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SUMMARY

A critical issue in development is the coordination of
the activity of stem cell niches with differentiation of
their progeny to ensure coherent organ growth. In the
plant root, these processes take place at opposite
ends of the meristem and must be coordinated with
each other at a distance. Here, we show that in Ara-
bidopsis, the gene SCR presides over this spatial co-
ordination. In the organizing center of the root stem
cell niche, SCR directly represses the expression of
the cytokinin-response transcription factor ARR1,
which promotes cell differentiation, controlling auxin
production via the ASB1 gene and sustaining stem
cell activity. This allows SCR to regulate, via auxin,
the level of ARR1 expression in the transition zone
where the stem cell progeny leaves the meristem,
thus controlling the rate of differentiation. In this
way, SCR simultaneously controls stem cell division
and differentiation, ensuring coherent root growth.

INTRODUCTION

In multicellular organisms, stem cell division and differentiation of

theprogenycellsmustbecoordinated toensurecoherentgrowth.

In theArabidopsis root, stemcells reside in theapical region of the

meristem, where they surround a small group of organizer cells.

Together, they form a stem cell niche (SCN) (van den Berg et al.,

1997; Scheres, 2007) (Figure 1A). As in the animal stemcell niche,

the organizer cells, called the quiescent center (QC), maintain the

divisional activity of the surrounding stem cells by means of

unknown short-range signals (van den Berg et al., 1997; Scheres,

2007). Stem cells generate transit-amplifying cells, which un-

dergo additional divisions and then differentiate in the transition
Develop
zone (TZ; Figure 1A) (Moubayidin et al., 2009; Perilli et al., 2010).

For meristem maintenance, and therefore continuous root

growth, the rate of differentiation of transit-amplifying cells must

be equal to the rate of generation of new cells. We have shown

that, in the TZ, this balance is ensured by the interaction between

two hormones: cytokinin, which promotes cell differentiation

(Dello Ioio et al., 2007), and auxin, which promotes cell division

(Blilou et al., 2005). In particular, cytokinins are perceived at the

TZ by the ARABIDOPSIS HISTIDINE KINASE 3 (AHK3) cytokinin

receptor, which transfers the signal, via a phosphorelay, into the

nucleus and activates two cytokinin primary response transcrip-

tion factors, ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1)

and ARABIDOPSIS RESPONSE REGULATOR 12 (ARR12)

(Hwang et al., 2012). These genes activate the transcription of

the SHORT HYPOCOTYL 2 gene (SHY2), an inhibitor of auxin

signaling (Tian et al., 2002; Dello Ioio et al., 2008). SHY2, in turn,

negatively regulates the expression of several PIN-FORMED

(PIN) genes encoding auxin transport facilitators (Friml, 2010),

thus limiting auxin transport and distribution and allowing cell dif-

ferentiation (Dello Ioio et al., 2008; Moubayidin et al., 2010).

Root SCNmaintenance requires the activity of SCR, amember

of the GRAS family of transcription factors (Di Laurenzio et al.,

1996; Pysh et al., 1999; Lee et al., 2008; Sabatini et al., 2003).

SCRwas originally identified as a key factor regulating the asym-

metric cell division producing the cortex and endodermis (Di

Laurenzio et al., 1996; Heidstra et al., 2004; Cui et al., 2007).

More recently, it has also been shown to be involved in the spec-

ification of xylem cell types within the vascular tissue (Carls-

becker et al., 2010) and in controlling ground tissue stem cell

asymmetric division (Sozzani et al., 2010; Cruz- Ramı́rez et al.,

2012). In addition, SCR has been shown to be necessary and

sufficient, when acting in the QC cells, to sustain QC functions

and, as a consequence, the surrounding stem cells (Sabatini

et al., 2003), but the molecular mechanism for this activity re-

mains unknown.

While molecular mechanisms regulating stem cell division

(Spradling et al., 2001; Scheres, 2007; Sablowski, 2011; Wolpert
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Figure 1. SCR Maintains SCN Activity by Suppressing AHK3-Mediated Differentiation Input in the QC Cells

(A) Longitudinal section of the Arabidopsis root meristem. SCN, stem cell niche (highlighted in blue); PM, proximal meristem; TZ, transition zone. The white and

black arrowheads include meristematic cortex file, indicating QC and the last meristematic cortical cell, respectively.

(B) From left to right, root length and meristem cell number measured over time of wild-type (WT), scr-1, ahk3-3, ahk3-3;scr-1, ahk3-3;scr-1/pRCH2::AHK3, and

ahk3-3;scr-1/pWOX5::AHK3. Dpg, days postgermination. Error bars represent SD; *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test).

(C–E) Elimination of AHK3 activity rescues SCN defect of scr-1mutant. Expression of QC46 and QC25 (C and D) and Q1630markers (E) in WT, scr-1, and ahk3-

3;scr-1 root tips. (C and D) Double labeling of QC and differentiated columella cells visualized by QC-specific markers and amyloplast staining, respectively. Note

that the black arrows indicate restoration of columella stem cells activity in the ank3-3;scr-1 double mutant (C). Lack of Q1630 expression in the columella stem

cells (white arrows) indicates that columella stem cell activity is restored in the ahk3-3;scr-1 double mutant. White arrowheads indicate QC position in WT and

ahk3-3;scr-1. Asterisk indicates the presumptive position of QC cells in the scr-1 mutant.

(F) SCR-mediated cytokinin signaling suppression is not necessary for endodermis activity. J0571 expression in WT, scr-1, and ahk3-3;scr-1. Note the lack of

asymmetric cell division necessary to generate properly cortex (c) and endodermis (e) tissues in scr-1 (Di Laurenzio et al., 1996) and in the ahk3-3;scr-1 double

mutant. The resulting monolayer is indicated by c/e. Scale bar represents 50 mm in all panels.

