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Abstract

BL-algebras were introduced by Hajek as algebraic structures of Basic Logic. The aim of this
paper is to analyze the structure of finite BL-algebras. Extending the notion of ordinal sum, we
characterize a class of finite BL-algebras, actually BL-comets. Then, just using BL-comets, we
can represent any finite BL-algebra as a direct product of BL-comets. Furthermore we define a
class of labelled trees, which can be one-to-one mapped onto finite BL-algebras.
© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

BL-algebras were introduced by Hajek [4] as algebraic structures of Basic Logic.
A BL-algebra is an algebra 4 =(4,A,V,®,—,0,1) such that:

1. (4,A,V,0,1) is a lattice with 0 as least element and 1 as greatest element,
2. (4,®,1) is a commutative monoid,
3. the following statements hold for every x, y,z€4:

(a) z<x—y iff x©z<L Yy,
() xNy=xO(x—y),
) d=y)V(y—x)=1
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By former operations a negation operation * is defined in the following way: x* =
x—0, for every xe4. We will write x” instead of x ©® --- © x.
—_——

P

The set of all BL-algebras is a variety, whose subvariety defined by the further
axiom (x*)*=ux, for every x€4, coincides with the variety of MV-algebras. Let 4
be a BL-algebra and MV(4) = {x€4|x** =x}. MV(4) is a subalgebra of 4. It is the
greatest subalgebra of A that is an MV-algebra [4].

We say that the BL-algebra A is totally ordered or that the BL-algebra A4 is a chain
(shortly BL-chain) if the lattice (4, A, V, 0,1) is totally ordered. Every BL-algebra is
a subdirect product of BL-chains [4].

We say that the BL-algebra A4 is finite if the cardinal of the set 4 is finite.

The aim of this paper is to analyze the structure of finite BL-algebras. In the case
of MV-algebras their structure is already well known. Every finite BL-chain is a finite
ordinal sum whose components are finite MV-chains (see [1, Theorem 3.6]). Extending
the notion of ordinal sum of BL-algebras (see Preliminaries), we characterize a class
of finite BL-algebras, actually BL-comets (see Section 4) which can be seen as a
generalization of finite BL-chains. Then, just using BL-comets, we can represent any
finite BL-algebra A as a direct product of BL-comets. This result can be understood
as a generalization of the representation of finite MV-algebras as a direct product of
MV-chains (see [3]). Furthermore, in Section 5 we define a class of labelled trees,
which can be one-to-one mapped onto finite BL-algebras. The class of all finite BL-
algebras will be denoted by FBL. For any unexplained notion on MV-algebras see [3],
on BL-algebras see [4].

2. Preliminaries

Let 4 be a finite BL-algebra, subdirect product of the BL-chains Ci,Cs,...,C,.
We say that the chain C;, i€l,={1,2,...,n}, is essential in the representation of A
iff 4 is not a subdirect product of C{,...,C/_|,C/,...,C,, with C/=C, for every
te{l,...,i — 1,i + 1,...,n}. Let us assume that every chain C; is essential in the

representation of A.

Definition 1 (Agliano and Montagna [1]). Let o =(A4;, Niy Vi, ®iy =i, 05,1) be
BL-chains for i€{l,...,r — 1} and a BL-algebra for i=r. Assume:

Then the ordinal sum [, 4, =(U;_, 4, A, V, ®, —,0,1) is a new BL-algebra
whose operations A, V, ©® coincide with those of A;, when applied on pairs of ele-
ments of 4;, i=1,...,7, and on the rest of pairs are defined as follows, for x€4;\{1},
y€A; and i<
I. XN y=yAx=x,

2. xVy=yVx=y,
3.x0y=yOx=x.
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Finally, the operation — is defined by

1 if x<y,
x—y=< x—;y if x,y€4; (1)
y if x€4;,yc4; and i>j.

For ie{l,...,n} denote by 0; =00 <0 < - <0, <& n+1 =1; the chain of the
idempotent elements of C;, shortly 1(C;,n; + 1). By [1] Theorem 3.6, C; is an or-
dinal sum of finite MV-chains, i.e. finite BL-chains that are MV-algebras, in sym-
bols C; = L*JZ:ll M(a,i, h), where M (o, i, h)= [0 41,0 4[U{1;}. Then for every i€l,
and he{l,...,n; + 1} the restrictions of the operations defined on C; to the subset
M(o,i,h) make it into a finite MV-chain, hence it is isomorphic to the MV-algebra
S,={0,1/p,....,(p—1)/p,1}, for some p=>1. From now on, every time we will deal
with a finite BL-algebra 4, we will use the above notations to give a subdirect rep-
resentation of 4 by finite BL-chains and the decomposition of such chains as ordinal
sum. Furthermore, in the sequel, every finite MV-chain will be identified with the
subalgebra of [0, 1], which it is isomorphic to. For every f €4, denote by f; the ith
component of f. Moreover, for every x€C;, set a(x)= max{yel(C;,n; + 1)| y<x}
and for every f €4, set a( f)=(a(f1),...,0(fn)). If f€A, then a( f)€A. Indeed, let
fieM(o,i,h;)=S, and pu= max{p;i€l,}; then f*=o(f). In the sequel we will
mean o;;, = o, if h==k, h,k < min{n; 4+ 1,n; + 1}. Moreover, we will denote by o, the
n-tuple (01 py...,0nn), for every h< min{n; + 1,i€1,}, by 1 the n-tuple, having its ith
component equal to 1; and by 0 the n-tuple, having its ith component equal to 0;, for
every 1€1,.

With the above notations we get.

Proposition 2. Let A€FBL and f,g€A such that for some (i,j)€1*:

l. fi=aip and gi=oix, h=0,1,....,nm; + 1, k=0,1,....n; + 1, h#k,
2. f}:gj:ij,ma m:O,l,...,nj+1.

