

Available online at www.sciencedirect.com

Discrete Mathematics 269 (2003) 93-112

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Finite BL-algebras

Antonio Di Nola^a, Ada Lettieri^{b,*}

^aDipartimento di Matematica e Informatica, Università di Salerno, Via S. Allende, Baronissi, Salerno, Italy

^bDipartimento di Costruzioni e Metodi Matematici in Architettura, Università di Napoli "Federico II", Via Monteoliveto 3, 80134 Napoli, Italy

Received 24 June 2002; accepted 22 July 2002

Abstract

BL-algebras were introduced by Hájek as algebraic structures of Basic Logic. The aim of this paper is to analyze the structure of finite BL-algebras. Extending the notion of ordinal sum, we characterize a class of finite BL-algebras, actually BL-comets. Then, just using BL-comets, we can represent any finite BL-algebra as a direct product of BL-comets. Furthermore we define a class of labelled trees, which can be one-to-one mapped onto finite BL-algebras. (© 2002 Elsevier B.V. All rights reserved.

Keywords: BL-algebra; BL-comet; Labelled tree

1. Introduction

BL-algebras were introduced by Hájek [4] as algebraic structures of Basic Logic. A BL-algebra is an algebra $A = (A, \land, \lor, \odot, \rightarrow, 0, 1)$ such that:

- 1. $(A, \land, \lor, 0, 1)$ is a lattice with 0 as least element and 1 as greatest element,
- 2. $(A, \odot, 1)$ is a commutative monoid,
- 3. the following statements hold for every $x, y, z \in A$:
 - (a) $z \leq x \to y$ iff $x \odot z \leq y$,
 - (b) $x \wedge y = x \odot (x \rightarrow y)$,
 - (c) $(x \rightarrow y) \lor (y \rightarrow x) = 1$.

^{*} Corresponding author. E-mail addresses: dinola@unisa.it (A. Di Nola), lettieri@unina.it (A. Lettieri).

⁰⁰¹²⁻³⁶⁵X/03/\$-see front matter © 2002 Elsevier B.V. All rights reserved. PII: S0012-365X(02)00754-9

By former operations a negation operation * is defined in the following way: $x^* = x \rightarrow 0$, for every $x \in A$. We will write x^p instead of $x \odot \cdots \odot x$.

The set of all BL-algebras is a variety, whose subvariety defined by the further axiom $(x^*)^* = x$, for every $x \in A$, coincides with the variety of MV-algebras. Let A be a BL-algebra and $MV(A) = \{x \in A | x^{**} = x\}$. MV(A) is a subalgebra of A. It is the greatest subalgebra of A that is an MV-algebra [4].

We say that the BL-algebra A is totally ordered or that the BL-algebra A is a chain (shortly BL-chain) if the lattice $(A, \land, \lor, 0, 1)$ is totally ordered. Every BL-algebra is a subdirect product of BL-chains [4].

We say that the BL-algebra A is finite if the cardinal of the set A is finite.

The aim of this paper is to analyze the structure of finite BL-algebras. In the case of MV-algebras their structure is already well known. Every finite BL-chain is a finite ordinal sum whose components are finite MV-chains (see [1, Theorem 3.6]). Extending the notion of ordinal sum of BL-algebras (see Preliminaries), we characterize a class of finite BL-algebras, actually BL-comets (see Section 4) which can be seen as a generalization of finite BL-chains. Then, just using BL-comets, we can represent any finite BL-algebra A as a direct product of BL-comets. This result can be understood as a generalization of the representation of finite MV-algebras as a direct product of MV-chains (see [3]). Furthermore, in Section 5 we define a class of labelled trees, which can be one-to-one mapped onto finite BL-algebras. The class of all finite BL-algebras will be denoted by **FBL**. For any unexplained notion on MV-algebras see [3], on BL-algebras see [4].

2. Preliminaries

Let A be a finite BL-algebra, subdirect product of the BL-chains $C_1, C_2, ..., C_n$. We say that the chain C_i , $i \in I_n = \{1, 2, ..., n\}$, is *essential* in the representation of A iff A is not a subdirect product of $C'_1, ..., C'_{i-1}, C'_{i+1}, ..., C'_n$, with $C'_t \cong C_t$ for every $t \in \{1, ..., i - 1, i + 1, ..., n\}$. Let us assume that every chain C_i is essential in the representation of A.

Definition 1 (Agliano and Montagna [1]). Let $\mathscr{A}_i = (A_i, \wedge_i, \forall_i, \odot_i, \rightarrow_i, 0_i, 1)$ be BL-chains for $i \in \{1, ..., r-1\}$ and a BL-algebra for i = r. Assume:

1. $A_i \cap A_j = \{1\}$, for $i \neq j$.

Then the ordinal sum $\bigcup_{i=1}^{r} A_i = (\bigcup_{i=1}^{r} A_i, \land, \lor, \odot, \rightarrow, 0, 1)$ is a new BL-algebra whose operations \land, \lor, \odot coincide with those of A_i , when applied on pairs of elements of A_i , i = 1, ..., r, and on the rest of pairs are defined as follows, for $x \in A_i \setminus \{1\}$, $y \in A_i$ and i < j:

1. $x \land y = y \land x = x$, 2. $x \lor y = y \lor x = y$, 3. $x \odot y = y \odot x = x$. Finally, the operation \rightarrow is defined by

$$x \to y = \begin{cases} 1 & \text{if } x \leq y, \\ x \to_i y & \text{if } x, y \in A_i, \\ y & \text{if } x \in A_i, y \in A_j \text{ and } i > j. \end{cases}$$
(1)

For $i \in \{1, \dots, n\}$ denote by $0_i = \alpha_{i,0} < \alpha_{i,1} < \dots < \alpha_{i,n_i} < \alpha_{i,n_i+1} = 1_i$ the chain of the idempotent elements of C_i , shortly $\mathbb{I}(C_i, n_i + 1)$. By [1] Theorem 3.6, C_i is an ordinal sum of finite MV-chains, i.e. finite BL-chains that are MV-algebras, in symbols $C_i = \bigcup_{h=1}^{n_i+1} M(\alpha, i, h)$, where $M(\alpha, i, h) = [\alpha_{i,h-1}, \alpha_{i,h}[\cup \{1_i\}]$. Then for every $i \in I_n$ and $h \in \{1, ..., n_i + 1\}$ the restrictions of the operations defined on C_i to the subset $M(\alpha, i, h)$ make it into a finite MV-chain, hence it is isomorphic to the MV-algebra $S_p = \{0, 1/p, \dots, (p-1)/p, 1\}$, for some $p \ge 1$. From now on, every time we will deal with a finite BL-algebra A, we will use the above notations to give a subdirect representation of A by finite BL-chains and the decomposition of such chains as ordinal sum. Furthermore, in the sequel, every finite MV-chain will be identified with the subalgebra of [0, 1], which it is isomorphic to. For every $f \in A$, denote by f_i the *i*th component of f. Moreover, for every $x \in C_i$, set $\alpha(x) = \max\{y \in \mathbb{I}(C_i, n_i + 1) \mid y \leq x\}$ and for every $f \in A$, set $\alpha(f) = (\alpha(f_1), \dots, \alpha(f_n))$. If $f \in A$, then $\alpha(f) \in A$. Indeed, let $f_i \in M(\alpha, i, h_i) \cong S_{p_i}$ and $\mu = \max\{p_i, i \in I_n\}$; then $f^{\mu} = \alpha(f)$. In the sequel we will mean $\alpha_{i,h} = \alpha_{i,k}$ if $h = k, h, k < \min\{n_i + 1, n_i + 1\}$. Moreover, we will denote by α_h the *n*-tuple $(\alpha_{1,h},\ldots,\alpha_{n,h})$, for every $h \leq \min\{n_i+1, i \in I_n\}$, by 1 the *n*-tuple, having its *i*th component equal to 1_i and by 0 the *n*-tuple, having its *i*th component equal to 0_i , for every $i \in I_n$.

With the above notations we get.

Proposition 2. Let $A \in \mathbf{FBL}$ and $f, g \in A$ such that for some $(i, j) \in I_n^2$:

1. $f_i = \alpha_{i,h}$ and $g_i = \alpha_{i,k}$, $h = 0, 1, ..., n_i + 1$, $k = 0, 1, ..., n_i + 1$, $h \neq k$, 2. $f_i = g_i = \alpha_{i,m}$, $m = 0, 1, ..., n_i + 1$.

Then, for every $(x, y) \ge (\alpha_{i,t}, \alpha_{j,m})$, $t = \min\{h, k\}$, there is an element $l \in A$ such that $(l_i, l_j) = (x, y)$.

Proof. Assume h < k and $(x, y) \ge (\alpha_{i,h}, \alpha_{j,m})$. Let *u* be an element of *A*, having its *i*th component equal to *x* and *v* be an element of *A*, having its *j*th component equal to *y*. Then $l = ((g \to f) \lor u) \land (((g \to f) \to f) \lor v)$ verifies the claim. \Box

Proposition 3. Let $A \in \mathbf{FBL}$ and $f \in A$ such that for some $(i, j) \in I_n^2$:

 $(f_i, f_i) = (\alpha_{i,h}, \alpha_{i,k}), h = 0, 1, \dots, n_i + 1, k = 0, 1, \dots, n_i + 1, h \neq k.$

Then there is $g \in A$ such that $(g_i, g_j) = (\alpha_{i,t}, \alpha_{j,t}), t = \min\{h, k\}.$

Proof. Assume h < k. If h = 0, then it is trivial. For otherwise let w be an element of A, having its *j*th component equal to $\alpha_{j,h}$. Set $\alpha(w_i) = \alpha_{i,h_1}$ for a suitable h_1 .

