) shall represent the
4nite BL-algebra that is an ordinal sum of BL-algebras: h2(x) = h1(x)� ∏x≺y h1(y).

Proceeding as above, at step (n−1)th, we get a map hn−1 : Tn−1 =T1 ∪{T0}→
⋃
p∈N

Np, by

hn−1(x) =
{

(hn−2(x); (hn−2(y); x≺y)) if x �∈M;
hn−2(x) otherwise:

(13)

Finally we de4ne

1. 1(T ) = hn−1(T1) if |T1|= 1,
2. 1(T ) =

∏
x∈T1 hn−1(x), otherwise.

Theorem 40. There is a map 2 from Ts; l to FBL.

Proof. It is suKcient to set 2= 1 ◦f. Then 2 furnishes the claimed map.

6. Idempotent irreducible elements

Let A∈FBL. In the lattice (A; ∧; ∨; 0; 1) an element x is called irreducible if
x= u∨ v implies x= u or x= v. Denote by Irr(I(A)) the ordered set of all idempo-
tent irreducible elements of A.

Proposition 41. Let A∈FBL and x∈Irr(I(A)). Then the set Ax = {y∈A : y6x} is a
chain of irreducible elements.

Proof. Let x∈Irr(I(A)) and h; k∈A such that h¡x and k¡x. Then we have x= x∧ 1=
x∧ ((h→ k)∨ (k→ h)) = (x∧ (h→ k))∨ (x∧ (k→ h)). By hypothesis we get either x=
(x∧ (h→ k)) or x= (x∧ (k→ h)). Assume x= (x∧ (h→ k)), then x6h→ k and h= h
� x6h� (h→ k)6k. So h and k are comparable. Analogously if x= x∧ (k→ h).

From the above proposition we immediately obtain:

Corollary 42. Let A∈FBL. The ordered set (Irr(I(A));6) is a >nite tree, having 0
as least element.

Proposition 43. Let A be a BL-comet. Then pivot(A) is a multiple node of (Irr
(I(A));6).
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Proof. By Theorem 27, Proposition 29 and Corollary 18 �) = pivot(A)∈Irr(I(A)). To
show that �) is a multiple node, we observe that, by de4nition of ) and by Lemma 8,
we can 4nd f∈A such that for some (i; j)∈I 2

n ; (fi; fj) = (�i; ); 1j). Then �(f)→ �) and
(�(f)→ �))→ �) are incomparable and both greater than �). Moreover (�(f)→ �))∧
[(�(f)→ �))→ �)] = �). Whence �) is a multiple node.

Proposition 44. Let A∈FBL; �∈Irr(I(A))\{0}. Set
1. C = [pr(�); �],
2. 0C = pr(�),
3. 1C = �,
4. �C be the restriction to C of the product de>ned on A,
5. x∗C = �� (x→ pr(�)), for every x∈C.

Then C = (C;�C; ∗C; 0C; 1C) is an MV-chain.

Proof. Indeed,

if pr(�)6x6� and pr(�)6y6�, then pr(�)6x�y6�,
0∗C
C = �� (pr(�)→ pr(�)) = �= 1C ,

and 1∗C
C = �� (�→ pr(�)) = �∧ pr(�) = pr(�) = 0C .

Since for every i∈{1; : : : ; n} either (pr(�))i = pr(�i) or (pr(�))i = �i, it follows that
pr(�)6x6� implies pr(�)6x∗C6� and (x∗C )∗C = x.

Remark 45. By the above proposition, we get [pr(�); �]∼= Sm, for some m∈N .

Let i : Irr(I(A))→N be the map de4ned by: i(0) = 0 and i(x) =m, if x �= 0 and
[pr(x); x]∼= Sm. Then (Irr(I(A));6; i) is a simply labelled tree.

With above notations we have:

Theorem 46. There is a map 3 from FBL to Ts;l.

Proof. Let A be a 4nite BL-algebra, set 3(A) = (Irr(I(A));6; i). Then 3 maps every
4nite BL-algebra into a simply labelled tree.

Proposition 47. Let Ai∈FBL; i= 1; : : : ; r and x= (x1; : : : ; xr)∈
∏r

i=1 Ai. Then the
following are equivalent:

1. x∈Irr(I(
∏r

i=1 Ai)),
2. there is i∈{1; : : : ; r} such that xi∈Irr(I(Ai)) and xj = 0j for every j �= i.