Then, for every (x,y)= (s, 0%;m), t = min{h,k}, there is an element 1 €4 such that
(lia l/) = (x’ y)

Proof. Assume <k and (x, y)> (o, %,). Let u be an element of 4, having its ith
component equal to x and v be an element of 4, having its jth component equal to y.
Then I=((g— f)Vu)A(((g— f)— f) Vv) verifies the claim. [J
Proposition 3. Let ACFBL and f €A such that for some (i,j)€1?*:
(fis [) =i k), h=0,1,...,m + 1, k=0,1,...,m; + 1, h#k.
Then there is g€ A such that (g,9;)= (%1, %), t = min{h,k}.
Proof. Assume h<k. If h=0, then it is trivial. For otherwise let w be an element of

A, having its jth component equal to ;. Set a(w;)=o;; for a suitable 4.
If iy =h, then g=w A f €A verifies the claim.
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If b <h, we choose an element w! €4, having its jth component equal to o; ;. Set
()= ot p,. If hy=hy, then w!' Ao(w) €A, moreover w! Ao(w;) =0 and w! Aa(wy)
=uw;,. Hence, the conclusion follows from Proposition 2. If A, <A, proceeding as
above, the thesis shall be attained as soon as we find an element w” such that o(w]) =
o » (W) =0t p,,, and k. >h,. If the last condition is never verified, then we get a
strictly decreasing sequence k>h>h >hy> --- >h,> --- of natural numbers; conse-
quently there must ultimately be an s, such that 4, =0. Hence we will find an element
w1 such that (a(w;™ "), 0w; ")) = (05, 0, ), where a5, #0;. Also in this case
the claim follows by Proposition 2. [

Corollary 4. Let ASFBL and f €A such that for some (i, j)€I2:
(fi» [;)=(otin, 2k ), h and k run from 0,1,..., like in Proposition 3.

Then for every (x,y)= (s, o)), with t = min{h,k}, there is an element 1 €A, such
that (i, ;) = (x, y).

Proof. It follows by Propositions 2 and 3. [
Corollary 5. Let AcFBL. Then, for every h< min{n;+1,i €L, }, op=_(01p, ..., 0 1)EA.

Proof. We proceed by induction on n. Let n=2, A< min{n; + 1,n, + 1}, and x, y€A4
such that x; =0y, and y» =0 ;. If x and y are incomparable, then either x V y =u
or x A\ y =oy. Otherwise, consider a(x;) =0y, and o(y;)=oy . If t=5h or I =h, then
either a(x) =0y or a(y)=ay. Assume either />4 or ¢ > h; in both cases the conclusion
follows from Proposition 3.

Suppose now the corollary true for n — 1. Set I; =I\{i} and let 4;(; be the set
of the restrictions of all the elements of 4 to I; Ayy is a finite BL-algebra and it
is, up to isomorphism, a subdirect product of {C;,i€ll}. Fix h< min{n; + 1,i€1,}.
By induction, for every i€1,, there is an element x' €4 such that (x'); =, for j #1i.
If two of the elements x',x> and x> are incomparable, say x' and x?, then either
x'vVx? or x! Ax? satisfies the claim. Otherwise x!,x* and x* are comparable. We safely
can set x' <x?<x3. Then we have oy, <x3 <oy, that is x3 =0y ;. From that we get
X=oed. O

Lemma 6. Let Ac¥BL, i,jcl,, h=1,...,n;+1, k=1,...,n;+1 and h# k. Then the
following are equivalent:

1. there exists f €A such that (f;, f;)eM (o, i,h) x M(o,j,k)\{(1;,1;)},

2. for every (x,y)=(0p—1,0%k—1) there is an element g€ A such that (g;,g;)=(x, y).

Proof. Let €4 such that (f, fj)eM(o,i,h) x M(o,j,k)\{(1;,1;)}. Then

(%h—1,%k—1) if a(f})#1; and a(f;)# 1},
(a( fi), o2(fi)) = (%in—1,1) if a(f;)=1;, (2)
(1, 07,6—1) if a(fi)=1,.

Thus, the conclusion follows by Corollary 4. Vice versa is obvious. [
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Lemma 7. Let AcFBL, h<min{n;+1,n;+1 :i,j€L,}, M(ot,i,h)=S,, M(o,j,h)=S,
and p+#q.

Then for every (x,y)= (% ph—1,% 4—1), there is an element g€ A such that (g;,9;) =
(x, ).

Proof. Let p<gq and f €A such that f;=(q —1)/q € M(«,/,h).

If fi<apo1, we get (). 20f)) = (o oty )k <h — 1.

If o p—1 < fi <oy p, then (f7 — o—1)7 is an element of 4, having its ith component
equal to 1; and its jth component equal to o; ;.

Finally, if f; > a5, we get (o f7), a(f;)) = (o1, %, 0—1), {>h — 1.

In any case the claim follows by Corollary 4. [

Lemma 8. Let AcFBL, h<min{n; + 1,n; +1:4,j€1,}.
If there is an element f €A such that:

L (fi, fi)eM(a,i,h) x M(o, j, k),

then for every (x,y)=(on—1,%,4—1), there is an element gcA such that (g;,g;)
=(x ).

Proof. If M(a,i,h)=S,, M(«,j,h)=S, and p#gq, it follows from Lemma 7. There-
fore, it shall be understood M (o, i,h)=M(a,j,h)=S,.
By Corollary 4, we get the claim in the following cases:

1. f,‘: 1,‘ or _f}zlj,

2. fi=ua;5—1, hence the element / = (f — o;_1)? has its ith component equal to 1; and
its jth component equal to o ;_1,

3. fj=u;5—1, hence the element m=(f — o;—1)? has its jth component equal to 1;
and its ith component equal to o; ;.

Assume now fi=r/peM(a,i,h), f;=s/pEM(a, j,h) and 0 <r<s< p. Then we get

Case 1: s= p — 1. Then the element f?~!'€4 has its ith component equal to o; ;|
and its jth component equal to 1/p€M (o, i, k). Then we proceed as in 2.

Case 2: s<p—1.

Let g4 such that g;=(p — 1)/ peM(a,j, h).

(a) If g; < f;, then the element A= ((fVg)— f)?, has its ith component equal to I;
and its jth component equal to o; ;1.

(b) If g; =0, then the element £k =((f — f ©g)?, has its ith component equal to 1;
and its jth component equal to o; ;.