If $h_1 \ge h$, then $g = w \land f \in A$ verifies the claim.

If $h_1 < h$, we choose an element $w^1 \in A$, having its *j*th component equal to α_{j,h_1} . Set $\alpha(w_i^1) = \alpha_{i,h_2}$. If $h_2 \ge h_1$, then $w^1 \land \alpha(w) \in A$, moreover $w_i^1 \land \alpha(w_i) = \alpha_{i,h_1}$ and $w_j^1 \land \alpha(w_j) = \alpha_{j,h_1}$. Hence, the conclusion follows from Proposition 2. If $h_2 < h_1$, proceeding as above, the thesis shall be attained as soon as we find an element w^r such that $\alpha(w_j^r) = \alpha_{j,h_r}$, $\alpha(w_i^r) = \alpha_{i,h_{r+1}}$ and $h_{r+1} \ge h_r$. If the last condition is never verified, then we get a strictly decreasing sequence $k > h > h_1 > h_2 > \cdots > h_r > \cdots$ of natural numbers; consequently there must ultimately be an *s*, such that $h_s = 0$. Hence we will find an element w^{s-1} such that $(\alpha(w_i^{s-1}), \alpha(w_j^{s-1})) = (0_i, \alpha_{j,h_{s-1}})$, where $\alpha_{j,h_{s-1}} \neq 0_j$. Also in this case the claim follows by Proposition 2. \Box

Corollary 4. Let $A \in \mathbf{FBL}$ and $f \in A$ such that for some $(i, j) \in I_n^2$:

 $(f_i, f_j) = (\alpha_{i,h}, \alpha_{j,k}), h and k run from 0, 1, \dots, like in Proposition 3.$

Then for every $(x, y) \ge (\alpha_{i,t}, \alpha_{j,t})$, with $t = \min\{h, k\}$, there is an element $l \in A$, such that $(l_i, l_j) = (x, y)$.

Proof. It follows by Propositions 2 and 3. \Box

Corollary 5. Let $A \in \mathbf{FBL}$. Then, for every $h \leq \min\{n_i+1, i \in I_n\}, \alpha_h = (\alpha_{1,h}, \dots, \alpha_{n,h}) \in A$.

Proof. We proceed by induction on *n*. Let n = 2, $h \le \min\{n_1 + 1, n_2 + 1\}$, and $x, y \in A$ such that $x_1 = \alpha_{1,h}$ and $y_2 = \alpha_{2,h}$. If *x* and *y* are incomparable, then either $x \lor y = \alpha_h$ or $x \land y = \alpha_h$. Otherwise, consider $\alpha(x_2) = \alpha_{2,t}$ and $\alpha(y_1) = \alpha_{1,l}$. If t = h or l = h, then either $\alpha(x) = \alpha_h$ or $\alpha(y) = \alpha_h$. Assume either l > h or t > h; in both cases the conclusion follows from Proposition 3.

Suppose now the corollary true for n-1. Set $I_n^i = I_n \setminus \{i\}$ and let $A_{\uparrow\{I_n^i\}}$ be the set of the restrictions of all the elements of A to I_n^i ; $A_{\uparrow\{I_n^i\}}$ is a finite BL-algebra and it is, up to isomorphism, a subdirect product of $\{C_i, i \in I_n^i\}$. Fix $h \leq \min\{n_i + 1, i \in I_n\}$. By induction, for every $i \in I_n$, there is an element $x^i \in A$ such that $(x^i)_j = \alpha_{j,h}$ for $j \neq i$. If two of the elements x^1, x^2 and x^3 are incomparable, say x^1 and x^2 , then either $x^1 \lor x^2$ or $x^1 \land x^2$ satisfies the claim. Otherwise x^1, x^2 and x^3 are comparable. We safely can set $x^1 \leq x^2 \leq x^3$. Then we have $\alpha_{2,h} \leq x_2^2 \leq \alpha_{2,h}$, that is $x_2^2 = \alpha_{2,h}$. From that we get $x^2 = \alpha_h \in A$. \Box

Lemma 6. Let $A \in FBL$, $i, j \in I_n$, $h = 1, ..., n_i + 1$, $k = 1, ..., n_j + 1$ and $h \neq k$. Then the following are equivalent:

1. there exists $f \in A$ such that $(f_i, f_j) \in M(\alpha, i, h) \times M(\alpha, j, k) \setminus \{(1_i, 1_j)\},\$

2. for every $(x, y) \ge (\alpha_{i,h-1}, \alpha_{j,k-1})$ there is an element $g \in A$ such that $(g_i, g_j) = (x, y)$.

Proof. Let $f \in A$ such that $(f_i, f_j) \in M(\alpha, i, h) \times M(\alpha, j, k) \setminus \{(1_i, 1_j)\}$. Then

$$(\alpha(f_i), \alpha(f_j)) = \begin{cases} (\alpha_{i,h-1}, \alpha_{j,k-1}) & \text{if } \alpha(f_i) \neq 1_i \text{ and } \alpha(f_j) \neq 1_j, \\ (\alpha_{i,h-1}, 1_j) & \text{if } \alpha(f_j) = 1_j, \\ (1_i, \alpha_{j,k-1}) & \text{if } \alpha(f_i) = 1_i. \end{cases}$$
(2)

Thus, the conclusion follows by Corollary 4. Vice versa is obvious. \Box

Lemma 7. Let $A \in \mathbf{FBL}$, $h \leq \min\{n_i + 1, n_j + 1 : i, j \in I_n\}$, $M(\alpha, i, h) \cong S_p$, $M(\alpha, j, h) \cong S_q$ and $p \neq q$. Then for every $(x, y) \geq (\alpha_{i,h-1}, \alpha_{j,h-1})$, there is an element $g \in A$ such that $(g_i, g_j) = (x, y)$.

Proof. Let p < q and $f \in A$ such that $f_i = (q-1)/q \in M(\alpha, j, h)$.

If $f_i < \alpha_{i,h-1}$, we get $(\alpha(f_i), \alpha(f_j)) = (\alpha_{i,k}, \alpha_{j,h-1}), k < h-1$. If $\alpha_{i,h-1} \le f_i < \alpha_{i,h}$, then $(f^p \to \alpha_{h-1})^q$ is an element of *A*, having its *i*th component equal to 1_i and its *j*th component equal to $\alpha_{j,h-1}$. Finally, if $f_i \ge \alpha_{i,h}$, we get $(\alpha(f_i), \alpha(f_j)) = (\alpha_{i,l}, \alpha_{j,h-1}), l > h-1$.

In any case the claim follows by Corollary 4. \Box

Lemma 8. Let $A \in \mathbf{FBL}$, $h \leq \min\{n_i + 1, n_j + 1 : i, j \in I_n\}$. If there is an element $f \in A$ such that:

1. $(f_i, f_j) \in M(\alpha, i, h) \times M(\alpha, j, h),$ 2. $f_i \neq f_i,$

then for every $(x, y) \ge (\alpha_{i,h-1}, \alpha_{j,h-1})$, there is an element $g \in A$ such that $(g_i, g_j) = (x, y)$.

Proof. If $M(\alpha, i, h) \cong S_p$, $M(\alpha, j, h) \cong S_q$ and $p \neq q$, it follows from Lemma 7. Therefore, it shall be understood $M(\alpha, i, h) \cong M(\alpha, j, h) \cong S_p$.

By Corollary 4, we get the claim in the following cases:

- 1. $f_i = 1_i$ or $f_j = 1_j$,
- 2. $f_i = \alpha_{i,h-1}$, hence the element $l = (f \rightarrow \alpha_{h-1})^p$ has its *i*th component equal to 1_i and its *j*th component equal to $\alpha_{j,h-1}$,
- 3. $f_j = \alpha_{j,h-1}$, hence the element $m = (f \rightarrow \alpha_{h-1})^p$ has its *j*th component equal to 1_j and its *i*th component equal to $\alpha_{i,h-1}$.

Assume now $f_i = r/p \in M(\alpha, i, h)$, $f_j = s/p \in M(\alpha, j, h)$ and 0 < r < s < p. Then we get *Case* 1: s = p - 1. Then the element $f^{p-1} \in A$ has its *i*th component equal to $\alpha_{i,h-1}$ and its *j*th component equal to $1/p \in M(\alpha, i, h)$. Then we proceed as in 2.

Case 2: s .

Let $g \in A$ such that $g_j = (p-1)/p \in M(\alpha, j, h)$.

- (a) If $g_i \leq f_i$, then the element $h = ((f \lor g) \to f)^p$, has its *i*th component equal to 1_i and its *j*th component equal to $\alpha_{j,h-1}$.
- (b) If $g_i \ge \alpha_{i,h}$, then the element $k = ((f \to f \odot g)^p)$, has its *i*th component equal to 1_i and its *j*th component equal to $\alpha_{i,h-1}$.
- (c) Finally, if $f_i < g_i < \alpha_{i,h}$ then the element $d = (g^r \odot f) \rightarrow \alpha_h$ has its *i*th component equal to 1_i and its *j*th component equal to $\alpha_{i,h-1}$.

Again the conclusion follows from Corollary 4. \Box

Proposition 9. Let $A \in \mathbf{FBL}$ and $J = \{i_1, \ldots, i_r\} \subseteq I_n$.