See also Figure S1.
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and Tickle, 2011) and transit-amplifying cell differentiation (Wol-

pert and Tickle, 2011; Dello Ioio et al., 2008; Tsukagoshi et al.,

2010) have been described, little is known about how these

two events are coordinated (Mondal et al., 2011).

Here, we show that SCR acts in the QC to control, at the same

time, stem cell activity and the differentiation of their progeny by

cell-autonomously preventing expression of the cytokinin

response regulator ARR1 in the QC, and non-cell-autonomously

controlling ARR1 expression in the TZ via auxin.

RESULTS

SCR Sustains Stem Cell and Meristem Activity by
Suppressing Cytokinin Perception
We hypothesized that the coordination between stem cell activ-

ity in the SCN and cell differentiation in the TZ might be effected
406 Developmental Cell 26, 405–415, August 26, 2013 ª2013 Elsevie
by a genetic interaction between key molecular components

directly regulating each zone of the root meristem. We therefore

asked whether a genetic interaction may exist between SCR,

which is involved in QC and stem cell maintenance (Sabatini

et al., 2003), and the cytokinin receptor AHK3, which mediates

cell differentiation in the TZ (Dello Ioio et al., 2007). Mutation in

the SCR gene results in meristem consumption and arrested

root growth a few days after germination (Figure 1B), due to

defective QC and stem cell activities (Figures 1C–1E) (Sabatini

et al., 2003). Mutation in the AHK3 gene results in an enlarged

meristem and a longer root, due to delayed cell differentiation

in the TZ (Figure 1B) (Dello Ioio et al., 2007). Interestingly, in

ahk3-3;scr-1 double mutants, meristem size and root growth

are maintained over time (Figures 1B, S1A, and S1D available

online). In the scr-1 mutant, the QC markers QC25 and QC46

are absent due to loss of QC identity, while cells immediately
r Inc.
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below the QC, at the position of columella stem cells, acquire dif-

ferentiation markers such as amyloplasts and the Q1630marker

(Figures 1C–1E) (Sabatini et al., 2003). By contrast, in the ahk3-

3;scr-1 double mutant, QC25 and QC46 expression is restored

and no amyloplasts or Q1630 expression is detected within the

columella stem cell layer (Figures 1C–1E). In addition, root hairs

and xylem strands, characteristic of fully differentiated epidermal

and vascular cells, are present in scr-1 meristems (Figure S1D)

(Sabatini et al., 2003) but are absent from the ahk3-3;scr-1 root

meristem (Figure S1D). These data indicate that in ahk3-3;scr-1

roots, stem cell maintenance is restored, leading to meristem

maintenance and root growth. Thus, this suggests that SCR sus-

tains stem cell and meristem activity by suppressing cytokinin

perception. It is important to note that the ahk3-3;scr-1 double

mutant still displays an undivided ground tissue layer (Figure 1F)

(Di Laurenzio et al., 1996) and a lack of protoxylem cells charac-

teristic of the scr-1 mutant (Figure S1B) (Carlsbecker et al.,

2010), suggesting that its role in stem cell regulation is indepen-

dent of its developmental role in these tissues.

SCR Suppresses Cytokinin Activity in the QC
Comparison of the expression patterns of SCR (Wysocka-Diller

et al., 2000) and AHK3 (Dello Ioio et al., 2007) (Figure S1C) sug-

gested that these genes might genetically interact either in the

QC, where SCR maintains QC identity (Sabatini et al., 2003), or

in the endodermis of the TZ, where AHK3 mediates cell differen-

tiation (Dello Ioio et al., 2007). To determine if and where the

interaction occurs, we exploited a tissue-specific complementa-

tion approach to restore AHK3 activity (and thus cytokinin

perception) either specifically in the QC or in the TZ of the

ahk3-3;scr-1 double mutant. To accomplish this, we drove

AHK3 expression with the WUS-RELATED HOMEOBOX 5

(WOX5) promoter, which confers expression in the QC (Sarkar

et al., 2007), and the ROOT CLAVATA HOMOLOG 2 (RCH2) pro-

moter, which confers expression in the TZ (Dello Ioio et al., 2007)

(Figure S1C). In ahk3-3;scr-1/pRCH2::AHK3 plants, both meri-

stem size and root growth are indistinguishable from that of

ahk3-3;scr-1 (Figures 1B, S1A, and S1D). By contrast, the meri-

stem of ahk3-3;scr-1/pWOX5::AHK3 plants is consumed and

root growth arrested as in the scr-1 mutant (Figures 1B, S1A,

and S1D). These results indicate that AHK3 and SCR interact

in the QC, thus suggesting that SCRmaintains the SCN andmer-

istem activity by suppressing cytokinin signaling in these cells.

SCR Prevents SCN Differentiation and Maintains
Meristem Activity by Suppressing ARR1

To understand how SCR represses cytokinin-mediated cell dif-

ferentiation, we examined AHK3 expression in the scr-1 mutant

by means of quantitative RT-PCR (qRT-PCR) analysis and a

pAHK3::AHK3:GUS translational fusion (Dello Ioio et al., 2007).