(c) Finally, if f;<g; <o, then the element d =(g" ® f)— oy has its ith component
equal to 1; and its jth component equal to o ;.

Again the conclusion follows from Corollary 4. [



98 A. Di Nola, A. Lettieri| Discrete Mathematics 269 (2003) 93112

Proposition 9. Let AcF¥BL and J ={iy,...,i,} C1,.

If, for every i,,i,€J and for every pair (xi,,x;,)=(%,.n,>%,.n, ), there is an element
gP1 €A such that (gii’q,gf;’q):(x,-p,xiq), then for every r-tuple (x;,...,x; )= (%, n>---»
0.5, ), there is an element g€ A such that (gi,,...,9:;,)= Xi,»...,X;,).

Proof. The proposition is true for » =2. Let »>3 and let us proceed by induction on
the cardinality of J. Assume the proposition is true for r—1. Let x = (x;,,...,X;. ) = (0, 4,
ey O, )

For every i, €J, denote by x* the (»—1)-tuple obtained from (x;,,...,x; ), by deleting
the i,th component of x. By induction, there is an element g €4 such that gi =x;,,
for every me{l,...,u — L,u+ 1,...,r}. If the restrictions to J of two among these
elements, say g*' and g"?, are not comparable, then we have: either

1. (g" )u1 <(g™ )u1 = Xu, and Xy, = (g™ )uz =(g" )uz

or

2. (gu1 )ul = (guz )ul =Xy, and Xu, = (gul )uz < (guz )uz .

In the former case (¢*'V ¢*?);, =x;,, for every me{l,...,r}. In the latter case x is
given by the restriction to J of g“' A g*2.

Assume that the restrictions to J of all the elements g* are each other comparable,
then we safely can write ¢' <g> <g>. From that Xi, = (gl)l-2 <(g? )iy <(g? )i, =X;,. Then
it is (¢?);, =x;, for every me{l,...,r}. O

Corollary 10. Let A€FBL, M(o,i,1)=S,, and S, #S,, for every (i,j)€I?. Then
A=Cy x -+ xC,.

Proof. This follows by Lemma 7 and Proposition 9. [

Corollary 11. Let AcFBL. Then the following implication holds:
(for every i€l, there is an element f'€A such that a(f)#0 and o fi)=
0= (A=C) % --- x Cy).

Proof. This follows by Propositions 2 and 9. [J

3. Direct decomposition

Let AcFBL. It is known that MV(4)=4N H;’:] M(o,i,1) [1]. Define on I, the
following equivalence relation:

i=j iff for every feMV(4), fi = f;.

Let n={J,...,J,;} be the partition of I, yielded by this relation.

Remark 12. The above definition is equivalent to the following: i='j iff fj= f; for
every f €A such that (f;, f;)eM(o,i,1) x M(a, j, 1).
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Indeed, let i=j, f €4, and (f;, f;)eEM(a,i, 1) x M(a, j,1). Since f*€MV(4), we
get fi=f"*=f* = f;, hence i ='}.

For a positive integer k£ denote by A4, the set of the restrictions to J; of all the
elements of 4; A;, is a BL-algebra and it is, up to isomorphism, subdirect product of
{Ci,i€Ji}. In the sequel the restriction of f€4 to J; will be denoted by fj,.

The following result is crucial:

Theorem 13. Let A€ ¥BL. Then A is isomorphic to the direct product Ay x --- X Ay,.

Proof. The map ¢: fe€d—(f),..., f1.)EA) X -+ X A; is a homomorphism. Now
we shall prove that ¢ is bijective.

Claim 1. ¢ is injective.
Indeed, if [ # g, then f; # g; for some i. Let i€Jy, then fj, # g, hence ¢(f)#P(g).

Claim 2. ¢ is surjective.

We will prove the surjectivity of ¢ by induction on the cardinal of the set =. It is
trivial if |z| =1. Assume that it is true for |z|=r — 1 and set:

O €A vu = Snsee s f1_)EA, X -+ XAy _,. By induction, ¢’ is
surjective.

Let (fJ},...,f]f)e(AJ] X -+o XAy | )xAy; and f€A such that ¢'(f5, . s )=
(f,},...,fj:l); moreover let g€4 such that g, = f;.

Fix a subset J of , containing exactly a single representative element from each
class of =, that is J ={i,...,i,} and i, €J,, me{l,...,r}. By Lemmas 7 and 8 and
Proposition 9, for every r-tuple (x;,,...,x;,)EM (o, iy, 1) x -+ x M(e, i, 1), there is an
element g'eAN [[_, M(a,i,1), such that (g} ,...,9})=(xi,....x;).

Therefore, let a=(ay,...,a,) and b=(by,...,b,) such that:

1. (a,-],...,ai,‘), (bil,...,bir)EM(OC,l'],l)>< XM(OC,ir,l),
2. a,-,,<b,-h for h:l,...,r— 1,
3. a,;>b,~)_.

Then we have
B 1; if ieJiju---UJ_q,
(“Hb)’{agj@b,}eM(a,i,l) if i€, 3)
Set c=a(a— b). Then ¢;=1; for iec ;U --- UJ,_; and ¢; =0; for i€J,. On other

side,

br ®a;eM(oi, D\{1;} if i€/ U -+ UJ,_y,
1;

(b_"’)’:{ if i€J,. “)

Let w=o(b—a). Then w;=1; for i€J, and w;=0; for i€J;U --- UJ,_;. Thus
(cOfH)IViwog)ed and ¢((c® fHV(w©g)=(f5,-.-, f1,). T
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Corollary 14. Let AcFBL. Then the following are equivalent:

1. for every (i,j) and i #j there is an element f€MV(A4) such that f; # f;,
2.4=1]_, C.

Proof. Assume that for every (i,j) and i # j there is an element f € MV(A4) such that
fi# f;. Then m=1. Let A)y; be the BL-algebra of the restrictions to {i} of all the
elements in 4. The A 2 C;, for every i€ {1,2,...,n}. Hence the conclusion follows
by Theorem 13. Vice versa is obvious. [J

4. BL-comet

In this section we will introduce the concept of BL-comet and we will prove the
main result according to any finite BL-algebra is a direct product of BL-comets (Corol-
lary 28). To this aim we hold to describe the structure of the algebra A,,, that is the
structure of a finite BL-algebra 4 =(4, A, V, ®, —, 0,1), having the further following

property:

every f€AN H M(a,i,1)=MV(4) is constant on I,. (5)
i=1
Such an algebra will be denoted by A, and the class of all the algebras 4. will be
denoted by A..