If, for every $i_p, i_q \in J$ and for every pair $(x_{i_p}, x_{i_q}) \ge (\alpha_{i_p, h_p}, \alpha_{i_q, h_q})$, there is an element $g^{p,q} \in A$ such that $(g_{i_p}^{p,q}, g_{i_q}^{p,q}) = (x_{i_p}, x_{i_q})$, then for every r-tuple $(x_{i_1}, \ldots, x_{i_r}) \ge (\alpha_{i_1, h_1}, \ldots, \alpha_{i_r, h_r})$, there is an element $g \in A$ such that $(g_{i_1}, \ldots, g_{i_r}) = (x_{i_1}, \ldots, x_{i_r})$.

Proof. The proposition is true for r = 2. Let $r \ge 3$ and let us proceed by induction on the cardinality of *J*. Assume the proposition is true for r-1. Let $x = (x_{i_1}, \ldots, x_{i_r}) \ge (\alpha_{i_1, h_1}, \ldots, \alpha_{i_r, h_r})$.

For every $i_u \in J$, denote by x^u the (r-1)-tuple obtained from $(x_{i_1}, \ldots, x_{i_r})$, by deleting the i_u th component of x. By induction, there is an element $g^u \in A$ such that $g^u_{i_m} = x_{i_m}$, for every $m \in \{1, \ldots, u - 1, u + 1, \ldots, r\}$. If the restrictions to J of two among these elements, say g^{u_1} and g^{u_2} , are not comparable, then we have: either

1.
$$(g^{u_1})_{u_1} \leq (g^{u_2})_{u_1} = x_{u_1}$$
 and $x_{u_2} = (g^{u_1})_{u_2} \geq (g^{u_2})_{u_2}$

2. $(g^{u_1})_{u_1} \ge (g^{u_2})_{u_1} = x_{u_1}$ and $x_{u_2} = (g^{u_1})_{u_2} \le (g^{u_2})_{u_2}$.

In the former case $(g^{u_1} \vee g^{u_2})_{i_m} = x_{i_m}$, for every $m \in \{1, \ldots, r\}$. In the latter case x is given by the restriction to J of $g^{u_1} \wedge g^{u_2}$.

Assume that the restrictions to J of all the elements g^u are each other comparable, then we safely can write $g^1 \leq g^2 \leq g^3$. From that $x_{i_2} = (g^1)_{i_2} \leq (g^2)_{i_2} \leq (g^3)_{i_2} = x_{i_2}$. Then it is $(g^2)_{i_m} = x_{i_m}$ for every $m \in \{1, \ldots, r\}$. \Box

Corollary 10. Let $A \in \mathbf{FBL}$, $M(\alpha, i, 1) \cong S_{p_i}$ and $S_{p_i} \neq S_{p_j}$ for every $(i, j) \in I_n^2$. Then $A = C_1 \times \cdots \times C_n$.

Proof. This follows by Lemma 7 and Proposition 9. \Box

Corollary 11. Let $A \in \mathbf{FBL}$. Then the following implication holds: (for every $i \in I_n$ there is an element $f^i \in A$ such that $\alpha(f^i) \neq \mathbf{0}$ and $\alpha(f^i_i) = 0_i \Rightarrow (A = C_1 \times \cdots \times C_n)$.

Proof. This follows by Propositions 2 and 9. \Box

3. Direct decomposition

Let $A \in \mathbf{FBL}$. It is known that $MV(A) = A \cap \prod_{i=1}^{n} M(\alpha, i, 1)$ [1]. Define on I_n the following equivalence relation:

 $i \equiv j$ iff for every $f \in MV(A), f_i = f_i$.

Let $\pi = \{J_1, \ldots, J_r\}$ be the partition of I_n yielded by this relation.

Remark 12. The above definition is equivalent to the following: $i \equiv j$ iff $f_i = f_j$ for every $f \in A$ such that $(f_i, f_j) \in M(\alpha, i, 1) \times M(\alpha, j, 1)$.

Indeed, let $i \equiv j$, $f \in A$, and $(f_i, f_j) \in M(\alpha, i, 1) \times M(\alpha, j, 1)$. Since $f^{**} \in MV(A)$, we get $f_i = f_i^{**} = f_j^{**} = f_j$, hence $i \equiv j$.

For a positive integer k denote by A_{J_k} the set of the restrictions to J_k of all the elements of A; A_{J_k} is a BL-algebra and it is, up to isomorphism, subdirect product of $\{C_i, i \in J_k\}$. In the sequel the restriction of $f \in A$ to J_k will be denoted by f_{J_k} .

The following result is crucial:

Theorem 13. Let $A \in \mathbf{FBL}$. Then A is isomorphic to the direct product $A_{J_1} \times \cdots \times A_{J_r}$.

Proof. The map $\phi: f \in A \to (f_{J_1}, \ldots, f_{J_r}) \in A_{J_1} \times \cdots \times A_{J_r}$ is a homomorphism. Now we shall prove that ϕ is bijective.

Claim 1. ϕ is injective.

Indeed, if $f \neq g$, then $f_i \neq g_i$ for some *i*. Let $i \in J_k$, then $f_{J_k} \neq g_{J_k}$ hence $\phi(f) \neq \phi(g)$.

Claim 2. ϕ is surjective.

We will prove the surjectivity of ϕ by induction on the cardinal of the set π . It is trivial if $|\pi| = 1$. Assume that it is true for $|\pi| = r - 1$ and set:

 $\phi': f \in A_{J_1 \cup \cdots \cup J_{r-1}} \to (f_{J_1}, \dots, f_{J_{r-1}}) \in A_{J_1} \times \cdots \times A_{J_{r-1}}$. By induction, ϕ' is surjective.

Let $(f_{J_1}^1, \ldots, f_{J_r}^r) \in (A_{J_1} \times \cdots \times A_{J_{r-1}}) \times A_{J_r}$ and $f \in A$ such that $\phi'(f_{J_1 \cup \cdots \cup J_{r-1}}) = (f_{J_1}^1, \ldots, f_{J_{r-1}}^{r-1})$; moreover let $g \in A$ such that $g_{J_r} = f_{J_r}^r$.

Fix a subset J of I_n containing exactly a single representative element from each class of π , that is $J = \{i_1, \ldots, i_r\}$ and $i_m \in J_m$, $m \in \{1, \ldots, r\}$. By Lemmas 7 and 8 and Proposition 9, for every *r*-tuple $(x_{i_1}, \ldots, x_{i_r}) \in M(\alpha, i_1, 1) \times \cdots \times M(\alpha, i_r, 1)$, there is an element $g' \in A \cap \prod_{i=1}^n M(\alpha, i, 1)$, such that $(g'_{i_1}, \ldots, g'_{i_r}) = (x_{i_1}, \ldots, x_{i_r})$.

Therefore, let $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$ such that:

- 1. $(a_{i_1},...,a_{i_r}), (b_{i_1},...,b_{i_r}) \in M(\alpha,i_1,1) \times \cdots \times M(\alpha,i_r,1),$
- 2. $a_{i_h} < b_{i_h}$ for $h = 1, \ldots, r 1$,
- 3. $a_{i_r} > b_{i_r}$.

Then we have

$$(a \to b)_i = \begin{cases} 1_i & \text{if } i \in J_1 \cup \dots \cup J_{r-1}, \\ a_{i_r}^* \oplus b_{i_r} \in M(\alpha, i, 1) & \text{if } i \in J_r. \end{cases}$$
(3)

Set $c = \alpha(a \rightarrow b)$. Then $c_i = 1_i$ for $i \in J_1 \cup \cdots \cup J_{r-1}$ and $c_i = 0_i$ for $i \in J_r$. On other side,

$$(b \to a)_i = \begin{cases} b_i^* \oplus a_i \in M(\alpha, i, 1) \setminus \{1_i\} & \text{if } i \in J_1 \cup \dots \cup J_{r-1}, \\ 1_i & \text{if } i \in J_r. \end{cases}$$
(4)

Let $w = \alpha(b \to a)$. Then $w_i = 1_i$ for $i \in J_r$ and $w_i = 0_i$ for $i \in J_1 \cup \cdots \cup J_{r-1}$. Thus $(c \odot f) \lor (w \odot g) \in A$ and $\phi((c \odot f) \lor (w \odot g)) = (f_{J_1}, \ldots, f_{J_r})$. \Box

Corollary 14. Let $A \in FBL$. Then the following are equivalent:

1. for every (i, j) and $i \neq j$ there is an element $f \in MV(A)$ such that $f_i \neq f_j$, 2. $A = \prod_{i=1}^{n} C_i$.

Proof. Assume that for every (i, j) and $i \neq j$ there is an element $f \in MV(A)$ such that $f_i \neq f_j$. Then $\pi = I$. Let $A_{\uparrow\{i\}}$ be the BL-algebra of the restrictions to $\{i\}$ of all the elements in A. The $A_{\uparrow\{i\}} \cong C_i$, for every $i \in \{1, 2, ..., n\}$. Hence the conclusion follows by Theorem 13. Vice versa is obvious. \Box

4. BL-comet

In this section we will introduce the concept of BL-comet and we will prove the main result according to any finite BL-algebra is a direct product of BL-comets (Corollary 28). To this aim we hold to describe the structure of the algebra A_{J_h} , that is the structure of a finite BL-algebra $A = (A, \land, \lor, \odot, \rightarrow, 0, 1)$, having the further following property:

every
$$f \in A \cap \prod_{i=1}^{n} M(\alpha, i, 1) = MV(A)$$
 is constant on I_n . (5)

Such an algebra will be denoted by A_c and the class of all the algebras A_c will be denoted by A_c .

Lemma 15. Let $A_c \in \mathbf{A_c}$. Then, for every $(i, j) \in I_n^2$, $M(\alpha, i, 1) \cong M(\alpha, j, 1)$.