Interestingly, neither the expression nor the accumulation of

AHK3 (Figures S2A and S2B) is altered in the scr-1 mutant. We

have previously shown that AHK3 controls the rate of cell differ-

entiation in the TZ via the activation of two primary cytokinin

response transcription factors: ARR1 and ARR12 (Dello Ioio

et al., 2007; Moubayidin et al., 2010). We therefore analyzed

the expression of ARR1 and ARR12 in scr-1 utilizing pARR1::

ARR1:GUS and pARR12::ARR12:GUS translational fusions

(Dello Ioio et al., 2007; Moubayidin et al., 2010) as well as by
Develop
qRT-PCR. Neither ARR12 protein (Figure S2A) nor messenger

RNA (mRNA) (Figure S2B) levels are altered, while the levels of

both mRNA and protein of ARR1 are upregulated in both scr-1

and scr-4 mutant backgrounds (Figures 2A and 2B, scr-1, and

Figures 3A and 3B, scr-4). The ARR1 protein, which is normally

expressed in all tissues of the TZ, was ectopically expressed in

the proximal meristem, including the SCN, of scr plants (Figures

2B, 3A, and 3B). This suggests that SCR maintains the activities

of both QC and stem cells by suppressing ARR1 transcription,

and therefore cytokinin signaling, in the QC. To further test this

hypothesis, we analyzed the root phenotype of plants carrying

a double mutation in both SCR and ARR1 genes. Similar to the

ahk3-3;scr-1 double mutant, the arr1-4;scr-1 double mutant dis-

plays sustained meristem and indeterminate root growth (Fig-

ures 2C, S2C, and S2D) due to an active SCN, as visualized by

the presence of QC markers absent in the scr-1 mutant (Figures

2D and S2E). In addition, amyloplasts were absent from the colu-

mella stem cells (Figures 2D and Figure S2E). By contrast, the

root phenotype of the arr12-1;scr-1 double mutant was indistin-

guishable from that of scr-1 (Figures 2C, S2C, and S2D), consis-

tent with the hypothesis that SCR maintains the stem cell niche

and root growth by specifically suppressing ARR1 expression.

SCR Directly Suppresses ARR1 in the QC and Acts Non-
Cell-Autonomously to Control ARR1 at the TZ
The fact that SCR is expressed exclusively in the QC and

endodermal lineage implies that SCR regulates ARR1 cell-

autonomously in the QC but that outside the QC its regulation

is non-cell-autonomous.

To analyze SCR activity in the QC, we employed the

GAL4VP16/UAS transactivation system (Brand and Perrimon,

1993; Sabatini et al., 2003). This allowed us to express an induc-

ible version of the SCR protein fused to the glucocorticoid recep-

tor (GR) in the scr-4mutant background and under control of the

WOX5 promoter and simultaneously mark the SCR:GR-express-

ing cells with GFP (scr-4/pWOX5>>SCR:GR>>GFP plants)

(Figure S3A). Four hours of SCR:GR activation with dexametha-

sone (Dex) was sufficient to downregulate ARR1 mRNA specif-

ically in the QC region, as shown by qRT-PCR experiments on

sorted QC cells (using fluorescence-activated cell sorting

[FACS]) (Figure 3C). However, there was no change in expres-

sion in the rest of the root meristem, as visualized by

pARR1::ARR1:GUS expression (Figures 3A and 3B, compare

0h Dex with 4h Dex). ARR1 downregulation was followed by re-

covery of stem cell activity, but not meristem size, after 8 hr of

Dex treatment (Figures 3A, 3B, and 3D, compare 0h Dex with

8h Dex). This was coincident with the time when ARR1 expres-

sion was repositioned at the TZ (Figure 3A, 8h Dex). Root meri-

stem size recovery occurred after 24 hr of Dex treatment (Figures

3A and 3D, 24h Dex). These results support the hypothesis that

SCR suppresses ARR1 expression in the QC to maintain stem

cell activity. Importantly, these results also provide evidence

that SCR acts on ARR1 non-cell-autonomously to position it at

the TZ, thereby controlling meristem size.

To determine if SCR binds directly to the ARR1 promoter, we

performed chromatin immunoprecipitation (ChIP) followed by

quantitative PCR (qPCR) on plants containing a complementing

SCR:GFP chimeric protein under the control of its own promoter

in the scr-4 background. Initially, we used whole root meristems
mental Cell 26, 405–415, August 26, 2013 ª2013 Elsevier Inc. 407



Figure 2. SCR Maintains SCN Activity by Suppressing ARR1
(A) qRT-PCR showing a low level of ARR1 transcript in WT compared to scr-1

roots. Relative expression is normalized to ACTIN2. Error bars represent SD;

**p < 0.01 (Student’s t test).

(B) Expression of pARR1::ARR1:GUS construct in WT roots and in scr-1

mutant. Black arrowheads indicate the position of transition zone; arrow in-

dicates ARR1 ectopic expression in the scr-1 QC. Scale bar represents

100 mm.

(C) Root length measured over time for WT, scr-1, arr1-4, arr12-1, arr1-4;scr-1,

and arr12-1;scr-1. Dpg, days postgermination. Error bars represent SD; *p <

0.05, **p < 0.01, ***p < 0.001 (Student’s t test).

(D)QC46 expression in, from left to right, WT, scr-1, and arr1-4;scr-1. Shown is

double labeling of QC and differentiated columella cells visualized by QC46

and amyloplast staining, respectively. Note that black arrows indicate resto-

ration of columella stem cells activity in the arr1-4;scr-1 double mutant.

Asterisk indicates the position of QC cells in the scr-1mutant. The same results

have been obtained with the arr1-3;scr-1, arr1-3;scr-4, and arr1- 4;scr-4

double-mutant combinations (data not shown). Scale bar represents 50 mm.

See also Figure S2.
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but found no enrichment for binding to the ARR1 promoter re-

gion with the exception of region #3, where enrichment was

not statistically significant (Figure S3B). If SCR binds the ARR1

promoter specifically in the QC, we reasoned that we may

have been diluting the ChIP signal when we used the entire mer-

istem. Therefore, we next performed ChIP on extracts from

dissected longitudinal sections (three to five cell lengths) that

encompassed the QC (Brady et al., 2007). In this QC-enriched

material, we found that binding to region #3 in the ARR1 pro-

moter was significantly enriched (Figure 3E), providing evidence

that SCR directly binds to the ARR1 promoter in the QC.