Lemma 15. Let A.€A. Then, for every (i,j)el?, M(o,i,1)=M(a,j,1).

Proof. Suppose there is (i,j)€I? such that M(a,i,1)2M (o, j,1). We can safely
assume |M(a, i, 1)|<|M(e,j,1)|. By Lemma 7, we find an element g€ A4, such that
gi=0; and g;eM(a,j,1)\{0;}. Hence g*€MV(4) and it is not constant on I,
absurd. O

Set M(o,i,hi") = E-JZ'ZI M(o,i,h) and, for every A, define:

84, = max{meN]|for every f€A.N [[_, M(ai,h"), f is constant on I,}. We get
1<04, < min{n; + 1|i€1,}.

With the above notations we have:

Lemma 16. Let A. € A.. Then, for every (i, j)€1?* and for every 1 <m<d,., M(0,1i, h")
=M(a, j, h").

Proof. By Lemma 15 it is true for m=1, then we proceed by induction. Assume
M (o, i, K1Y 2 Mo, j, B "), for every (i,j)€I?. Suppose there is (i,j) such that
M(o,i,m) P M(o, j,m). Arguing as in Lemma 15, we find an element g€ 4. such
that g;=o;,,—1 and g;€M(a,j,m)\{u—1}. Hence (g —om_1)€ ], M(oc,i,hf/‘")
and it is not constant on /,, absurd. Since M (a, i, Al") =M (o, i, h’ln_l)LirJM(oc, i,m), for
every i€1,, the desired conclusion immediately follows. [J
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In the sequel, when there is no misunderstanding, we will denote J4, simply by 9.
Lemma 17. Let A.€Ac. Then A\(IT1, M(oi, A)\{1;})={x€4.|x>05}.

Proof. The inclusion {x€A4, |x>as} CAN, M(ai,h)\{1;}) is immediate.
Assume now x€AN([T, M(oi,h)\{1;}) and x % as.
Then the subsets:

h={i€l|xi>u,},
[2 = {iEIn |x,'<oc,~’5}

are not empty and

1, if iel,
x; if i€ly.

(25— ={ (©)
Consequently o5 — x€ H;’:l M(a, i,hf), but o5 — x is not a constant function on 1,
absurd. [

Corollary 18. Let A.€A.. Then A.N H?:I M(a,i,h) is a totally ordered subalgebra
of A and it is isomorphic to M(o,i,h?) for every i€l,.

Proof. By subdirect product properties and by Lemma 17 it follows that, for every
i€, pi: f€AN ], M(ai,hY)— f; is a bijective map from A.N [[r_, M (o, i, k)
on M(a,i, hf). Indeed p; is the claimed isomorphism. [J

Remark 19. As a consequence of Lemma 17 and Corollary 18 6, <v=
min{n; + 1|i€l,}. Indeed set I,={i€l,|n; + 1=v}. If §, =v, then, for every
x€ANTTL, M(eni,h)\{1;}), x;=1;, for each i€1,. Whence the function p, mapping
any element f to its restriction to [,\l,, f;\; is an isomorphism between 4. and
(Ac)p\g,- Whereas, under our assumptions, any chain C;,i€1,, has to be essential in the
representation of 4..

Proposition 20. Let A.€A.. Set

- B=ANIT, Mo i, i)O\{1:}),
. Op=us,
=1,

. ©p be the restriction of the product of A, to B,
. —p be the restriction of the operation — of A, to B.

[ N

Then B= (B, A, V, ®p, — ,0p,13) is a BL-algebra.
Proof. By Lemma 17, B=(B, A, V,0p,15) is a lattice with 0 as least element and
1p as greatest element. Moreover

if x>o05 and y=o;5 then x © y >uas,
if f>as and g=os then f —g=g=>uas. Ol
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Let A be a BL-algebra. By [(4) we denote the set of all idempotent elements of A.
We remark that I(4.)# {0,1} for every finite BL-algebra A that is not a MV-chain.
For otherwise A is locally finite, hence it is an MV-chain [5].

The above remark suggests the following considerations:

Let AcFBL, for xcl(4), denote by C(x) the subset of l(4) whose elements are
comparable with x. Define K(4) CI(4) as follows:

x€K(A) iff the following conditions are satisfied:

1. C(x)=(4);
2. {yel(4)|y<x} is a chain.

We stress that K(A4) is not empty: indeed 0€K(4).
The above notations and remarks allow us to introduce the main following
definitions:

Definition 21. Let 4 be a nontrivial element of FBL. Then A4 is called BL-comet if
max K(4)#0.

Definition 22. Let 4 be is a BL-comet, then max K(4) is called pivot of 4 and it will
be denoted by pivot(4).

Set p=max{n; + 1,i€l,}. For every h<p we will denote by o) the n-tuple
(o1,...,0,) where

o 1,’ if h?n,—l— 1,
“"‘{ oy if A<+ 1. 7

With above notations we introduce the following:

Definition 23. Let A€ FBL and f€l(4). f is called pseudoconstant on I, if there is
h<p such that f=oy).

By (7) every idempotent o, €A, constant on I,, is pseudoconstant on /,; moreover
OC(h)Zl iff th

Lemma 24. Let AcFBL. Then, for every h<p, og)€A.