Proof. Suppose there is $(i, j) \in I_n^2$ such that $M(\alpha, i, 1) \not\cong M(\alpha, j, 1)$. We can safely assume $|M(\alpha, i, 1)| < |M(\alpha, j, 1)|$. By Lemma 7, we find an element $g \in A_c$ such that $g_i = 0_i$ and $g_j \in M(\alpha, j, 1) \setminus \{0_j\}$. Hence $g^* \in MV(A)$ and it is not constant on I_n , absurd. \Box

Set $M(\alpha, i, h_1^m) = \bigoplus_{h=1}^m M(\alpha, i, h)$ and, for every A_c , define: $\delta_{A_c} = \max\{m \in N | \text{for every } f \in A_c \cap \prod_{i=1}^n M(\alpha, i, h_1^m), f \text{ is constant on } I_n\}$. We get $1 \leq \delta_{A_c} \leq \min\{n_i + 1 | i \in I_n\}$.

With the above notations we have:

Lemma 16. Let $A_c \in \mathbf{A_c}$. Then, for every $(i, j) \in I_n^2$ and for every $1 \leq m \leq \delta_{A_c}$, $M(\alpha, i, h_1^m) \cong M(\alpha, j, h_1^m)$.

Proof. By Lemma 15 it is true for m = 1, then we proceed by induction. Assume $M(\alpha, i, h_1^{m-1}) \cong M(\alpha, j, h_1^{m-1})$, for every $(i, j) \in I_n^2$. Suppose there is (i, j) such that $M(\alpha, i, m) \not\cong M(\alpha, j, m)$. Arguing as in Lemma 15, we find an element $g \in A_c$ such that $g_i = \alpha_{i,m-1}$ and $g_j \in M(\alpha, j, m) \setminus \{\alpha_{j,m-1}\}$. Hence $(g \to \alpha_{m-1}) \in \prod_{i=1}^n M(\alpha, i, h_1^{\delta_{4_c}})$ and it is not constant on I_n , absurd. Since $M(\alpha, i, h_1^m) \cong M(\alpha, i, h_1^{m-1}) \uplus M(\alpha, i, m)$, for every $i \in I_n$, the desired conclusion immediately follows. \Box

In the sequel, when there is no misunderstanding, we will denote δ_{A_c} simply by δ .

Lemma 17. Let $A_c \in \mathbf{A_c}$. Then $A_c \setminus (\prod_{i=1}^n M(\alpha, i, h_1^{\delta}) \setminus \{1_i\}) = \{x \in A_c \mid x \ge \alpha_{\delta}\}.$

Proof. The inclusion $\{x \in A_c \mid x \ge \alpha_\delta\} \subseteq A_c \setminus (\prod_{i=1}^n M(\alpha, i, h_1^\delta) \setminus \{1_i\})$ is immediate. Assume now $x \in A_c \setminus (\prod_{i=1}^n M(\alpha, i, h_1^\delta) \setminus \{1_i\})$ and $x \ge \alpha_\delta$. Then the subsets:

$$I_1 = \{ i \in I_n \mid x_i \ge \alpha_{i,\delta} \}, I_2 = \{ i \in I_n \mid x_i < \alpha_{i,\delta} \}$$

are not empty and

$$(\alpha_{\delta} \to x)_i = \begin{cases} 1_i & \text{if } i \in I_1, \\ x_i & \text{if } i \in I_2. \end{cases}$$
(6)

Consequently $\alpha_{\delta} \to x \in \prod_{i=1}^{n} M(\alpha, i, h_{1}^{\delta})$, but $\alpha_{\delta} \to x$ is not a constant function on I_{n} , absurd. \Box

Corollary 18. Let $A_c \in \mathbf{A_c}$. Then $A_c \cap \prod_{i=1}^n M(\alpha, i, h_1^{\delta})$ is a totally ordered subalgebra of A_c and it is isomorphic to $M(\alpha, i, h_1^{\delta})$ for every $i \in I_n$.

Proof. By subdirect product properties and by Lemma 17 it follows that, for every $i \in I_n$, $p_i : f \in A_c \cap \prod_{i=1}^n M(\alpha, i, h_1^{\delta}) \to f_i$ is a bijective map from $A_c \cap \prod_{i=1}^n M(\alpha, i, h_1^{\delta})$ on $M(\alpha, i, h_1^{\delta})$. Indeed p_i is the claimed isomorphism. \Box

Remark 19. As a consequence of Lemma 17 and Corollary 18 $\delta_{A_c} < v = \min\{n_i + 1 | i \in I_n\}$. Indeed set $I_v = \{i \in I_n | n_i + 1 = v\}$. If $\delta_{A_c} = v$, then, for every $x \in A_c \setminus (\prod_{i=1}^n M(\alpha, i, h_1^\delta) \setminus \{1_i\}), x_i = 1_i$, for each $i \in I_v$. Whence the function p_v mapping any element f to its restriction to $I_n \setminus I_v$, $f_{I_n \setminus I_v}$ is an isomorphism between A_c and $(A_c)_{I_n \setminus I_v}$. Whereas, under our assumptions, any chain $C_i, i \in I_n$, has to be essential in the representation of A_c .

Proposition 20. Let $A_c \in \mathbf{A_c}$. Set

- 1. $B = A_c \setminus (\prod_{i=1}^n M(\alpha, i, h_1^\delta) \setminus \{1_i\}),$
- 2. $0_B = \alpha_\delta$,
- 3. $1_B = 1$,
- 4. \bigcirc_B be the restriction of the product of A_c to B,
- 5. \rightarrow_B be the restriction of the operation \rightarrow of A_c to B.

Then $B = (B, \land, \lor, \odot_B, \rightarrow_B, 0_B, 1_B)$ is a BL-algebra.

Proof. By Lemma 17, $B = (B, \land, \lor, 0_B, 1_B)$ is a lattice with 0_B as least element and 1_B as greatest element. Moreover

if $x \ge \alpha_{\delta}$ and $y \ge \alpha_{\delta}$ then $x \odot y \ge \alpha_{\delta}$, if $f \ge \alpha_{\delta}$ and $g \ge \alpha_{\delta}$ then $f \to g \ge g \ge \alpha_{\delta}$. \Box Let A be a BL-algebra. By $\mathbb{I}(A)$ we denote the set of all idempotent elements of A. We remark that $\mathbb{I}(A_c) \neq \{0, 1\}$ for every finite BL-algebra A that is not a MV-chain. For otherwise A is locally finite, hence it is an MV-chain [5].

The above remark suggests the following considerations:

Let $A \in \mathbf{FBL}$, for $x \in \mathbb{I}(A)$, denote by $\mathbb{C}(x)$ the subset of $\mathbb{I}(A)$ whose elements are comparable with x. Define $K(A) \subseteq \mathbb{I}(A)$ as follows:

 $x \in K(A)$ iff the following conditions are satisfied:

1. $\mathbb{C}(x) = \mathbb{I}(A);$

2. $\{y \in \mathbb{I}(A) | y \leq x\}$ is a chain.

We stress that K(A) is not empty: indeed $0 \in K(A)$.

The above notations and remarks allow us to introduce the main following definitions:

Definition 21. Let A be a nontrivial element of **FBL**. Then A is called BL-*comet* if $\max K(A) \neq \mathbf{0}$.

Definition 22. Let A be is a BL-comet, then max K(A) is called pivot of A and it will be denoted by pivot(A).

Set $\rho = \max\{n_i + 1, i \in I_n\}$. For every $h \leq \rho$ we will denote by $\alpha_{(h)}$ the *n*-tuple $(\alpha_1, \ldots, \alpha_n)$ where

$$\alpha_i = \begin{cases} 1_i & \text{if } h \ge n_i + 1, \\ \alpha_{i,h} & \text{if } h < n_i + 1. \end{cases}$$

$$\tag{7}$$

With above notations we introduce the following:

Definition 23. Let $A \in \mathbf{FBL}$ and $\beta \in \mathbb{I}(A)$. β is called *pseudoconstant* on I_n if there is $h \leq \rho$ such that $\beta = \alpha_{(h)}$.

By (7) every idempotent $\alpha_h \in A$, constant on I_n , is pseudoconstant on I_n ; moreover $\alpha_{(h)} = \mathbf{1}$ iff $h = \rho$.

Lemma 24. Let $A \in \mathbf{FBL}$. Then, for every $h \leq \rho$, $\alpha_{(h)} \in A$.

Proof. If $h \le v$ (see Remark 19), the claim is already proved (see Corollary 5). Then we can safely assume $v < h < \rho$. Suppose n = 2 and $n_1 + 1 < h < n_2 + 1$. Let $x \in A$ such that $x_2 = \alpha_{2,h}$. Set $\alpha(x_1) = \alpha_{1,k}$, for some $k \le n_1 + 1$. Then, by applying Corollary 5, $(\alpha(x) \to \alpha_k) \lor x = \alpha_{(h)} \in A$. Proceeding by induction, let the lemma be true for n - 1. Analogously to Corollary 5, for every $i \in I_n$, we find an element $x^i \in A$ such that for $j \neq i$

$$(x^{i})_{j} = \begin{cases} 1_{j} & \text{if } h \ge n_{j} + 1, \\ \alpha_{j,h} & \text{if } h < n_{j} + 1. \end{cases}$$
(8)

If two of the elements x^1, x^2 and x^3 are incomparable, say x^1 and x^2 , then either $x^1 \vee x^2$ or $x^1 \wedge x^2$ satisfies the claim. For otherwise x^1, x^2 and x^3 are comparable. We safely

103

can set $x^1 \leq x^2 \leq x^3$. Then by (8) we have

if $h \ge n_2 + 1$, then $l_2 = (x^1)_2 \le (x^2)_2$, hence $(x^2)_2 = l_2$;

if $h < n_2 + 1$, then $(x^1)_2 = \alpha_{2,h} \le x_2^2 \le (x^3)_2 = \alpha_{2,h}$, hence $x_2^2 = \alpha_{2,h}$.