Suppression of ARR1 Expression in the QC Titrates
Auxin Production
We have previously shown that ARR1 promotes cell differentia-

tion in the TZ by directly activating the SHY2 gene (Dello Ioio

et al., 2008). Therefore, we hypothesized that in the QC of

scr-1 roots, SHY2 is activated by ARR1, which triggers the onset

of differentiation. However, we did not detect ectopic expression

of SHY2 in the scr-1 QC (data not shown), and elimination of

SHY2 activity in the scr-1 mutant did not restore root growth

and meristem size (Figures S2C and S2D). This suggests that

ectopic expression of ARR1 in the scr QC induces stem cell dif-

ferentiation via a different mechanism.

It was recently shown that cytokinin can induce auxin biosyn-

thesis in the Arabidopsis root apex (Jones et al., 2010) and that

high levels of auxin in the SCN result in stem cell differentiation

(Ding and Friml, 2010). We observed abnormally high levels of

auxin in scr-1 rootmeristems, as visualized byDR5::GFP expres-

sion (Sabatini et al., 1999; Ottenschläger et al., 2003) and as

measured bymass spectrometry (Figures 4A and 4B).DR5::GFP

localization reverted to normal in the arr1-4;scr-1 double mutant

(Figure 4A), suggesting that excess auxin biosynthesis in scr-1 is

induced by ectopic expression of ARR1 in the QC. Among the

auxin biosynthesis genes induced by cytokinin (Jones et al.,

2010) and expressed in the QC (Sun et al., 2009; Bartel and

Fink, 1994; http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi),

NITRILASE 3 (NIT3), NITRILASE 4 (NIT4), and YUCCA6 (YUC6)

are overexpressed in the scr-1 mutant and revert to wild-type

levels in the arr1-4;scr-1 (Figure S4A). Since these genes control

different branches of the tryptophan-dependent auxin bio-

synthesis pathway (Stepanova et al., 2011), we decided to

prevent enzymatic redundant activities by focusing on the

ANTHRANILATE SYNTHASE BETA SUBUNIT 1 (ASB1) gene,

which is expressed in the SCN and catalyzes a rate-limiting

step of tryptophan biosynthesis (Stepanova et al., 2005). ASB1

is induced by cytokinin, as visualized by the pASB1::GUS tran-

scriptional fusion and confirmed by qRT-PCR (Figures S4B

and S4C). Moreover, its induction is dependent on ARR1 func-

tion, since cytokinin treatment of the arr1-4mutant had no effect

on ASB1 levels (Figures S4B and S4C). In addition, a very brief

staining of this transcriptional fusion shows that the expression

of ASB1 is highly upregulated in the QC of the scr-1 mutant

and reverted to wild-type levels in the arr1-4;scr-1 doublemutant

(Figures 4C and S4D). This suggests that overexpression of

ASB1 in the scr-1 mutant background depends on ARR1. To

exclude the possibility that ASB1 transcriptional activation is

under the direct controls of SCR, we performed ChIP-qPCR

analysis as described above for ARR1. Our ChIP-qPCR results
r Inc.
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Figure 3. SCR Controls Stem Cell Activity by Directly Suppressing ARR1 in the QC

(A) Expression analysis of theARR1:GUS translational fusion in, from left to right, WT and scr-4/pWOX5>>SCR:GR>>GFP roots untreated (0h Dex) or treatedwith

Dex for 4, 8, and 24 hr. Black arrow indicates ectopic ARR1 expression in the QC. Black and white arrowheads indicate, respectively, the cortex TZ and the QC.

Scale bar represents 100 mm.

(B) Stem cell niche of, from left to right, ARR1:GUS and scr-4/ pWOX5>>SCR:GR>>GFP;ARR1:GUS untreated (0h Dex) or treated with Dex for 4 and 8 hr. The

black arrow indicates active stem cells in WT and scr-4 roots after 8 hr of Dex treatment. Asterisk indicates the presumptive position of QC cells in scr-4 untreated

roots and in those treated with Dex for 4 hr. Scale bar represents 10 mm.

(C) qRT-PCR performed on sorted QC cells of scr-4 roots carrying the pWOX5>>SCR:GR>>GFP construct, showing significant downregulation of ARR1

transcription upon 4 hr of Dex treatment. Relative expression is normalized to ACTIN2. Error bars represent SD. *p < 0.05 (Student’s t test).

(D) Meristem cell number of, from left to right, WT and scr-4/pWOX5>>SCR:GR>>GFP roots untreated (0h Dex) or treated with Dex for 4, 8, and 24 hr. Error bars

represent SD. *p < 0.05; NS, not significant (Student’s t test).

(E) ChIP-RT qPCR of theARR1 promoter using 5-day-old Col-0 (gray bars) and pSCR::SCR:GFP scr-4 (green bars) plants. ChIP samples were prepared fromQC-

enriched material. qRT-PCR results are shown as fold enrichment compared to Col-0. We found significant enrichment for the several fragments (#2, #3, #4, and

#5) bound by SCR by scanning the 2,186 kb of sequence upstream ofARR1. The data shown are representative of three independent biological experiments with

similar results. Error bars show the SD of the ChIP-qPCR reactions performed in triplicate. *p < 0.05, **p < 0.01 (Student’s t test).

See also Figure S3.
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Figure 4. SCR Controls Auxin Biosynthesis in the QC via ARR1

(A) DR5::GFP expression in, from left to right, WT, scr-1, arr1-4;scr-1, and wei7-4;scr-1 5-day-old root meristems. Scale bar represents 100 mm.

(B) Concentration of free IAA in root tips of WT and scr-1. Error bars represent SD. *p < 0.05 (Student’s t test).