Proof. If 7<v (see Remark 19), the claim is already proved (see Corollary 5). Then
we can safely assume v</h<p. Suppose n=2 and n; + 1 <h<mn, + 1. Let x€4 such
that xy =0y 5. Set a(x;)=oy 4, for some k<n; + 1. Then, by applying Corollary 5,
(ou(x) — o) Vx =0y €A. Proceeding by induction, let the lemma be true for n — 1.
Analogously to Corollary 5, for every i€l,, we find an element x' €4 such that for
J#i
i lj lf h}l’l] + 1,
(x )f{ o if h<nm + 1. ®)

If two of the elements x',x* and x* are incomparable, say x' and x2, then either x' v x?
or x' Ax? satisfies the claim. For otherwise x!,x*> and x> are comparable. We safely
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can set x' <x?><x*. Then by (8) we have
if h=ny +1, then 1, =(x'), <(x?),, hence (x?); = ly;
if h<n, + 1, then (xl)z =0 p <x§ <(x3)2 =0y 5, hence x% =0 p-
In both cases x* =o€4. O

Lemma 25. Let A€FBL and (A) be a chain. Then for every x €A there exists h<p
such that:
X = li ] Jh>nz+la (9)
M(o,i,h+ D\{L;} if h<n + 1.

Consequently (A) is the set of all the pseudoconstant elements of A.

Proof. Let xeA\{1} and

L={icl,|xi=1},
L=A{iel,|x;<1;}.

If for some (i, /) €13, x; €M (o, i, h+ D\ {1;}, x;€M (o, j,k+1)\{1,;} and h<k, then,
by applying Corollary 4 for f =o(x), we find a,b€4 such that (a;,a;)=(1;,%;,) and
(bi,bj) = (%4, 1;). So a(a) and a(b) have to be two incomparable elements of I(4),
absurd. Consequently, there is an 4 < p such that x; € M (o, i, i+ 1)\{1;}, for every i€ l,.
Let now I; # () and h<n; + 1 for some i€l,. By Lemma 24, a(x) — ony € 1(A), but it
is not comparable with o(x). This contradiction shows that x verifies (9). [

Proposition 26. Let A be a nontrivial element of ¥BL. Then the following are
equivalent:

1. A is a BL-chain,
2. A is a BL-comet and pivot(4)=1.

Proof. 1=-2 is trivial. In order to show 2 =1 set, for every x€4, I, ={i€l,|x; = 1;}.
Claim 1. The family (I;)ccq is totally ordered by inclusion.

Actually let x,y€d, x#y, i€\, and jel,\I.. Then (a(x;),o(x;))=(1;05,)<
(1;,1;) and (o yi), o(y;)) = (%, 1;)<(1;1;), for suitable /2 and k. Consequently o(x)
and o(y) are two incomparable elements of [(4), which contradicts the hypothesis
pivot(A)=1.

Claim 2. [, CI,=x<y.
We can safely assume y <1. Then by Lemma 25 there are suitable %,k < p such that:

for every i€ l,\I,, x;e M(a,i,h+ D\{L;}
and
for every i€ ,\I,, yieM (o i,k + 1)\{L}.

Let now j€l,\I,; by (9) h<n; + 1<k, whence x < y.
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Claim 3. I, =1,=x and y comparable.

If x=1 or y=1, the claim is trivial. Then assume x <1 and y<1. Let /& and & be
as in the previous claim.

If h<k, then x<y,
If k<h, then y<ux.

Assume now h=k. Since (4) is a chain, as a consequence of Lemma 8 the
restrictions of x and y to /,\/, are constant, which implies x and y comparable.
The conclusion now follows from Claims 1-3. [

Theorem 27. Let A be a nontrivial element of ¥BL. Then the following are equivalent:

1. A is a BL-comet,
2. A€A..

Proof. 1=-2: If pivot(4)=1, then the implication follows by Proposition 26. Then
assume ff =pivot(4)<1. Rejecting the thesis, by Lemma 8 there is f €A such that
(fi» /i) =1(0;,1;), for some (i,j)€I?. We can safely assume f€MV(4). Since a(f)
and o f*) are two incomparable elements of 1(4), necessarily we get o f),a(f*)=p.
From that 0 =a( f)Ao(f*)>=f, a contradiction.

2=-1: By Lemma 17 and Corollary 18 it follows o; € K(4), whence as < max K(A4)
=pivot(4). By definition o5>0, so max K(4)#0. O

Corollary 28. Let A be a nontrivial element of ¥BL. Then A is isomorphic to a direct
product of BL-comets.

Proof. It follows by Theorems 13 and 27. [

Proposition 29. Let A.€A.. Then pivot(A.) = us.

Proof. If pivot(4.)=1, it follows by Proposition 26. Assume pivot(4.)<1. In the
proof of Theorem 27 (2=-1) it is proved that os<pivot(4.). On other hand by
definition of § and by Lemma 8 we can find f €4, such that for some (i,;)€1l?,
(fi» i) =(oi,5,1;). Since o f) and o(f)— a5 are two incomparable elements of I(4),
it follows a( /), o /) — a5 =pivot(4.). Hence pivot(A.) <a( f)YN(a(f) — as)=as. [

Corollary 30. Let A. €A, and pivot(4A.)<1. Then A. is the ordinal sum of a finite
BL-chain and a finite BL-algebra that is not a BL-comet.

Proof. It follows by Corollary 18, and Propositions 20 and 29. [J

5. Labelled trees

Now we recall some definitions about partially ordered sets.
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Definition 31. A partial ordered set (7, <) is called tree if T has a minimum element
Ty and, for every x€T, the set T, ={y€T: y<x} is totally ordered. The elements of
a tree are called nodes.

Definition 32. Let (7, <) be a finite tree, x&€7 and x # Ty. The greatest element of
T.\{x} is called the previous element of x and it shall be denoted by pr(x).

Definition 33. Let (7, <) be a finite tree, the elements x, y€ 7. We say that y covers
x if pr(y)==x. In this case we write x < y.

Definition 34. Let (7, <) be a finite tree and x€ 7. We say that x is a simple node if
there is exactly one element covering x. If x is not simple or if x = Ty, x will be called
a multiple node.

Definition 35. Let (7, <) be a finite tree. We call height of an element x€7, in
symbols /(x), the cardinal of the set of all multiple nodes of the chain ]7p,x].

Definition 36. Let (7, <) be a finite tree. We call height of T, in symbols /(T), the
non negative integer equal to max{l/(x): x€T}.