In both cases $x^2 = \alpha_{(h)} \in A$. \Box

Lemma 25. Let $A \in FBL$ and $\mathbb{I}(A)$ be a chain. Then for every $x \in A$ there exists $h \leq \rho$ such that:

$$x_{i} = \begin{cases} 1_{i} & \text{if } h \ge n_{i} + 1, \\ \in M(\alpha, i, h + 1) \setminus \{1_{i}\} & \text{if } h < n_{i} + 1. \end{cases}$$
(9)

Consequently $\mathbb{I}(A)$ is the set of all the pseudoconstant elements of A.

Proof. Let $x \in A \setminus \{1\}$ and

$$I_1 = \{ i \in I_n \mid x_i = 1_i \}, I_2 = \{ i \in I_n \mid x_i < 1_i \}.$$

If for some $(i, j) \in I_2^2$, $x_i \in M(\alpha, i, h+1) \setminus \{1_i\}$, $x_j \in M(\alpha, j, k+1) \setminus \{1_j\}$ and h < k, then, by applying Corollary 4 for $f = \alpha(x)$, we find $a, b \in A$ such that $(a_i, a_j) = (1_i, \alpha_{j,h})$ and $(b_i, b_j) = (\alpha_{i,h}, 1_j)$. So $\alpha(a)$ and $\alpha(b)$ have to be two incomparable elements of $\mathbb{I}(A)$, absurd. Consequently, there is an $h < \rho$ such that $x_i \in M(\alpha, i, h+1) \setminus \{1_i\}$, for every $i \in I_2$. Let now $I_1 \neq \emptyset$ and $h < n_i + 1$ for some $i \in I_1$. By Lemma 24, $\alpha(x) \rightarrow \alpha_{(h)} \in \mathbb{I}(A)$, but it is not comparable with $\alpha(x)$. This contradiction shows that x verifies (9). \Box

Proposition 26. Let A be a nontrivial element of **FBL**. Then the following are equivalent:

1. A is a BL-chain, 2. A is a BL-comet and pivot(A) = 1.

Proof. $1 \Rightarrow 2$ is trivial. In order to show $2 \Rightarrow 1$ set, for every $x \in A$, $I_x = \{i \in I_n | x_i = 1_i\}$.

Claim 1. The family $(I_x)_{x \in A}$ is totally ordered by inclusion.

Actually let $x, y \in A, x \neq y, i \in I_x \setminus I_y$ and $j \in I_y \setminus I_x$. Then $(\alpha(x_i), \alpha(x_j)) = (1_i, \alpha_{j,h}) < (1_i, 1_j)$ and $(\alpha(y_i), \alpha(y_j)) = (\alpha_{i,k}, 1_j) < (1_i, 1_j)$, for suitable h and k. Consequently $\alpha(x)$ and $\alpha(y)$ are two incomparable elements of $\mathbb{I}(A)$, which contradicts the hypothesis $pivot(A) = \mathbf{1}$.

Claim 2. $I_x \subsetneq I_y \Rightarrow x < y$.

We can safely assume y < 1. Then by Lemma 25 there are suitable $h, k < \rho$ such that:

for every $i \in I_n \setminus I_x$, $x_i \in M(\alpha, i, h+1) \setminus \{1_i\}$ and for every $i \in I_n \setminus I_v$, $y_i \in M(\alpha, i, k+1) \setminus \{1_i\}$.

Let now $j \in I_v \setminus I_x$; by (9) $h < n_i + 1 \leq k$, whence x < y.

Claim 3. $I_x = I_y \Rightarrow x$ and y comparable.

If x = 1 or y = 1, the claim is trivial. Then assume x < 1 and y < 1. Let h and k be as in the previous claim.

If h < k, then x < y, If k < h, then v < x.

Assume now h = k. Since $\mathbb{I}(A)$ is a chain, as a consequence of Lemma 8 the restrictions of x and y to $I_n \setminus I_y$ are constant, which implies x and y comparable.

The conclusion now follows from Claims 1–3. \Box

Theorem 27. Let A be a nontrivial element of **FBL**. Then the following are equivalent:

1. A is a BL-comet, 2. $A \in \mathbf{A}_{\mathbf{c}}$.

Proof. $1 \Rightarrow 2$: If pivot(A) = 1, then the implication follows by Proposition 26. Then assume $\beta = pivot(A) < 1$. Rejecting the thesis, by Lemma 8 there is $f \in A$ such that $(f_i, f_j) = (0_i, \mathbf{1}_j)$, for some $(i, j) \in I_n^2$. We can safely assume $f \in MV(A)$. Since $\alpha(f)$ and $\alpha(f^*)$ are two incomparable elements of $\mathbb{I}(A)$, necessarily we get $\alpha(f), \alpha(f^*) \ge \beta$. From that $\mathbf{0} = \alpha(f) \land \alpha(f^*) \ge \beta$, a contradiction.

 $2 \Rightarrow 1$: By Lemma 17 and Corollary 18 it follows $\alpha_{\delta} \in K(A)$, whence $\alpha_{\delta} \leq \max K(A) = \operatorname{pivot}(A)$. By definition $\alpha_{\delta} > 0$, so $\max K(A) \neq 0$. \Box

Corollary 28. Let A be a nontrivial element of **FBL**. Then A is isomorphic to a direct product of BL-comets.

Proof. It follows by Theorems 13 and 27. \Box

Proposition 29. Let $A_c \in \mathbf{A_c}$. Then $pivot(A_c) = \alpha_{\delta}$.

Proof. If $\operatorname{pivot}(A_c) = \mathbf{1}$, it follows by Proposition 26. Assume $\operatorname{pivot}(A_c) < \mathbf{1}$. In the proof of Theorem 27 $(2 \Rightarrow 1)$ it is proved that $\alpha_{\delta} \leq \operatorname{pivot}(A_c)$. On other hand by definition of δ and by Lemma 8 we can find $f \in A_c$ such that for some $(i,j) \in I_n^2$, $(f_i, f_j) = (\alpha_{i,\delta}, 1_j)$. Since $\alpha(f)$ and $\alpha(f) \to \alpha_{\delta}$ are two incomparable elements of $\mathbb{I}(A)$, it follows $\alpha(f), \alpha(f) \to \alpha_{\delta} \geq \operatorname{pivot}(A_c)$. Hence $\operatorname{pivot}(A_c) \leq \alpha(f) \land (\alpha(f) \to \alpha_{\delta}) = \alpha_{\delta}$. \Box

Corollary 30. Let $A_c \in \mathbf{A_c}$ and $pivot(A_c) < 1$. Then A_c is the ordinal sum of a finite BL-chain and a finite BL-algebra that is not a BL-comet.

Proof. It follows by Corollary 18, and Propositions 20 and 29. \Box

5. Labelled trees

Now we recall some definitions about partially ordered sets.

Definition 31. A partial ordered set (T, \leq) is called *tree* if *T* has a minimum element T_0 and, for every $x \in T$, the set $T_x = \{y \in T : y \leq x\}$ is totally ordered. The elements of a tree are called *nodes*.

Definition 32. Let (T, \leq) be a finite tree, $x \in T$ and $x \neq T_0$. The greatest element of $T_x \setminus \{x\}$ is called the *previous element of x* and it shall be denoted by pr(x).

Definition 33. Let (T, \leq) be a finite tree, the elements $x, y \in T$. We say that y covers x if pr(y) = x. In this case we write $x \prec y$.

Definition 34. Let (T, \leq) be a finite tree and $x \in T$. We say that x is a *simple node* if there is exactly one element covering x. If x is not simple or if $x = T_0, x$ will be called a *multiple node*.

Definition 35. Let (T, \leq) be a finite tree. We call *height* of an element $x \in T$, in symbols l(x), the cardinal of the set of all multiple nodes of the chain $]T_0, x]$.

Definition 36. Let (T, \leq) be a finite tree. We call *height* of *T*, in symbols l(T), the non negative integer equal to max{l(x): $x \in T$ }.

Definition 37. Let (T, \leq) be a finite tree, $x \in T$ and $x \neq T_0$. The greatest multiple node of $T_x \setminus \{x\}$ is called *multiple node previous of x*, and it shall be denoted by prm(x).

Let N be the set of all the positive integers; then we set:

$$\mathbf{N} = \{0\} \cup \left(\bigcup_{r \in N} N^r\right)$$

and, for every integer positive number p, $\mathbf{N}_p = (\{0\} \cup (\bigcup_{r \in \mathbb{N}} N^r))^p$

Definition 38. A *labelled tree* is a triple (T, \leq, h) , verifying the following:

 (T, \leq) is a finite tree, *h* is a map from *T* to $\bigcup_{p \in N} \mathbf{N}_p$, h(x) = 0 iff $x = T_0$.

If $h(T) \subseteq \{0\} \cup N$, then (T, \leq, h) is called a *simply labelled tree*.

By definition, a *simply labelled tree* is a tree, having every node marked by an integer number m. Such a number m represents the MV-chain with m + 1 elements. Our aim now is to map finite *simply labelled trees* on finite BL-algebras.