(C) Expression of the pASB1::GUS construct in, from left to right, WT, scr-1 and arr1-4;scr-1. Note that plants were stained for only 30 min. Scale bar represents

50 mm.

(D) Root lengthmeasured over time ofWT, scr-1,wei7-4, andwei7-4;scr-1. Dpg, days postgermination. Error bars represent SD. *p < 0.05, **p < 0.01, ***p < 0.001

(Student’s t test).

(E)QC46 expression and Lugol staining ofWT,wei7-4, scr-1, andwei7-4;scr-1. Black arrows indicate stem cells activity inWT,wei7-4, andwei7-4;scr-1. Asterisk

indicates the presumptive position of QC cells in scr-1. The same result has been obtained with the wei7-1;scr-1 double mutant combination. Scale bar rep-

resents 50 mm.

See also Figure S4.
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suggest that SCR does not directly regulate ASB1 (Figure S3C).

Thus, in the QC of scr-1, loss of repression of ARR1 leads to

overexpression of ASB1 and, consequently, overaccumulation

of auxin in the root meristem.

To determine if overaccumulation of auxin is responsible for

stem cell differentiation in scr-1, we introduced the ASB1 loss-
410 Developmental Cell 26, 405–415, August 26, 2013 ª2013 Elsevie
of-function mutation wei7-4 (WEAK ETHYLENE INSENSITIVE 7)

(Stepanova et al., 2005) into the scr-1 background. Consistent

with our hypothesis, the root of wei7-4;scr-1 displays a stable

root meristem and indeterminate growth (Figures 4D and S4E)

due to a functional SCN (Figures 4E and S4F). This phenotype

is similar to the one of arr1-4;scr-1 previously described (Figures
r Inc.



Figure 5. SCR Controls ARR1 Activity at the

TZ via Auxin

(A) Expression of the ARR1:GUS translational

fusion in, from left to right, mock-treated

pWOX5::IAAH root, pWOX5::IAAH root treated

with IAM, pWOX5::IAAH root treated with IAM and

NPA, and wei7-4 roots untreated or treated with

IAA. Black and white arrowheads indicate,

respectively, the cortex TZ and the QC. Roots

were analyzed 5 dpg. Scale bar represents

100 mm.

(B) qRT-PCR showing upregulation of ARR1 tran-

scription in pWOX5::IAAH roots upon 3 hr of IAM

treatment. Error bars represent SD. **p < 0.01

(Student’s t test).

(C) qRT-PCR showing low ARR1 transcript levels

in wei7-4. Error bars represent SD. *p < 0.05

(Student’s t test).

(D) Root meristem cell number in, from left to right,

WT, wei7-4, WT upon 16 hr of IAA treatment, and

wei7-4 upon 16 hr of IAA treatment. Error bars

represent SD. *p < 0.05; NS, not significant

(Student’s t test). Roots were analyzed 5 dpg.

(E) Root meristem cell number in, from left to right,

mock-treated pWOX5::IAAH root, pWOX5::IAAH

treated 24 hr with IAM, mock-treated arr1-

4;pWOX5::IAAH, and arr1-4;pWOX5::IAAH

treated for 24 hr with IAM. Error bars represent SD.

*p < 0.05, **p < 0.01 (Student’s t test). Roots were

analyzed 5 dpg.

See also Figure S5.
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2C and S2D). In addition, DR5::GFP expression in the root tip of

wei7-4;scr-1 reverted to lower levels compared to scr-1 (Fig-

ure 4A), further supporting the hypothesis that ASB1 upregula-

tion in the scr-1QC is responsible for the abnormal accumulation

of auxin in this mutant.

Therefore, our working model is that in scr-1, lack of ARR1

repression in the QC cells leads to ASB1-dependent auxin over-
Developmental Cell 26, 405–415
accumulation responsible for stem cell

inactivation, meristem consumption, and

determinate root growth (Figure S4G). At

the same time, we are showing that

SCR can be induced by auxin (Fig-

ure S5A), thus generating a local feed-

back loop involved in homeostasis of

auxin levels responsible for SCN activity.

SCR Regulates ARR1 Non-Cell-
Autonomously through Auxin
We next asked if auxin could mediate the

non-cell-autonomous effect of SCR on

ARR1 expression at the TZ (Figure 3A).

We found that exogenous auxin applica-

tion induces ARR1 expression in the TZ

(Figures S5B and S5C). To further test

this hypothesis, we employed a construct

expressing the IAAH gene, the bacterial

auxin biosynthetic enzyme, driven by the

WOX5 promoter (pWOX5::IAAH) (Fig-

ure S5D) (Blilou et al., 2005). In pWOX5::
IAAH plants, auxin biosynthesis can be induced specifically in

theQC after indole-3-acetamide (IAM) auxin precursor treatment

(Blilou et al., 2005). We observed that, as early as at 3 hr of IAM

treatment, a QC-specific increase of auxin levels was sufficient

to induce ARR1 expression in the TZ but not in the QC (Figures

5A and 5B). To verify that auxin produced in the QC was trans-

ported in the TZ and that this resulted in ARR1 transcriptional
, August 26, 2013 ª2013 Elsevier Inc. 411



Figure 6. Model for the Spatial Coordination between SCN and TZ

Model showing how SCR presides over the spatial coordination between stem

cell niche (SCN) and transition zone (TZ) activity. In the QC (yellow), SCR re-

pressesARR1, which in turn controls auxin production viaASB1, thus enabling

cell division along the transamplifying zone. SCR also exerts, via polar auxin

transport (PAT), a long-distance control on ARR1 at the TZ, enabling cytokinin

to sustain cell differentiation via SHY2 (Dello Ioio et al., 2008).
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activation, we treated plants in the presence of N-naphthylph-

thalamic acid (NPA), an inhibitor of auxin transport (Jacobs

and Rubery, 1988). Production of auxin in the QC, via the

pWOX5::IAAH/IAM system, resulted in accumulation of the auxin

sensor DR5::GFP at the TZ. We could show that this accumula-

tion is prevented via NPA treatment (Blilou et al., 2005) (Fig-

ure S5D). Interestingly, lack of DR5::GFP accumulation at the

TZ upon NPA treatment was accompanied by lack of ARR1 in-

duction at the TZ (Figure 5A), strongly suggesting that auxin is

the non-cell-autonomous factor that controls ARR1 activity in

the TZ from the QC.