Proof. 1⇒ 2: Let x= (x1; : : : ; xr)∈Irr(I(
∏r

i=1 Ai)). Assume xi1 �= 0i1 and xi2 �= 0i2 for
i1 �= i2. Then choose two elements:

y= (y1; : : : ; yr); setting yi1 = 0i1 and yi = xi; for i �= i1;

and z= (z1; : : : ; zr); setting zi2 = 0i2 and zi = xi; for i �= i2:
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Then we get x �=y; x �= z and x=y∨ z, absurd. If xi is the only non-zero component
of x, it is obvious that xi∈Irr(I(Ai)).

2⇒ 1: Let x= (x1; : : : ; xr)∈
∏r

i=1 Ai. Assume there is i∈{i= 1; : : : ; r} such that
xi∈Irr(I(Ai)) and xj = 0j for every j �= i. Thus from x=y∨ z it follows xi =yi ∨ zi
and xj =yj = zj = 0j for every j �= i. By hypothesis xi =yi or xi = zi, whence x=y or
x= z, that is x∈Irr(I(

∏r
i=1 Ai)).

Theorem 48. Let A be a non-trivial element of FBL. If Irr(I(A)) is a chain, then A
is a BL-chain.

Proof. First we prove that A is a BL-comet.
By Corollary 28 A=A1 × · · · ×Ar and, i∈{1; : : : ; r}; Ai �= {0i} is a BL-comet. Let

r¿1 and a= (a1; 0; : : : ; 0) and b= (0; b2; 0; : : : ; 0) be two elements of Irr(I(A)). Then
either a1 = 01 or b2 = 02. That is either Irr(I(A1)) = {01} or Irr(I(A2)) = {02}, absurd.
Thus r = 1 and A is a BL-comet.

Assume pivot(A)¡1.
Then, by Corollary 30, A=C �B, with C a BL-chain and B a 4nite BL-algebra

that is not a BL-comet; hence Irr(I(B))⊆ Irr(I(A)). Consequently Irr(I(B)) has to be
a chain and, by previous claim, B is a BL-comet, absurd. From that pivot(A) = 1,
therefore, by Proposition 26, A is a BL-chain.

7. Dualizing BL-algebras and labelled trees

Following [2], we recall that, if (C;6) is a 4nite chain and (T;6′) is a 4nite tree,
C and T disjoint sets, then the ordinal sum of C and T , in symbols C+̇T , is the 4nite
tree, (T ′′;6′′), where T ′′ =C ∪T\T0 and 6′′ is de4ned by x6′′y for every x∈C and
for every y∈T , while the order of the elements in C and the order of the elements in
T are unchanged.

Proposition 49. Let A be a >nite BL-chain and B∈FBL. Then (Irr(I(A � B);6)∼=
(Irr(I(A));6) +̇ (Irr(I(B));6).

Proof. It follows by de4nitions.

Let (S;6) and (T;6′) be two trees. The direct product of S and T [2], in symbols
C ⊗T , need not be a tree. Then we introduce the following de4nition:

De�nition 50. We call 0-product of the two trees (S;6) and (T;6′), in symbols
C˝T , the ordered subset of C ⊗T , whose elements are the pairs (x; y) such that
x= S0 or y=T0.

The above de4nition can be extended to a 4nite number of trees as follows:

De�nition 51. We call 0-product of the trees (Si;6i); i= 1; : : : ; r, in symbols⊙r
i=1(S

i;6i), the ordered subset of
⊗r

i=1 Si, whose elements are the r-tuples
(x1; : : : ; xr) such that there is i0∈{1; : : : ; r} and xi = Si

0 for every i �= i0.



110 A. Di Nola, A. Lettieri / Discrete Mathematics 269 (2003) 93–112

Remark 52. There are natural embeddings gi : Si → S =
⊙r

i=1 Si. Identifying Si and
gi(Si), we get Si ∩ Sj = {S0}, for i �= j and S =

⋃r
i=1 Si.

Proposition 53. The 0-product of a >nite number of trees is a tree.

Proof. It is a trivial.

Proposition 54. Let Ai∈FBL; i=1; : : : ; r. Then (Irr(I(
∏r

i=1 Ai));6)∼=⊙r
i=1)Irr(I(Ai));6).