Let (T, \leq, h) be a simply labelled tree and (T_f, \leq) the subtree of (T, \leq) of all multiple nodes. Define the map $h_f: T_f \to \mathbf{N}_1 = \{0\} \cup (\bigcup_{r \in N} N^r)$ as follows:

$$h_f(x) = \begin{cases} (h(x_1), \dots, h(x_r), h(x)) & \text{if } x \text{ is a multiple node different from } T_0 \text{ and} \\ (x_1, \dots, x_r, x) =]\text{prm}(x), x], \subseteq T, \\ 0 & \text{if } x = T_0. \end{cases}$$

Then the triple (T_f, \leq, h_f) is a labelled finite tree. Each (multiple) *node* is marked by h_f with a finite sequence of positive integers n_1, \ldots, n_t . Such a sequence represents the BL-chain which is a finite ordinal sum whose components are the finite MV-chains with $n_1 + 1, \ldots, n_t + 1$ elements, respectively: $h_f(x) = S_{n_1} \uplus \cdots \uplus S_{n_t}$.

Now denote by

 $\mathbf{T}_{s,1}$ the set of all finite simply labelled trees, and $\mathbf{T}_{m,1}$ the set of all finite labelled trees (T, \leq, h) such that: every $x \in T$ is multiple, $h(T) \subseteq \mathbf{N}_1$.

With the above notations and arguments we can claim the following theorem:

Theorem 39. The map f, defined by $f(T, \leq, h) = (T_f, \leq, h_f)$, is a bijective map between $\mathbf{T}_{s,1}$ and $\mathbf{T}_{m,1}$.

Proof. It is obvious. \Box

In the sequel, when there is no misunderstanding, we will denote $f(T, \leq, h)$ by f(T) or T_f .

Next we will define a function σ , mapping every element of $T_{m,l}$ on a finite BL-algebra.

First let $(T, \leq, h) \in \mathbf{T}_{\mathbf{m},\mathbf{l}}, l(T) = 1$ and $T_1 = T \setminus \{T_0\}$. Then we define:

$$\sigma(T) = \begin{cases} h(T_1) & \text{if } |T_1| = 1, \\ \prod_{x \in T_1} h(x) & \text{if } |T_1| > 1. \end{cases}$$
(10)

Assume now l(T) = n > 1 and set:

$$T_i = \{x \in T : l(x) = i\}, i = 1, \dots, n, T^r = \bigcup_{i=0}^{n-r} T_i, r = 1, \dots, n-1, and$$

M equal to the set of all maximal elements of T.

Define a mapping $h^1: T^1 = \bigcup_{i=0}^{n-1} T_i \to \bigcup_{p \in N} \mathbf{N}_p$, by

$$h^{1}(x) = \begin{cases} (h(x), (h(y), x \prec y)) & \text{if } l(x) = n - 1 \text{ and } x \notin \mathsf{M}, \\ h(x) & \text{otherwise.} \end{cases}$$
(11)

In the labelled tree (T^1, \leq, h^1) , every (multiple) *node*, such that l(x) = n - 1 and $x \notin M$, is marked by h^1 with a pair: $(h(x), (h(y), x \prec y))$. h(x) is a sequence of positive integers, representing the BL-algebra $h(x) = S_{n_1} \uplus \cdots \uplus S_{n_t}$. The second component is a finite family of sequence of positive integers $(h(y), x \prec y)$, representing the BL-algebra $(h(y), x \prec y) = \prod_{x \prec y} h(y)$. The pair $h^1(x)$ shall represent the finite BL-algebra which is an ordinal sum of BL-algebras: $h^1(x) = h(x) \uplus (h(y), x \prec y) = (S_{n_1} \uplus \cdots \uplus S_{n_t}) \uplus \prod_{x \prec y} h(y)$.

Define now an application $h^2: T^2 = \bigcup_{i=0}^{n-2} T_i \to \bigcup_{p \in N} \mathbf{N}_p$, as follows:

$$h^{2}(x) = \begin{cases} (h^{1}(x), (h^{1}(y), x \prec y)) & \text{if } l(x) = n - 2 \text{ and } x \notin \mathbb{M}, \\ h^{1}(x) & \text{otherwise.} \end{cases}$$
(12)

In the tree (T^2, \leq, h^2) , every (multiple) node x, such that l(x) = n - 2 and $x \notin M$, is marked by h^2 with a pair: $(h^1(x), (h^1(y), x \prec y))$. The pair $h^2(x)$ shall represent the finite BL-algebra that is an ordinal sum of BL-algebras: $h^2(x) = h^1(x) \uplus \prod_{x \prec y} h^1(y)$.

Proceeding as above, at step (n-1)th, we get a map $h^{n-1}: T^{n-1} = T_1 \cup \{T_0\} \to \bigcup_{p \in N} N_p$, by

$$h^{n-1}(x) = \begin{cases} (h^{n-2}(x), (h^{n-2}(y), x \prec y)) & \text{if } x \notin \mathsf{M}, \\ h^{n-2}(x) & \text{otherwise.} \end{cases}$$
(13)

Finally we define

1. $\sigma(T) = h^{n-1}(T_1)$ if $|T_1| = 1$, 2. $\sigma(T) = \prod_{x \in T_1} h^{n-1}(x)$, otherwise.

Theorem 40. There is a map Γ from $T_{s,1}$ to FBL.

Proof. It is sufficient to set $\Gamma = \sigma \circ f$. Then Γ furnishes the claimed map. \Box

6. Idempotent irreducible elements

Let $A \in \mathbf{FBL}$. In the lattice $(A, \land, \lor, \mathbf{0}, \mathbf{1})$ an element x is called *irreducible* if $x = u \lor v$ implies x = u or x = v. Denote by $\operatorname{Irr}(\mathbb{I}(A))$ the ordered set of all idempotent irreducible elements of A.

Proposition 41. Let $A \in FBL$ and $x \in Irr(\mathbb{I}(A))$. Then the set $A_x = \{y \in A : y \leq x\}$ is a chain of irreducible elements.

Proof. Let $x \in Irr(\mathbb{I}(A))$ and $h, k \in A$ such that h < x and k < x. Then we have $x = x \land 1 = x \land ((h \to k) \lor (k \to h)) = (x \land (h \to k)) \lor (x \land (k \to h))$. By hypothesis we get either $x = (x \land (h \to k))$ or $x = (x \land (k \to h))$. Assume $x = (x \land (h \to k))$, then $x \le h \to k$ and h = h $\odot x \le h \odot (h \to k) \le k$. So *h* and *k* are comparable. Analogously if $x = x \land (k \to h)$. \Box

From the above proposition we immediately obtain:

Corollary 42. Let $A \in FBL$. The ordered set $(Irr(\mathbb{I}(A)), \leq)$ is a finite tree, having **0** as least element.

Proposition 43. Let A be a BL-comet. Then pivot(A) is a multiple node of (Irr $(\mathbb{I}(A)), \leq)$.

Proof. By Theorem 27, Proposition 29 and Corollary 18 $\alpha_{\delta} = \text{pivot}(A) \in \text{Irr}(\mathbb{I}(A))$. To show that α_{δ} is a *multiple node*, we observe that, by definition of δ and by Lemma 8, we can find $f \in A$ such that for some $(i, j) \in I_n^2$, $(f_i, f_j) = (\alpha_{i,\delta}, 1_j)$. Then $\alpha(f) \to \alpha_{\delta}$ and $(\alpha(f) \to \alpha_{\delta}) \to \alpha_{\delta}$ are incomparable and both greater than α_{δ} . Moreover $(\alpha(f) \to \alpha_{\delta}) \land [(\alpha(f) \to \alpha_{\delta}) \to \alpha_{\delta}] = \alpha_{\delta}$. Whence α_{δ} is a multiple node. \Box

Proposition 44. Let $A \in FBL$, $\alpha \in Irr(\mathbb{I}(A)) \setminus \{0\}$. Set

1. $C = [pr(\alpha), \alpha],$

2. $0_C = \operatorname{pr}(\alpha)$,

3. $1_C = \alpha$,

- 4. \odot_C be the restriction to C of the product defined on A,
- 5. $x^{*c} = \alpha \odot (x \rightarrow \operatorname{pr}(\alpha))$, for every $x \in C$.

Then $C = (C, \odot_C, *_C, 0_C, 1_C)$ is an MV-chain.

Proof. Indeed,

if $\operatorname{pr}(\alpha) \leq x \leq \alpha$ and $\operatorname{pr}(\alpha) \leq y \leq \alpha$, then $\operatorname{pr}(\alpha) \leq x \odot y \leq \alpha$, $0_C^{*c} = \alpha \odot (\operatorname{pr}(\alpha) \to \operatorname{pr}(\alpha)) = \alpha = 1_C$, and $1_C^{*c} = \alpha \odot (\alpha \to \operatorname{pr}(\alpha)) = \alpha \land \operatorname{pr}(\alpha) = \operatorname{pr}(\alpha) = 0_C$.

Since for every $i \in \{1, ..., n\}$ either $(pr(\alpha))_i = pr(\alpha_i)$ or $(pr(\alpha))_i = \alpha_i$, it follows that $pr(\alpha) \leq x \leq \alpha$ implies $pr(\alpha) \leq x^{*c} \leq \alpha$ and $(x^{*c})^{*c} = x$. \Box

Remark 45. By the above proposition, we get $[pr(\alpha), \alpha] \cong S_m$, for some $m \in N$.

Let $i: \operatorname{Irr}(\mathbb{I}(A)) \to N$ be the map defined by: $i(\mathbf{0}) = 0$ and i(x) = m, if $x \neq \mathbf{0}$ and $[\operatorname{pr}(x), x] \cong S_m$. Then $(\operatorname{Irr}(\mathbb{I}(A)), \leq, i)$ is a simply labelled tree.