To determine if ASB1-dependent auxin production in the QC

could control ARR1 activity in the TZ, we analyzed ARR1 expres-

sion in the wei7-4 mutant. We observed lower ARR1 mRNA and

protein levels and an enlarged rootmeristem (Figures 5A, 5C, and

5D). Interestingly, ARR1 protein levels reverted to wild-type after

3 hr of exogenous auxin application (Figure 5A), followed by root

meristem size complementation after 16 hr of auxin application

(Figure 5D). We then asked if auxin produced in the QC is suffi-

cient to induce cell differentiation in the TZ, and if so, if it acts

through ARR1. Consistent with this hypothesis, we observed

that the root meristem size of wild-type plants carrying a

pWOX5::IAAH construct was reduced after 24 hr of IAM supply-

ing, and thus of auxin production, while no meristem size reduc-

tion was observed when the same construct was introduced into

the arr1-4 background (Figure 5E). Taken together, these results

indicate that auxin is the non-cell-autonomous signal, which orig-

inates in the QC and controls ARR1 activity in the TZ (Figure 6).

We hypothesize that heightened levels of auxin induce cell differ-

entiation in the TZ via the cytokinin-signaling pathway.
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DISCUSSION

In both plants and animals, organ morphogenesis depends on

the coordination between the activities of cells belonging to

different tissues and at different developmental stages. In partic-

ular, SCN activity and differentiation of their progeny must be

coordinated to ensure coherent growth. As observed in animal

organogenesis (e.g., growth of mammalian bones or the gut

crypt) (Spradling et al., 2001; Wolpert and Tickle, 2011), stem

cell division and terminal differentiation of the progeny in the

plant root take place in physically distinct zones separated by

a group of transit-amplifying cells (Scheres, 2007; Sablowski,

2011). Here, we show that in Arabidopsis, the SCR gene acts

from the QC to coordinate stem cell division and cell differentia-

tion (model in Figure 6). It had been previously shown that SCR is

necessary and sufficient to maintain the SCN (Sabatini et al.,

2003) but the molecular mechanisms through which it sustains

QC and stem cell activity are unknown. We show that SCR

directly represses ARR1 specifically in the QC, thereby repres-

sing cytokinin-dependent cell differentiation and sustaining

SCN activity (model in Figure 6). This is in line with what is already

observed in animal systems, where master regulatory trans-

cription factors mediate stem cell maintenance through direct

transcriptional repression of factors that in turn would promote

differentiation (Bernstein et al., 2006; Mikkelsen et al., 2007).

Ectopic expression of ARR1 in the scr-1 QC induces stem cell

differentiation via a mechanism different from the one acting in

the TZ, which relies on the transcriptional activation of the

SHY2 gene (Dello Ioio et al., 2008). In the QC, ARR1 regulates

auxin production by modulating expression of the auxin biosyn-

thesis gene ASB1. ASB1 controls a rate-limiting step in auxin

biosynthesis and is specifically expressed in the SCN, being

most active in theQC. Interestingly, other genes involved in auxin

biosynthesis and acting downstream of the ASB1 pathway, such

as TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1

(TAA1) (Stepanova et al., 2008), NIT3 (Sun et al., 2009),

CYTOCHROME P450 FAMILY 79 SUBFAMILY B POLYPEPTIDE

2 (CYP79B2), and CYP79B3 (Ljung et al., 2005) and YUCCA2

(YUC2) (Sun et al., 2009), are specifically expressed in the QC,

thus suggesting that the QC is the primary source of auxin in

the root meristem. A future challenge will be to understand how

auxin produced in the QC controls the activity of the surrounding

stem cells. Recently, it has been shown that SCR in the cortex/

endodermis stem cell is part of a complex specifically involved

in ground tissue stem cell asymmetric division (Cruz-Ramı́rez

et al., 2012). The activity of this complex depends on auxin levels

(Cruz-Ramı́rez et al., 2012), leading to the intriguing hypothesis

that SCR, by controlling auxin biosynthesis in theQC, controls di-

vision of the other stem cell types modulating the activities of

similar complexes. On the other hand, it is well known that titra-

tion of auxin levels in the SCN is critical to the maintenance of

stemcell activity, since it has been shown that high levels of auxin

promote stem cell differentiation (Ding and Friml, 2010).

By controlling the level of auxin production in theQC, SCR also

exerts a long-distance control on ARR1 in the TZ. Auxin pro-

duced by ASB1 in the QC, distributed in the meristem via the

auxin transport facilitators (e.g., PIN, PGP genes) (Friml, 2010),

is sufficient to activate expression of ARR1 in the TZ, where

ARR1 controls SHY2 expression. SHY2 negatively controls
r Inc.
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PIN’s activities and auxin transport, enabling cytokinin to trigger

differentiation of transit-amplifying cells (model in Figure 6) (Dello

Ioio et al., 2008). It is worth mentioning that SCR, by controlling

activity of the PHABULOSA gene (Carlsbecker et al., 2010)

also controls ARR1 protein activity by regulating cytokinin

biosynthesis in the vascular tissues (Dello Ioio et al., 2012).