Definition 37. Let (7, <) be a finite tree, x€ T and x # Ty. The greatest multiple node
of T,\{x} is called multiple node previous of x, and it shall be denoted by prm(x).
Let N be the set of all the positive integers; then we set:

Nz{O}U(U N’)

reN

and, for every integer positive number p, N, = ({0} U(U,cy N"))?

Definition 38. A labelled tree is a triple (T, <, h), verifying the following:

(T, <) is a finite tree,
h is a map from T to |J,cy Ny,
h(x)=0 iff x=T,.

If (T)C{0}UN, then (T, <,h) is called a simply labelled tree.
By definition, a simply labelled tree is a tree, having every node marked by an
integer number m. Such a number m represents the MV-chain with m + 1 elements.
Our aim now is to map finite simply labelled trees on finite BL-algebras.
Let (T, <,h) be a simply labelled tree and (Ty, <) the subtree of (7, <) of all
multiple nodes. Define the map hy: Ty — Ny ={0} U(J,cy N”) as follows:
(h(x1),...,h(x.),h(x)) if x is a multiple node different from 7, and
() = (F1s- % %) = Iprm(x),xL, C T,
0 if x=Tp.
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Then the triple (7, <,%) is a labelled finite tree. Each (multiple) node is marked
by hs with a finite sequence of positive integers n1,...,n,. Such a sequence represents
the BL-chain which is a finite ordinal sum whose components are the finite MV-chains
with n; +1,...,n, 4+ 1 elements, respectively: i/(x) =S, W --- WS,.

Now denote by

Ts.1 the set of all finite simply labelled trees,

and

Tm.1 the set of all finite labelled trees (7, <,%) such that:
every x& T is multiple,
hT)CN;.

With the above notations and arguments we can claim the following theorem:

Theorem 39. The map f, defined by [f(T,<,h)=(Iy,<,hs), is a bijective
map between Ty and Ty 1.

Proof. It is obvious. [

In the sequel, when there is no misunderstanding, we will denote f(7, <,k) by
f(T) or Ty.

Next we will define a function o, mapping every element of T, on a finite
BL-algebra.

First let (7, <,h)€Tm1, I(T)=1 and T, =T\{T,}. Then we define:

W) if T =1,
o(T)=q ] nx) if |Ti|>1. (10)

xe€Ti
Assume now /(T)=n>1 and set:

Ti={xeT:Il(x)=i}, i=1,...,n,

T"=U_y T, r=1,....,n—1,

and

M equal to the set of all maximal elements of 7.

Define a mapping A': T! = U:';OI Ti= Upen Ny, by

hl(x):{ (h(x),(h(y),x<y)) if I(x)=n—1 and x¢M,
h(x) otherwise.

(11)

In the labelled tree (7', <,h'), every (multiple) node, such that /(x)=n — 1 and
x¢ M, is marked by 4' with a pair: (h(x),(h(»),x < ¥)). h(x) is a sequence of positive
integers, representing the BL-algebra h(x)=S,, & --- WS,,. The second component is a
finite family of sequence of positive integers (4(y),x < y), representing the BL-algebra
(h(y),x=<y)=1I, - »h(y). The pair h'(x) shall represent the finite BL-algebra which
is an ordinal sum of BL-algebras: h'(x)=h(x)W(h(y),x <y)=(S, & - WS, )W
IL~, k().
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Define now an application 4% : T2 = U:'l;oz Ti — U,en Np, as follows:

) = { (' (), (11 (),x <)) if Ix)=n —2 and xgM, )

h'(x) otherwise.

In the tree (T2, <,h?), every (multiple) node x, such that /(x)=n — 2 and xZM,
is marked by 4> with a pair: (h'(x),(h'(y),x < »)). The pair A?(x) shall represent the
finite BL-algebra that is an ordinal sum of BL-algebras: #*(x)=h'(x)W [ ., #'(»).

Proceeding as above, at step (n—1)th, we get a map 2"~ : 7" = 1 U{To} — U,cy
N,, by

hn—l(x) :{ (hn72(x)’ (hniZ(y)ax < y)) if X¢M:

K 2(x) otherwise.

(13)

Finally we define

1. o(T)=h=NT) if || =1,
2. o(T)=[l,ez h"~'(x), otherwise.

Theorem 40. There is a map I' from T to FBL.

Proof. It is sufficient to set I'=0o f. Then I' furnishes the claimed map. [

6. Idempotent irreducible elements

Let AcFBL. In the lattice (4, A, V, 0,1) an clement x is called irreducible if
x=uVv implies x=u or x=v. Denote by Irr(l(4)) the ordered set of all idempo-
tent irreducible elements of 4.

Proposition 41. Let A€FBL and x€lrr(I(A)). Then the set Ay={y€A: y<x} isa
chain of irreducible elements.

Proof. Let xelIrr(l(4)) and s,k €A such that #<x and k <x. Then we have x=x A\ 1=
xAN((h—=k)V((k—h)=xAN(h—k))V(xA(k— h)). By hypothesis we get either x =
(xA(h—k))orx=xA(k—h)). Assume x=(xA(h—k)), then x<h—k and h=h
Ox<h®(h—k)<k. So h and k are comparable. Analogously if x=xA(k—h). O

From the above proposition we immediately obtain:

Corollary 42. Let AcFBL. The ordered set (Irr([(A)), <) is a finite tree, having 0
as least element.

Proposition 43. Let A be a BL-comet. Then pivot(4) is a multiple node of (Irr
(I(4)), <).
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Proof. By Theorem 27, Proposition 29 and Corollary 18 o5 =pivot(4)€lrr(l(4)). To
show that o; is a multiple node, we observe that, by definition of 6 and by Lemma 8,
we can find f €4 such that for some (i,j)e]nz,(ﬁ,ﬁ):(oc[,(;, 1;). Then o /) — a5 and
(( f)— a5) — a5 are incomparable and both greater than o5. Moreover (a(f)— as) A
[(a( f)— as5) — as] = o5. Whence a5 is a multiple node. [

Proposition 44. Let AcFBL,acIrr(l(4))\{0}. Set

- C=[pr(a), o],
- Oc =pr(a),
1C =,

. ©c¢ be the restriction to C of the product defined on A,
. X =00 (x—pr(a)), for every xeC.