With above notations we have:

Theorem 46. There is a map Λ from FBL to $T_{s,l}$.

Proof. Let A be a finite BL-algebra, set $\Lambda(A) = (Irr(\mathbb{I}(A)), \leq, i)$. Then Λ maps every finite BL-algebra into a simply labelled tree. \Box

Proposition 47. Let $A_i \in \mathbf{FBL}$, i = 1, ..., r and $x = (x_1, ..., x_r) \in \prod_{i=1}^r A_i$. Then the following are equivalent:

1. $x \in \operatorname{Irr}(\mathbb{I}(\prod_{i=1}^{r} A_i)),$ 2. there is $i \in \{1, ..., r\}$ such that $x_i \in \operatorname{Irr}(\mathbb{I}(A_i))$ and $x_j = 0_j$ for every $j \neq i$.

Proof. $1 \Rightarrow 2$: Let $x = (x_1, \dots, x_r) \in \operatorname{Irr}(\mathbb{I}(\prod_{i=1}^r A_i))$. Assume $x_{i_1} \neq 0_{i_1}$ and $x_{i_2} \neq 0_{i_2}$ for $i_1 \neq i_2$. Then choose two elements:

 $y = (y_1, \dots, y_r)$, setting $y_{i_1} = 0_{i_1}$ and $y_i = x_i$, for $i \neq i_1$, and $z = (z_1, \dots, z_r)$, setting $z_{i_2} = 0_{i_2}$ and $z_i = x_i$, for $i \neq i_2$. Then we get $x \neq y$, $x \neq z$ and $x = y \lor z$, absurd. If x_i is the only non-zero component of x, it is obvious that $x_i \in Irr(\mathbb{I}(A_i))$.

 $2 \Rightarrow 1$: Let $x = (x_1, \dots, x_r) \in \prod_{i=1}^r A_i$. Assume there is $i \in \{i = 1, \dots, r\}$ such that $x_i \in \operatorname{Irr}(\mathbb{I}(A_i))$ and $x_j = 0_j$ for every $j \neq i$. Thus from $x = y \lor z$ it follows $x_i = y_i \lor z_i$ and $x_j = y_j = z_j = 0_j$ for every $j \neq i$. By hypothesis $x_i = y_i$ or $x_i = z_i$, whence x = y or x = z, that is $x \in \operatorname{Irr}(\mathbb{I}(\prod_{i=1}^r A_i))$. \Box

Theorem 48. Let A be a non-trivial element of FBL. If $Irr(\mathbb{I}(A))$ is a chain, then A is a BL-chain.

Proof. First we prove that A is a BL-comet.

By Corollary 28 $A = A_1 \times \cdots \times A_r$ and, $i \in \{1, \dots, r\}, A_i \neq \{0_i\}$ is a BL-comet. Let r > 1 and $a = (a_1, 0, \dots, 0)$ and $b = (0, b_2, 0, \dots, 0)$ be two elements of $Irr(\mathbb{I}(A))$. Then either $a_1 = 0_1$ or $b_2 = 0_2$. That is either $Irr(\mathbb{I}(A_1)) = \{0_1\}$ or $Irr(\mathbb{I}(A_2)) = \{0_2\}$, absurd. Thus r = 1 and A is a BL-comet.

Assume pivot(A) < 1.

Then, by Corollary 30, $A = C \uplus B$, with C a BL-chain and B a finite BL-algebra that is not a BL-comet; hence $Irr(\mathbb{I}(B)) \subseteq Irr(\mathbb{I}(A))$. Consequently $Irr(\mathbb{I}(B))$ has to be a chain and, by previous claim, B is a BL-comet, absurd. From that pivot(A) = 1, therefore, by Proposition 26, A is a BL-chain. \Box

7. Dualizing BL-algebras and labelled trees

Following [2], we recall that, if (C, \leq) is a finite chain and (T, \leq') is a finite tree, C and T disjoint sets, then the ordinal sum of C and T, in symbols C+T, is the finite tree, (T'', \leq'') , where $T'' = C \cup T \setminus T_0$ and \leq'' is defined by $x \leq'' y$ for every $x \in C$ and for every $y \in T$, while the order of the elements in C and the order of the elements in T are unchanged.

Proposition 49. Let A be a finite BL-chain and $B \in \mathbf{FBL}$. Then $(\operatorname{Irr}(\mathbb{I}(A \uplus B), \leqslant) \cong (\operatorname{Irr}(\mathbb{I}(A)), \leqslant) + (\operatorname{Irr}(\mathbb{I}(B)), \leqslant)$.

Proof. It follows by definitions. \Box

Let (S, \leq) and (T, \leq') be two trees. The direct product of S and T [2], in symbols $C \otimes T$, need not be a tree. Then we introduce the following definition:

Definition 50. We call 0-product of the two trees (S, \leq) and (T, \leq') , in symbols $C \odot T$, the ordered subset of $C \otimes T$, whose elements are the pairs (x, y) such that $x = S_0$ or $y = T_0$.

The above definition can be extended to a finite number of trees as follows:

Definition 51. We call *0-product* of the trees $(S^i, \leq^i), i = 1, ..., r$, in symbols $\bigcirc_{i=1}^r (S^i, \leq^i)$, the ordered subset of $\bigotimes_{i=1}^r S^i$, whose elements are the *r*-tuples $(x_1, ..., x_r)$ such that there is $i_0 \in \{1, ..., r\}$ and $x_i = S_0^i$ for every $i \neq i_0$.

Remark 52. There are natural embeddings $g_i : S^i \to S = \bigoplus_{i=1}^r S^i$. Identifying S^i and $g_i(S^i)$, we get $S^i \cap S^j = \{S_0\}$, for $i \neq j$ and $S = \bigcup_{i=1}^r S^i$.

Proposition 53. The 0-product of a finite number of trees is a tree.

Proof. It is a trivial. \Box

Proposition 54. Let $A_i \in \mathbf{FBL}, i = 1, ..., r$. Then $(\operatorname{Irr}(\mathbb{I}(\prod_{i=1}^r A_i)), \leq) \cong (\bigcirc_{i=1}^r)\operatorname{Irr}(\mathbb{I}(A_i)), \leq)$.

Proof. Let $x = (x_1, ..., x_r) \in \operatorname{Irr}(\mathbb{I}(\prod_{i=1}^r A_i))$. By Proposition 47, there is $i \in \{1, ..., r\}$ such that $x_i \in \operatorname{Irr}(\mathbb{I}(A_i))$ and $x_j = 0_j$ for every $j \neq i$. Thus, the map $f : \operatorname{Irr}(\mathbb{I}(\prod_{i=1}^r A_i)) \to \bigcirc_{i=1}^r \operatorname{Irr}(\mathbb{I}(A_i))$, defined by $f((0_1, ..., x_i, ..., 0_r)) = (\operatorname{Irr}(\mathbb{I}(A_1))_0, ..., x_i, ..., \operatorname{Irr}(\mathbb{I}(A_r))_0)$, is the claimed order isomorphism. \Box

Definition 55. Let (S, \leq, h) be a labelled chain and (T, \leq', k) be a labelled tree. The *ordinal sum* of (S, \leq, h) and (T, \leq', k) is the labelled tree (R, \leq'', d) such that (R, \leq'') is the ordinal sum of (S, \leq) and (T, \leq') and d is defined by

$$d(x) = \begin{cases} h(x) & \text{if } x \in S, \\ k(x) & \text{if } x \in T. \end{cases}$$
(14)

Definition 56. Let (S, \leq, h) and (T, \leq', k) be two labelled trees. The *labelled 0-product* of (S, \leq, h) and (T, \leq', k) is the labelled tree (R, \leq'', d) such that (R, \leq'') is the 0-product of (S, \leq) and (T, \leq') and d is defined by

$$d(x, y) = \begin{cases} h(x) & \text{if } (x, y) = (x, T_0), \\ k(y) & \text{if } (x, y) = (S_0, y). \end{cases}$$
(15)

The above definition of a *labelled 0-product* can be extended to a finite number of trees in the obvious way. In the sequel we shall denote the ordinal sum and the 0-product of two labelled trees, S and T, by S+T or $S \odot T$, respectively.

Let f be defined as in Theorem 39. Then we get:

Proposition 57. Let (T, \leq, h) be a simply labelled chain and, for $i \in \{1, ..., r\}$, let $(T^i, \leq^i, h^i) \in \mathbf{T_{s,l}}$. Then

1. $f(T + T^i) = f(T) + f(T^i), i \in \{1, ..., r\},$ 2. $f(\bigcirc_{i=1}^r T^i) = \bigcirc_{i=1}^r f(T^i).$

Proof. It follows by the definitions. \Box

With arguments and notations of Section 5, we get:

Proposition 58. For $i \in \{1, ..., r\}$, let $(T^i, \leq^i, h^i) \in \mathbf{T}_{\mathbf{m},\mathbf{l}}$. Then $\sigma(\bigcirc_{i=1}^r T^i) = \prod_{i=1}^r \sigma(T^i)$.

Proof. Set $\bigcirc_{i=1}^{r} T^{i} = (S, \leq, d), l(S) = n$ and $l(T^{i}) = n_{i}$, for i = 1, ..., r. If $x \in T^{i}$ and $x \neq S_{0}$, then $\{y \in S \mid x \prec y\} \subseteq T^{i}$. Hence $(h^{i})^{n_{i}-1}(x) = d^{n-1}(x)$, for $i \in \{1, ..., r\}$ and $x \in T^{i}$. Therefore, $\sigma(S) = \prod_{x \in S_{1}} d^{n-1}(x) = \prod_{x \in (T^{1})_{1}} (h^{1})^{n-1}(x) \times \prod_{x \in (T^{2})_{1}} (h^{2})^{n-1}(x) \times \cdots \times \prod_{x \in (T^{r})_{1}} (h^{r})^{n-1}(x) = \sigma(T^{1}) \times \sigma(T^{2}) \times \cdots \times \sigma(T^{r}) = \prod_{i=1}^{r} \sigma(T^{i})$.