Proof. Let x= (x1; : : : ; xr)∈Irr(I(
∏r

i=1 Ai)). By Proposition 47, there is i∈{1; : : : ; r}
such that xi∈Irr(I(Ai)) and xj = 0j for every j �= i. Thus, the map f : Irr(I(

∏r
i=1 Ai))→⊙r

i=1 Irr(I(Ai)), de4ned by f((01; : : : ; xi; : : : ; 0r)) = (Irr(I(A1))0; : : : ; xi; : : : ; Irr(I(Ar))0),
is the claimed order isomorphism.

De�nition 55. Let (S;6; h) be a labelled chain and (T;6′; k) be a labelled tree. The
ordinal sum of (S;6; h) and (T;6′; k) is the labelled tree (R;6′′; d) such that (R;6′′)
is the ordinal sum of (S;6) and (T;6′) and d is de4ned by

d(x) =
{
h(x) if x∈S;
k(x) if x∈T:

(14)

De�nition 56. Let (S;6; h) and (T;6′; k) be two labelled trees. The labelled 0-product
of (S;6; h) and (T;6′; k) is the labelled tree (R;6′′; d) such that (R;6′′) is the
0-product of (S;6) and (T;6′) and d is de4ned by

d(x; y) =
{
h(x) if (x; y) = (x; T0);
k(y) if (x; y) = (S0; y):

(15)

The above de4nition of a labelled 0-product can be extended to a 4nite number
of trees in the obvious way. In the sequel we shall denote the ordinal sum and the
0-product of two labelled trees, S and T , by S+̇T or S �T , respectively.

Let f be de4ned as in Theorem 39. Then we get:

Proposition 57. Let (T;6; h) be a simply labelled chain and, for i∈{1; : : : ; r}, let
(T i;6i ; hi)∈Ts; l. Then

1. f(T +̇T i) =f(T )+̇f(T i); i∈{1; : : : ; r},
2. f(

⊙r
i=1 T i) =

⊙r
i=1 f(T i).

Proof. It follows by the de4nitions.

With arguments and notations of Section 5, we get:

Proposition 58. For i∈{1; : : : ; r}, let (T i;6i ; hi)∈Tm; l. Then 1(
⊙r

i=1 T i) =∏r
i=1 1(T i).
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Proof. Set
⊙r

i=1 T i = (S;6; d); l(S) = n and l(T i) = ni, for i= 1; : : : ; r. If x∈T i and
x �= S0, then {y∈S | x≺y}⊆T i. Hence (hi)ni−1(x) =dn−1(x), for i∈{1; : : : ; r} and x∈
T i. Therefore, 1(S) =

∏
x∈S1

dn−1(x) =
∏

x∈(T 1)1
(h1)n−1(x)× ∏x∈(T 2)1

(h2)n−1(x)× · · ·
× ∏x∈(T r)1

(hr)n−1(x) = 1(T 1)× 1(T 2)× · · · ×1(T r) =
∏r

i=1 1(T i).

In the next theorems 2 and 3 are de4ned as in Theorems 40 and 46, respectively.

Theorem 59. Let (T;6; h)∈Ts; l. Then 3(2(T )) is isomorphic to (T;6; h).

Proof. We will prove the theorem for induction on l(T ). Suppose l(T ) = 1 and
consider the set T1 = {x∈T : l(x) = 1}.
Case 1: |T1|= 1. Let ]T0; T1] = {x1; : : : ; xr}; x1¡x2 · · ·¡xr . By de4nition of 1; 2(T ) =

Sn1 � · · · � Snr , where ni = h(xi), i= 1; : : : ; r. Then 3(2(T )) = Irr(I(Sn1 � · · · � Snr ))∼=T .
Case 2: |T1|=p¿1. Set T1 = {t1; : : : ; tp} and ]T0; ti] = {xi;1; : : : ; xi; qi}; xi;1¡xi;2 : : :¡

xi; qi , for every i= 1; : : : ; p. Then T ∼= ⊙p
i=1 ([T0; ti]6i ; hi), with ti∈T1 and 6i ; hi

restrictions of 6 and h to [T0; ti] respectively. By Propositions 57 and 58, 2(T )=
1(
⊙p

i=1 f([T0; ti])) =
∏p

i=1 hf(ti) =
∏p

i=1 (Sni; 1 � · · · � Sni; qi ), where ni; s = h(xi; s); xi; s
∈[T0; ti], for i= 1; : : : ; p and s= 1; : : : ; qi. From that and Proposition 54, 3(2(T )) =
Irr(I(

∏p
i=1(Sni; 1 � · · · � Sni; qi ))) =

⊙p
i=1 Irr(I(Sni; 1 � · · · � Sni; qi )).