Then C=(C,O¢,*c,0c,1¢) is an MV-chain.

Proof. Indeed,

if pr(a)<x<o and pr(a)<y<a, then pr(a)<x® y<a,
¢ = ® (pr(a) = pr(w)) == lc,
and 15 =2 (2 — pr(2) =« A pr(x) = pr(x) = Oc.

Since for every i€ {l,...,n} either (pr(a)); =pr(x) or (pr(a)); =w;, it follows that
pr(a)<x<a implies pr(a) <x*¢ <o and (x*¢)*=x. [

Remark 45. By the above proposition, we get [pr(a),o] = S,,, for some meN.

Let i:Irr(l(4)) — N be the map defined by: i(0)=0 and i(x)=m, if x#0 and
[pr(x),x] = S,,. Then (Irr(I(4)), <,i) is a simply labelled tree.
With above notations we have:

Theorem 46. There is a map A from FBL to T).

Proof. Let A be a finite BL-algebra, set A(A4)=(Irr(I(4)), <,i). Then A maps every
finite BL-algebra into a simply labelled tree. [J

Proposition 47. Let A;€FBL,i=1,....r and x=(xi,...,x,)€ [[[_; Ai. Then the
following are equivalent:

1 xelr(I([T, 4)),
2. there is i€{1,...,r} such that x; €1rr(l(4;)) and x; =0; for every j#i.

Proof. 1=2: Let x=(xy,...,x,)€lrr(I(T]/_, 4;)). Assume x;, #0; and x; #0;, for
i1 # 1. Then choose two elements:

y=1,--., ), setting y;, =0; and y;=x;, for i #i,

and z=(zy,...,z,), setting z;, =0;, and z; =x;, for i#1,.
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Then we get x# y, x #z and x = y V z, absurd. If x; is the only non-zero component
of x, it is obvious that x; €Irr(I(4;)).

2=1: Let x=(x1,...,x.)€ [[,_; A;. Assume there is i€{i=1,...,r} such that
x;€lrr(l(4;)) and x; =0; for every j#i. Thus from x=yVz it follows x;=y;Vz
and x; = y; =z; =0; for every j#i. By hypothesis x; = y; or x; =z;, whence x=y or
x=z, that is xelrr(I([[_, 4,)). O

Theorem 48. Let A be a non-trivial element of FBL. If Irr((A)) is a chain, then A
is a BL-chain.

Proof. First we prove that 4 is a BL-comet.

By Corollary 28 A=A4; X -+ x4, and, i€{l,...,r},4; #{0;} is a BL-comet. Let
r>1 and a=(a;,0,...,0) and b=(0,b,,0,...,0) be two elements of Irr(I(4)). Then
either a; =0; or b, =0,. That is either Irr(I(4;))={0,} or Irr(l(4,))={0,}, absurd.
Thus r=1 and 4 is a BL-comet.

Assume pivot(4)<1.

Then, by Corollary 30, A=CWB, with C a BL-chain and B a finite BL-algebra
that is not a BL-comet; hence Irr(1(B)) CIrr(I(4)). Consequently Irr([(B)) has to be
a chain and, by previous claim, B is a BL-comet, absurd. From that pivot(4)=1,
therefore, by Proposition 26, A is a BL-chain. [J

7. Dualizing BL-algebras and labelled trees

Following [2], we recall that, if (C, <) is a finite chain and (7, <’) is a finite tree,
C and T disjoint sets, then the ordinal sum of C and 7, in symbols C+4T, is the finite
tree, (7", <), where 7" =CUT\Tj and <” is defined by x<"y for every x€ C and
for every ye T, while the order of the elements in C and the order of the elements in
T are unchanged.

Proposition 49. Let A be a finite BL-chain and BEFBL. Then (Irr(I(4 W B), <) =
(Irr(I(4)), <)+ (Irr(I(B)), <).

Proof. It follows by definitions. [J

Let (S, <) and (T, <’) be two trees. The direct product of S and T [2], in symbols
C®T, need not be a tree. Then we introduce the following definition:

Definition 50. We call 0-product of the two trees (S, <) and (7, <'), in symbols
C ®T, the ordered subset of C ® T, whose elements are the pairs (x, y) such that
x:S() or y= T().

The above definition can be extended to a finite number of trees as follows:

Definition 51. We call O-product of the trees (S°, <%),i=1,...,r, in symbols
O;_, (8, <"), the ordered subset of );_, S’, whose elements are the r-tuples
(x1,...,x,) such that there is ip€{1,...,r} and x; =S for every i #io.
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Remark 52. There are natural embeddings g; : ' — S = (;_, S'. Identifying S' and
gi(SY), we get S'NS/ ={So}, for i#j and S=J,_, S'.

Proposition 53. The 0-product of a finite number of trees is a tree.
Proof. It is a trivial. [

Proposition 54. Let A;€FBL,i=1,...,r. Then (Irr(I(TT_, 40)), )=
OIrr(1(4)), <).

Proof. Let x=(xy,...,x,)€lrr(I(J]/_, 4:)). By Proposition 47, there is i€{1,...,r}
such that x; € Irr(I(4;)) and x; = 0; for every j #i. Thus, the map f : Irr(l](Hl.’:1 Ai))—
Oj; Trr(l4y)), defined by f((01,...,%;,...,0,)) = (Trr((A1))os - - - Xis - - ., Trr(I(4,) o),
is the claimed order isomorphism. [J

Definition 55. Let (S, <, %) be a labelled chain and (7, <',k) be a labelled tree. The
ordinal sum of (S, <,h) and (T, <',k) is the labelled tree (R, <”,d) such that (R, <")
is the ordinal sum of (S, <) and (7, <') and d is defined by

(k) if xes,
d(x)_{k(x) if xeT. (14)

Definition 56. Let (S, <, %) and (7, <’,k) be two labelled trees. The labelled 0-product
of (S, <,h) and (T, <',k) is the labelled tree (R, <”,d) such that (R, <") is the
0-product of (S, <) and (7, <’) and d is defined by

h(x) if (x,y)=(x,To),

k(y) if (x,y)=(So, ). (15)

d(x,y)Z{

The above definition of a labelled 0-product can be extended to a finite number
of trees in the obvious way. In the sequel we shall denote the ordinal sum and the
0-product of two labelled trees, S and T, by S+T or S ® T, respectively.

