On the Non-existence of Graphs with Transitive Generalized Dicyclic Groups

LEWIS A. NOWITZ

Computer Applications, Inc., and New York University, New York, New York

Communicated by Alan Hoffman

ABSTRACT

In this paper it is shown that no finite (undirected) graph can have a faithful, transitive representation of a generalized dicyclic group as the full group of automorphisms on its vertices.

By a graph X we mean a finite set V with a set E of unordered pairs of distinct elements of V. Unordered pairs will be indicated by brackets. The elements of V are called vertices of X, denoted $V(X)$; the elements of E are the edges of X, denoted $E(X)$. $G(X)$ denotes the automorphism group of X, considered as a permutation group on $V(X)$. Although X has little apparent structure, the possible permutation groups $G(X)$ are severely limited. For example, most transitive Abelian groups cannot be automorphism groups of graphs. If a doubly transitive group of degree n is the automorphism group of a graph, then it must be isomorphic to the symmetric group [1–5].

A generalized dicyclic group \mathcal{G} is generated by an Abelian group A and an element $b \notin A$, such that $b^4 = 1$, $b^2 \in A$, $b^2 \neq 1$, and $b^{-1}ab = a^{-1}$, for $a \in A$.

THEOREM. A transitive generalized dicyclic group \mathcal{G} is not the group of any graph X.

PROOF: We will make use of the following two results of Sabidussi [6]:

1. If $G(X)$ is a regular group and if $G(X)$ is not isomorphic to the cyclic group of order 2, then X is connected.

2. Let G be a group, and let H be a subset of G which does not contain the identity. Define $X_{G,H}$ by:

$$V(X_{G,H}) = \{G\}, \quad E(X_{G,H}) = \{[g, gh], g \in G, h \in H\}.$$

Then $X_{G,H}$ is connected if and only if H is a set of generators of G.

49
LEMMA. The only faithful representation of a generalized dicyclic group \(\bar{G} \) as a group of permutations is the regular representation.

PROOF: Let \(K \) be a proper subgroup of \(\bar{G} \), i.e., \(\{1\} \subset K \). Let \(k \in A \cap K \), \(ab \in Ab \). Then \((ab)^{-1} kab = b^{-1}a^{-1}kab = b^{-1}kb = k^{-1}\). Therefore, the group generated by \(k \) is normal in \(\bar{G} \). Now let \(kb \in Ab \cap K \). Then \((kb)^2 = kbb = bk^{-1}kb = b^2 \in A \), so the group generated by \(b^2 \) is normal in \(\bar{G} \).

Since every proper subgroup \(K \) of \(G \) itself contains a proper subgroup which is normal in \(\bar{G} \), no representation of \(\bar{G} \) on the cosets of such a group \(K \) is faithful [7]. Therefore the only transitive faithful representation of \(\bar{G} \) is the regular representation.

We now prove the main result. Assume the contrary: There exists a graph \(X \) with transitive group \(\bar{G}(X) \). Then \(\bar{G} \) is regular, and \(X \) is connected. Therefore we may identify \(V(X) \) with elements of \(\bar{G} \). Moreover, \(E(X) = \{[g, hh]\} \) where \(g \in \bar{G} \), \(h \in H \), and \(H \) is a set of generators of \(\bar{G} \).

Let \(A \) be the Abelian subgroup of \(\bar{G} \) indicated above and let \(b \notin A \). Then

\[
V(X_{\bar{G}, H}) = \{a_0 = 1, a_1, \ldots, a_{n-1}, a_0b, a_1b, \ldots, a_{n-1}b\},
\]

where the order of \(G \) is \(2n \) and where the order of \(A \) is \(n \).

Now let \(\rho \) be a permutation of \(V(X_{\bar{G}(X), H}) \) defined by

\[
\rho: g \rightarrow bg, \quad g \in A,
\]

\[
\rho: g \rightarrow b^{-1}g, \quad g \notin A.
\]

Then \(\rho \) is an automorphism of \(X \).

Let

\[
a \in A, \quad b \in Ab, \quad a \in A \cap H, \quad a^*b \in Ab \cap H.
\]

We define \([g_1, g_2] \cong [g_1', g_2']\) if and only if both are in \(E(X) \) or both are not in \(E(X) \).

CASE 1a: Both vertices of \(V(X) \) are in \(\{A\} \):

\[
[p(a), p(a\bar{a})] \cong [ba, ba\bar{a}] \cong [a, a\bar{a}].
\]

CASE 1b: Both vertices of \(V(X) \) are in \(\{Ab\} \):

\[
[ab, a\bar{a}b] = [ab, ab(b^{-1}\bar{a}b)] = [ab, ab\bar{a}^{-1}].
\]

Furthermore

\[
[p(ab), p(ab\bar{a}^{-1})] \cong [b^{-1}ab, b^{-1}ab\bar{a}^{-1}]
\]

\[
\cong [a^{-1}, a^{-1}\bar{a}^{-1}] \cong [ab, ab\bar{a}^{-1}].
\]
ON THE NON-EXISTENCE OF CERTAIN GRAPHS

Case 2: One vertex in \(\{A\} \), one vertex in \(\{Ab\} \):

\[
[p(a), p(aa*b)] \cong [ba, b^{-1}aa*b] \cong [ba, a^{-1}a*^{-1}] \cong \\
\cong [ba, ba((a^{-1}b^{-1}) a^{-1}a*^{-1})] \cong \\
\cong [ba, ba(b^{-1}a) a^{-1}a*^{-1}] \cong \\
\cong [ba, ba(b^{-1}a*^{-1})] \cong [ba, ba(a*b)^{-1}] \cong \\
\cong [ba(a*b)^{-1}, ba(a*b)^{-1} a*b] \cong [a, aa*b].
\]

Cases 1 and 2 exhaust all possibilities.

So \(\rho \) is an automorphism of \(X \) and \(\rho \notin \bar{G} \), which proves the theorem.

Corollary. Let \(\bar{K} \) be a generalized dicyclic group with exactly one element of order two. Let \(G(X) \) be a primitive graph group containing \(\bar{K} \) as a transitive subgroup. Then \(G(X) \cong \) symmetric group on \(n \) symbols (\(\Sigma_n \)) where \(n \) is the cardinal number of \(V(X) \).

Proof: We have shown that \(\bar{K} \) must be regular. But such groups \(\bar{K} \) are \(B \)-groups, i.e., every primitive group containing the regular representation of \(\bar{K} \) as a subgroup is doubly transitive [7, 8]. Therefore \(G(X) \cong \Sigma_n \).

Acknowledgment

The author would like to express his thanks to Professor Wilhelm Magnus for his advice and encouragement in the preparation of this paper.

Reference