Using the arguments and the conclusion of the previous case, we get:
Irr(I(Sni; 1 ))� · · · � Sni; qi ) =3(2([T0; ti])∼= [T0; ti], hence 3(2(T ))∼= ⊙p

i=1 [T0; ti]∼=T .

Suppose now l(T ) = n¿1.
If |T1|= 1, then T\[T0; T1[ is a tree and T = [T0; T1]+̇T\[T0; T1[. Since l(T\[T0; T1[)

= n − 1, by induction hypothesis and the above results we get: 3(2(T\[T0; T1[))∼=
T\[T0; T1[ and 3(2([T0; T1]))∼= [T0; T1]. By Proposition 57, 2(T ) =2([T0; T1])�2(T
\[T0; T1[). Therefore, by Proposition 49, 3(2(T )) =3(2([T0; T1]))+̇3(2(T\[T0; T1[))∼= [T0; T1]+̇T\[T0; T1[∼= T ].

Let now |T1|=p¿1 and T1 = {t1; : : : ; tp}. Set Ri = {x∈T : x¿ti} and Si = [T0; ti]+̇
Ri. Then we get T ∼= ⊙p

i=1 Si. Thus, by Propositions 57, 58 and 47, it follows 3(2(T ))
∼= ⊙p

i=1 3(2(Si)). Since |{x∈Si : l(x) = 1}|= 1, 3(2(T ))∼= ⊙p
i=1 S

i ∼= T .

Theorem 60. Let A∈FBL. Then 2(3(A))∼=A.

Proof. We will prove the theorem by induction on n= l(Irr(I(A))). Assume l(Irr(I
(A)))= 1 and set I1 = {�∈Irr(I(A)) : l(�) = 1}.

Let us consider two cases:
Case 1: Let |I1|= 1. Then Irr(I(A)) is a chain, and, by Theorem 48, A is a BL-chain.

Hence A is an ordinal sum of MV-chains. From that 2(Irr(I(A))) =2(3(A))∼=A.
Case 2: Let |I1|=p¿1. Applying Corollary 28 and Propositions 54, Irr(I

(A)∼= Irr(I(A1)˝ · · · ˝ Irr(I(Ar), where for each i= 1; : : : ; r; Ai is a BL-comet. By
assumption l(Irr(I(A))) = 1 and by Proposition 43, it follows l(Irr(I(Ai))) = 1. Thus Ai

is a BL-chain, for i= 1; : : : ; r. Then (see Case 1) 2(Irr(I(Ai))) =2(3(Ai))∼=Ai. Using
Proposition 49, 57 and 58, we have: 2(3(A)) =2(3(A1 × · · ·×Ar)) =2(Irr(I(A1))˝
· · · ˝ Irr(I(Ar)) =2(3(A1))× · · · ×2(3(Ar))∼=A1 × · · · ×Ar =A.
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Assume now l(Irr(I(A))) = n¿1.
Suppose 4rst that A is a BL-comet. Let pivot(A)¡1. By Corollary 30 and Proposi-

tion 49, Irr(I(A))∼= Irr(I(A1))+̇Irr(I(A2)). Thus by Proposition 57, 2(3(A))∼=
2(3(A1))�2(3(A2)). We recall that A1 is a BL-chain and that, by Proposition 43,
l(Irr(I(A2))) = n− 1. Thus by induction hypothesis 2(3(A))∼=A1 �A2

∼=A.
Finally let A∈FBL. By Corollary 28, A=A1 × · · · ×Ar , with A1; : : : ; Ar BL-comets.

By Proposition 54, Irr(I(A))∼= Irr(I(A1))˝ · · · ˝ Irr(I(Ar)). Therefore, by Propositions
57 and 58, 2(Irr(I(A)))∼=2(Irr(I(A1))˝ · · · ˝ Irr(I(Ar))), that is 2(3(A))∼=
2(3(A1))× · · · ×2(3(Ar))∼=A1 × · · · ×Ar =A.
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