In the next theorems Γ and Λ are defined as in Theorems 40 and 46, respectively.

Theorem 59. Let $(T, \leq, h) \in \mathbf{T}_{s,l}$. Then $\Lambda(\Gamma(T))$ is isomorphic to (T, \leq, h) .

Proof. We will prove the theorem for induction on l(T). Suppose l(T) = 1 and consider the set $T_1 = \{x \in T : l(x) = 1\}$.

Case 1: $|T_1| = 1$. Let $]T_0, T_1] = \{x_1, \dots, x_r\}, x_1 < x_2 \cdots < x_r$. By definition of $\sigma, \Gamma(T) = S_{n_1} \uplus \cdots \uplus S_{n_r}$, where $n_i = h(x_i), i = 1, \dots, r$. Then $\Lambda(\Gamma(T)) = \operatorname{Irr}(\mathbb{I}(S_{n_1} \uplus \cdots \uplus S_{n_r})) \cong T$.

Case 2: $|T_1| = p > 1$. Set $T_1 = \{t_1, \dots, t_p\}$ and $]T_0, t_i] = \{x_{i,1}, \dots, x_{i,q_i}\}, x_{i,1} < x_{i,2} \dots < x_{i,q_i}$, for every $i = 1, \dots, p$. Then $T \cong \bigoplus_{i=1}^{p} ([T_0, t_i] \leq^i, h^i)$, with $t_i \in T_1$ and \leq^i, h^i restrictions of \leq and h to $[T_0, t_i]$ respectively. By Propositions 57 and 58, $\Gamma(T) = \sigma(\bigoplus_{i=1}^{p} f([T_0, t_i])) = \prod_{i=1}^{p} h_f(t_i) = \prod_{i=1}^{p} (S_{n_{i,1}} \uplus \dots \uplus S_{n_{i,q_i}})$, where $n_{i,s} = h(x_{i,s}), x_{i,s} \in [T_0, t_i]$, for $i = 1, \dots, p$ and $s = 1, \dots, q_i$. From that and Proposition 54, $\Lambda(\Gamma(T)) = \operatorname{Irr}(\mathbb{I}(\prod_{i=1}^{p} (S_{n_{i,1}} \uplus \dots \uplus S_{n_{i,q_i}}))) = \bigoplus_{i=1}^{p} \operatorname{Irr}(\mathbb{I}(S_{n_{i,1}} \uplus \dots \uplus S_{n_{i,q_i}}))$.

Using the arguments and the conclusion of the previous case, we get:

 $\operatorname{Irr}(\mathbb{I}(S_{n_{i,1}})) \uplus \cdots \uplus S_{n_{i,q_i}}) = \Lambda(\Gamma([T_0, t_i]) \cong [T_0, t_i], \text{ hence } \Lambda(\Gamma(T)) \cong \bigodot_{i=1}^p [T_0, t_i] \cong T.$

Suppose now l(T) = n > 1.

If $|T_1| = 1$, then $T \setminus [T_0, T_1[$ is a *tree* and $T = [T_0, T_1] + T \setminus [T_0, T_1[$. Since $l(T \setminus [T_0, T_1[)) = n - 1$, by induction hypothesis and the above results we get: $\Lambda(\Gamma(T \setminus [T_0, T_1[))) \cong T \setminus [T_0, T_1[$ and $\Lambda(\Gamma([T_0, T_1])) \cong [T_0, T_1]$. By Proposition 57, $\Gamma(T) = \Gamma([T_0, T_1]) \uplus \Gamma(T \setminus [T_0, T_1[))$. Therefore, by Proposition 49, $\Lambda(\Gamma(T)) = \Lambda(\Gamma([T_0, T_1])) + \Lambda(\Gamma(T \setminus [T_0, T_1[))) \cong [T_0, T_1] + T \setminus [T_0, T_1] \cong T]$.

Let now $|T_1| = p > 1$ and $T_1 = \{t_1, \dots, t_p\}$. Set $R^i = \{x \in T : x \ge t_i\}$ and $S^i = [T_0, t_i] + R^i$. Then we get $T \cong \bigoplus_{i=1}^p S^i$. Thus, by Propositions 57, 58 and 47, it follows $\Lambda(\Gamma(T)) \cong \bigoplus_{i=1}^p \Lambda(\Gamma(S^i))$. Since $|\{x \in S^i : l(x) = 1\}| = 1, \Lambda(\Gamma(T)) \cong \bigoplus_{i=1}^p S^i \cong T$. \Box

Theorem 60. Let $A \in \mathbf{FBL}$. Then $\Gamma(\Lambda(A)) \cong A$.

Proof. We will prove the theorem by induction on $n = l(\operatorname{Irr}(\mathbb{I}(A)))$. Assume $l(\operatorname{Irr}(\mathbb{I}(A))) = 1$ and set $I_1 = \{ \alpha \in \operatorname{Irr}(\mathbb{I}(A)) : l(\alpha) = 1 \}$.

Let us consider two cases:

Case 1: Let $|I_1| = 1$. Then $Irr(\mathbb{I}(A))$ is a chain, and, by Theorem 48, A is a BL-chain. Hence A is an ordinal sum of MV-chains. From that $\Gamma(Irr(\mathbb{I}(A))) = \Gamma(\Lambda(A)) \cong A$.

Case 2: Let $|I_1| = p > 1$. Applying Corollary 28 and Propositions 54, $\operatorname{Irr}(\mathbb{I}(A) \cong \operatorname{Irr}(\mathbb{I}(A_1) \odot \cdots \odot \operatorname{Irr}(\mathbb{I}(A_r))$, where for each $i = 1, \ldots, r, A_i$ is a BL-comet. By assumption $l(\operatorname{Irr}(\mathbb{I}(A))) = 1$ and by Proposition 43, it follows $l(\operatorname{Irr}(\mathbb{I}(A_i))) = 1$. Thus A_i is a BL-chain, for $i = 1, \ldots, r$. Then (see Case 1) $\Gamma(\operatorname{Irr}(\mathbb{I}(A_i))) = \Gamma(\Lambda(A_i)) \cong A_i$. Using Proposition 49, 57 and 58, we have: $\Gamma(\Lambda(A)) = \Gamma(\Lambda(A_1 \times \cdots \times A_r)) = \Gamma(\operatorname{Irr}(\mathbb{I}(A_1)) \odot \cdots \odot \operatorname{Irr}(\mathbb{I}(A_r)) \cong \Gamma(\Lambda(A_1)) \times \cdots \times \Gamma(\Lambda(A_r)) \cong A_1 \times \cdots \times A_r = A$.

Assume now $l(Irr(\mathbb{I}(A))) = n > 1$.

Suppose first that A is a BL-comet. Let pivot(A) < 1. By Corollary 30 and Proposition 49, $\operatorname{Irr}(\mathbb{I}(A)) \cong \operatorname{Irr}(\mathbb{I}(A_1)) + \operatorname{Irr}(\mathbb{I}(A_2))$. Thus by Proposition 57, $\Gamma(\Lambda(A)) \cong \Gamma(\Lambda(A_1)) \uplus \Gamma(\Lambda(A_2))$. We recall that A_1 is a BL-chain and that, by Proposition 43, $l(\operatorname{Irr}(\mathbb{I}(A_2))) = n - 1$. Thus by induction hypothesis $\Gamma(\Lambda(A)) \cong \Lambda_1 \uplus \Lambda_2 \cong A$.

Finally let $A \in \mathbf{FBL}$. By Corollary 28, $A = A_1 \times \cdots \times A_r$, with A_1, \ldots, A_r BL-comets. By Proposition 54, $\operatorname{Irr}(\mathbb{I}(A)) \cong \operatorname{Irr}(\mathbb{I}(A_1)) \odot \cdots \odot \operatorname{Irr}(\mathbb{I}(A_r))$. Therefore, by Propositions 57 and 58, $\Gamma(\operatorname{Irr}(\mathbb{I}(A))) \cong \Gamma(\operatorname{Irr}(\mathbb{I}(A_1)) \odot \cdots \odot \operatorname{Irr}(\mathbb{I}(A_r)))$, that is $\Gamma(\Lambda(A)) \cong \Gamma(\Lambda(A_1)) \times \cdots \times \Gamma(\Lambda(A_r)) \cong A_1 \times \cdots \times A_r = A$. \Box

Acknowledgements

The authors wish to thank the reviewer for his helpful suggestions.

References

- P. Agliano, F. Montagna, Varieties of BL algebras I: general properties, Technical Report, University of Siena.
- [2] G. Birkhoff, Lattice Theory, American Mathematical Society, Providence, RI, 1984.
- [3] R.L.O. Cignoli, I.M.L. D'ottaviano, D. Mundici, Algebraic Foundations of Many-valued Reasoning (Trends in Logic, Studia Logica Library), Kluwer, Dordrecht, 2000.
- [4] P. Hájek, Metamathematics of Fuzzy Logic (Trends in Logic, Studia Logica Library), Kluwer, Dordrecht, 1998.
- [5] E. Turunen, BL-algebras of Basic Fuzzy logic, Mathware Soft Comput. 6 (1999) 49-61.