Let f be defined as in Theorem 39. Then we get:

Proposition 57. Let (T, <,h) be a simply labelled chain and, for ic{l,...,r}, let
(T, <\, h")eTs). Then

L f(THT) = f(T)+/(T), ie{l,....r},
2. (O, TH= O f(TH.

Proof. It follows by the definitions. [J
With arguments and notations of Section 5, we get:

Proposition 58. For i€{l,...,r}, let (T, <" ,h)€Tm1 Then o(QO;_, T")=
Hir:1 a(T").
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Proof. Set O;_; T"'=(S, <,d),l(S)=n and (T")=n;, for i=1,....,r. If x€T' and
x#Sp, then {y€S|x <y} CT. Hence (A )" '(x)=d""!(x), foric{l,...,r} and x€
T'. Therefore, o(S) = IT,cs, @' ()= ILicqry, (B'Y'~'(6) X Tlyeqrey, P~ x -+
X [Leeqry, (WY~ ) =a(T") x a(T?) x -+ x o(T") =[], o(T). O

In the next theorems I' and A are defined as in Theorems 40 and 46, respectively.
Theorem 59. Let (T, <,h)€Ts ). Then A(I'(T)) is isomorphic to (T, <,h).

Proof. We will prove the theorem for induction on /(7). Suppose /(T)=1 and
consider the set 7} ={xeT : I(x)=1}.

Case 1: |T}|=1. Let 1Ty, 1] ={x1,..., % },X] <X - - - <X,. By definition of ¢, I'(T) =
Sy W - WS, , where n; =h(x;), i=1,...,r. Then A(L(T))=Irr(I(S,, W --- WS, ) =T

Case 2: |Ti|=p>1. Set Ti ={t1,...,t,} and 1To,t;]={xi1,....Xi g, }, X1 <Xi2... <
Xiq, for every i=1,..., p. Then T oL l([To,t,]< V) w1th tET, and <LK
restrictions of < and % to [7),t;] respectively. By Propositions 57 and 58, I'(T)=
O'(@ f( TO’ )): Hzp;l hf(ti): {;1 (Snl-,l W - USn,q ) where Nis :h(xi,s)axi,s

e[To,t ] for i=1,...,p and s=1,...,q;. From that and Proposition 54, A(I'(T))=
e (UL (S W - WS, )= 2y Ter(0(S,, W - WS, ))-

Using the arguments and the conclusion of the previous case, we get:

Ir(I(S,, ) ® - - )= AI'([To, 1) = [To, 1], hence AT(T)) = QL [To, t]=T

l’llq

Suppose now I[(T)=n>1.

If |Ti| =1, then T\[Ty, Ti[ is a tree and T = [Ty, Ty |+ T\[To, Ti[. Since I(T\[To, Ti[)
=n — 1, by induction hypothesis and the above results we get: A(I'(T\[To, Ti[)) =
T\[Ty, i[ and A(I'([To,Ti1)) = [Ty, T1]. By Proposition 57, I'(T)=TI([To, 1]))WI(T
\[70, Ti[). Therefore, by Proposition 49, A(I'(T))= A(I'([To, Ti]))+AI'(T\[To, T;[))
=[T0, T 4 T\[To. L[ =T | | .

Let now |Ti|=p>1and T} ={t,...,1,}. Set R'={x€T : x>t} and S'=[To,t;]+
R'. Then we get 7= (O, S. Thus, by Propositions 57, 58 and 47, it follows A(I'(T))
>~ OF, AI(S'). Since |{xeS’ I)=1}|=1, ANT)=QF,S'=T. O

Theorem 60. Let A€ F¥BL. Then I'(A(A))=A.

Proof. We will prove the theorem by induction on n=I(Irr(l(4))). Assume I(Irr(l
(A)))=1 and set I ={oclr((4)): I(x)=1}.

Let us consider two cases:

Case 1: Let |I;| = 1. Then Irr(I(4)) is a chain, and, by Theorem 48, 4 is a BL-chain.
Hence A is an ordinal sum of MV-chains. From that I'(Trr(I(4)))=T'(A(A4)) = A.

Case 2: Let |I;|=p>1. Applying Corollary 28 and Propositions 54, Irr(l
A)=Tr(I(4,) © -+ @ Irr(I(4,), where for each i=1,...,r,4; is a BL-comet. By
assumption /(Irr(I(4))) =1 and by Proposition 43, it follows /(Irr(l(4;)))=1. Thus 4;
is a BL-chain, for i=1,...,r. Then (see Case 1) I'(Irr(I(4;))) =T'(A(4;)) = A;. Using
Proposition 49, 57 and 58, we have: I'(A(A4))=T'(A(4; X ---xA4,))=T(Irr(l(4,)) ©

- @Irr(l(4,))=T(A(A1)) X -+ X T(A(4,))=Z A X -+ XA, =A.
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Assume now [(Irr(l(4)))=n>1.

Suppose first that 4 is a BL-comet. Let pivot(4)<1. By Corollary 30 and Proposi-
tion 49, TIrr(l(4))=2TIrr(l(4,))+Irr(I(4;)). Thus by Proposition 57, I'(A(A4))<=
I'(A(A4;))WTI'(A(A42)). We recall that 4 is a BL-chain and that, by Proposition 43,
[(Irr(I(42))) =n — 1. Thus by induction hypothesis I'(A(4)) = A, WA, 2 A.

Finally let 4 € FBL. By Corollary 28, 4=A4; X --- X 4,, with 4,,...,4, BL-comets.
By Proposition 54, Irr(I(4)) = Irr(l(41)) @ - -+ @ Irr(I(4,)). Therefore, by Propositions
57 and 58, I'(Irr(I(4))) = I'(Iir(l(A4,)) © --- @ Irr(l(4,))), that is I'(A(4))=
I(A(4))x -+ X T'(A(4,))=2A X --- xA4,=A4. O
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