In conclusion, we propose amodel in which the SCN organizer

not only controls division of the surrounding stem cells (van den

Berg et al., 1997) but also regulates the differentiation of the

transit-amplifying cells in the TZ. QC activity depends on SCR

(Sabatini et al., 2003), which suppresses ARR1, thus titrating

auxin production via the ASB1 gene. Auxin produced in the QC

not only controls stem cell division activity by an as-yet-unknown

mechanism but at the same time acts as a long-distance signal

to fine-tune the level of ARR1 transcription in the TZ, thus con-

trolling the rate of differentiation. In this way, a single gene,

SCR, regulates the spatial coordination between stem cell divi-

sion and differentiation, ensuring coherent root growth.

EXPERIMENTAL PROCEDURES

Plant Materials

The Arabidopsis thaliana ecotypes Columbia (Col-0), Wassilewskija (Ws), and

Landsberg erecta (Ler) were used. ahk3-3, arr1-4, arr1-3, arr12-1, wei7-4, and

wei7-1 mutants are in Col-0 background (Dello Ioio et al., 2007, 2008; Stepa-

nova et al., 2005), shy2-31mutant is in Ler background (Dello Ioio et al., 2008),

and scr-1 and scr-4mutants are in Ws background (Fukaki et al., 1998; Saba-

tini et al., 2003). pAHK3::AHK3:GUS, pARR12::ARR12:GUS, pARR1::ARR1:

GUS, pWOX5::GFP, QC25, QC46, DR5::GFP, pSCR::SCR:GFP, pWOX5:

IAAH/DR5::GFP and pASB1::GUS transgenic plants have been described pre-

viously (Dello Ioio et al., 2007, 2008; Blilou et al., 2005; Sabatini et al., 2003;

Stepanova et al., 2005; Ottenschläger et al., 2003). TheQ1630 and J0571 lines

belong to the Haseloff collection (http://arabidopsis.info/CollectionInfo?

id=24).

Plant Growth Conditions

Seeds were surface sterilized using 50%bleach for 10minutes and then rinsed

four times with sterile water. After 5 days of cold treatment, A. thaliana seeds

were plated and grown, in a near-vertical position, at 22�C in long-day condi-

tions (16 hr light/8 hr dark cycle) on one-half MS (Murashige and Skoog

medium, Duchefa) supplemented with sucrose as previously described (Perilli

and Sabatini, 2010). Plants for IAA measurement were grown as previously

described (Ljung et al., 2005).

Root Length and Meristem Size Analysis

For root length measurements, plates were photographed and the resulting

images were analyzed using the ImageJ software available online (http://

rsbweb.nih.gov/ij/). For meristem size analysis, roots were prepared in a glass

slide with chloralhydrate, as described in Perilli and Sabatini (2010), and then

observed using an Axio Imager.A2 (Zeiss) light microscopy. To measure root

meristem size, the number of cortical cells along a cell file (from the QC to

the first elongated cell) were counted. To measure root development over

time, root length andmeristem size were analyzed at different days postgermi-

nation (dpg): 3 dpg, 5 dpg, 7 dpg, 9 dpg, 12 dpg, and 15 dpg. For each exper-

iment, at least 90 roots were analyzed and the mean and SD were calculated.

Hormonal Treatments

The 5-day old seedlings were transferred to solid one-half MS medium con-

taining mock conditions or a suitable concentration of hormone. For auxin

treatment, we used indole-3-acetic acid (IAA, Duchefa) at a final concentration

of 5 mM, prepared from a 10 mM stock in ethanol. Plants were treated for 2, 3,

and 16 hr. For cytokinin treatment, we used trans-zeatin (tZ, Duchefa) at a final

concentration of 5 mM, prepared from a 30 mM stock in 1N NaOH. Plants were

treated for 4 hr. For auxin induction specifically within QC cells, plants carrying

the pWOX5::IAAH construct, in wild-type and in arr1-4 mutant background,
Develop
were treated for 3 hr with 10 mM indole-3-acetamide (IAM, Sigma-Aldrich), a

precursor of IAA, prepared from a 10 mM stock in DMSO. To inhibit auxin

transport, plants were pretreated 1 hr with 50 mM NPA (Duchefa) and then

treated for 3 hr with both 10 mM IAM and 50 mMNPA together. For each exper-

iment, at least 90 roots were analyzed.

GUS Histochemical Assay

To visualize QC25, QC46, pASB1::GUS, pAHK3::AHK3:GUS

pARR12::ARR12:GUS and pARR1::ARR1:GUS lines, GUS histochemical

assay was performed using the b-glucuronidase substrate X-gluc (5-bromo-

4-chloro-3-indolyl glucuronide, Duchefa) dissolved in N-N-dimethyl-form-

amide. X-gluc solution, composed of 100 mM Na2HPO4, 100 mM NaH2PO4,

0.5 mM K3 Fe(CN)6, 0.5 mM K4Fe(CN)6, 0.1% Triton X-100, and 1 mg/ml X-

gluc, was prepared as previously described (Perilli and Sabatini, 2010). Five-

day old seedlings were incubated for 16 hr at 37�C in the dark and imaged

using the Axio Imager.A2 (Zeiss) microscopy. pASB1::GUS in Figure 4C was

stained for 30 min only. For each experiment, at least 90 roots were analyzed.

Lugol Staining

Starch granules in the root tips were stained with Lugol solution (Carlo Erba

Reagenti) for few seconds and then immediately observed and photographed

at microscopy as previously described (van den Berg et al., 1997; Sabatini

et al., 2003).

Confocal Image Processing

Confocal images ofmedian longitudinal sections of 5-day-old roots were taken

using a Zeiss LSM 780 microscope. A 10 mg/ml propidium iodide (Sigma)

solution was used to visualize the cell wall.

Analysis of ARR1 Expression In Vivo using GUS Histochemical Assay

In vivo analysis of ARR1 expression in SCR:GRplants after Dex treatment were

performed as follows: scr-4/pWOX5>>SCR:GR>>GFP;pARR1::ARR1:GUS

were treated for 4, 8, and 24 hr with 2 mM Dex or an equivalent amount of

DMSO as mock treatment. After Dex treatment, plants were stained 16 hr for

the b-glucuronidase activity of pARR1::ARR1:GUS transgene and visualized

asdescribed above. Starch granuleswere visualized andmeristemcell number

was counted as described above (Dello Ioio et al., 2007; Sabatini et al., 2003;

Perilli and Sabatini, 2010). To analyze the long-distance effect of both auxin

and polar auxin transport on ARR1, 5-day-old pWOX5::IAAH;pARR1::ARR1:

GUS plants were treated for 3 hr with 10 mM IAM and with both 10 mM IAM

and 50 mM NPA as described above. After treatment, plants were stained for

16 hr for the b-glucuronidase activity of pARR1::ARR1:GUS transgene and

visualized as described previously (Dello Ioio et al., 2007; Perilli and Sabatini,

2010). Meristem cell numbers were counted as described above. For exoge-

nous auxin application, plants were treated for 3 hr with 5 mM IAA and stained

as described above. For each experiment, at least 90 roots were analyzed.

FACS and qRT-PCR Experiments

scr-4/pWOX5>>SCR:GR>>GFP seeds were plated, on top of nylon mesh

(Nitex 03-100/44, Sefar America), on one-half MS agar (+1% sucrose) plates

at a density of approximately 500 seeds per row 5-day-old seedlings were

transferred onto plates containing 10 mM Dex (Sigma-Aldrich), prepared

from a 10 mM stock in DMSO, or an equivalent amount of DMSO, as mock

treatment. Root tips (3–4 mm) were collected 4 hr after Dex treatment and

protoplasted. QC cells expressing GFP were isolated on a fluorescence-acti-

vated cell sorter (Becton Dickinson FACSAriaII) as described elsewhere (Nawy

et al., 2005). Sorted cells were collected directly into a RNA lysis buffer

(QIAGEN RLT buffer, RNeasy Micro kit), mixed, and immediately frozen at

�80�C. Experiments were carried out in two consecutive days, obtaining

two biological replicates for each treatment (mock and Dex). mRNA was later

isolated and treatedwith DNase using TURBODNA-free Kit. EachRNA sample

was reverse transcribed using the SuperScript III first-strand Synthesis system

(Invitrogen) according to the manufacturer’s instructions. qRT-PCR was per-

formed in triplicates from each RNA sample and repeated twice using SYBR

Green PCR Master mix (Applied Biosystems) with the ViiA 7 real-time PCR

system (Applied Biosystems). Expression levels were calculated relative to

ACTIN2 using the 2-DDct method. Statistical analysis was done in MS Excel

(ANOVA: single factor) using p < 0.05. Primers were designed according to
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the recommendations of Applied Biosystems. qRT-PCR analysis was con-

ducted using following gene-specific primers:

ARR1 FW: 50-TTGAAGAAACCGCGTGTCGTCT-30 and ARR1 RV:

50-CCTTCTCAACGCCGAGCTGATTAA-30 for ARR1
ACT FW: 50-CCTTCTCAACGCCGAGCTGATTAA-30 and ACT RV:

50-GTGGATTCCAGCAGCTTCCAT-30 for ACTIN2
ChIP followed by Gene-Specific qRT-PCR

ChIP was conducted as described in Sozzani et al. (2010) on either Col-0, as

control, or pSCR::SCR:GFP/scr-4 5-day-old dissected roots, which included

longitudinal sections composed of three to five cell lengths from the QC as

described in Brady et al. (2007). Immunoprecipitation was done using a rabbit

polyclonal antibody to GFP (ab290; Abcam). DNA from the ChIP, for both Col-

0 and pSCR::SCR:GFP experiments, was individually amplified using a

random-primer-based genome amplification method according to the Agilent

Mammalian ChIP-on-chip protocol with minor modifications. Briefly, chro-

matin from the Col-0 and pSCR::SCR:GFP was blunted using T4 DNA poly-

merase, then linkers were added using T4 DNA ligase (oligo JW102 50-GCG

GTGACCCGGGAGATCTGAATTC-30 and oligo JW103 50-GAATTCAGATC-

30 ). The immunoprecipitate was then amplified with 15 PCR cycles (first LM-

PCR) and then the reaction was diluted and used as template for a second

round of 20 cycles (second LM-PCR). The DNA was cleaned up each time

using the MiniElute Reaction Cleanup kit (QIAGEN). Enrichment of the ARR1

putative target promoter-region DNA was determined using qRT-PCR. A

qPCR efficiency of 2-fold amplifications per cycle was assumed, and

sequences from ubiquitin 10 (UBQ10) were used to normalize the results

between samples (see Supplemental Experimental Procedures for primer

sequences). Tiling along the At3G16857 ARR1 gene was done using specific

primers along the putative 2,186 kb region of the ARR1 promoter (see Supple-

mental Experimental Procedures for primer sequences).

Tiling along the AT1G25220 ASB1 gene was done using specific primers

along the putative ASB1 promoter (see Supplemental Experimental Proce-

dures for primer sequences). Detailed descriptions of the transgenic lines

construction and analysis, ChIP techniques, and transcript-level analysis are

provided in the Supplemental Experimental Procedures.

IAA Quantification

Root tips (3 mm) from 20 4-day-old seedlings were collected and pooled for

IAA quantification. A total of 150 pg 13C6-IAA was added as internal standard

to each sample before purification and analysis by gas chromatography

selected-reaction-monitoring mass spectrometry as described previously

(Edlund et al., 1995).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at http://dx.doi.org/

10.1016/j.devcel.2013.06.025.
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