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speeds were estimated using the ITTC friction correlation 
formulae (equation 1-3), and the results found experimentally 
are normalized and given in Table 2 for comparison purpose. 

 
Rf = Cf×0.5×SV2                                                    (1) 
 
where Rf is the frictional resistance in N, and V is the flow 
velocity in m/s. 
 

Cf = 0.075/(logRn-2)2                                             (2)  
 
where Cf is the coefficient of frictional resistance, and Rn is 
the Reynolds number.  
 
The wetted surface area in m2 is 
 
S = 3.14×0.324×(3.72-2.79)                       (3) 
 

 
 
Table 2 Normalized incremental resistance of parallel middle body; measured and estimated. 
 

Test Section 
Velocity, 
V [m/s] 

R' measured  R estimated from ITTC method 

L =3.72m L = 2.79m R for 
L=3.72-2.79m

Rn for L=3.72m Cf for L=3.72m 
R' for 

L=3.72-2.79m

5 0.204735 0.186299 0.018 2.32E+07 2.60E-03 31 

5.5 0.202883 0.18925 0.014 2.55E+07 2.57E-03 37 

6 0.201474 0.185976 0.015 2.79E+07 2.53E-03 43 

6.5 0.199803 0.183727 0.016 3.02E+07 2.50E-03 50 

7 0.197527 0.184161 0.013 3.25E+07 2.47E-03 57 

7.5 0.196218 0.185006 0.011 3.48E+07 2.44E-03 65 

8 0.195199 0.183449 0.012 3.72E+07 2.42E-03 73 

8.5 0.195069 0.183318 0.012 3.95E+07 2.39E-03 82 

9 0.194661 0.183281 0.011 4.18E+07 2.37E-03 91 

10 0.194062 0.183388 0.011 4.64E+07 2.34E-03 110 

 
 
 
Estimation of blockage correction 

 
In order to determine the correct self propulsion point of 

the model body, the measured values of resistance in the CT 
were corrected for tunnel blockage effects. Calculation of 
the blockage effects in the CT were made by comparing the 
resistance values of identical body models measured in CT 
and in HSTT. The Heavy Weight Body (HWB) tests in 
HSTT were conducted for the full scale model while the 
model size in the CT was scaled down to 60.62 %. 
Therefore, a straight forward comparison is not possible. 
Accordingly, an alternate method as described below was 
employed. 

 
 The light weight body (LWB) models of 2.64 m length 

were tested in both HSTT and in CT in the same scale, the 

results of which are presented in Table 3. A comparison of 
the LWB test data shows that the resistance in HSTT (i.e., 
free field condition) is about 59 % of that measured in CT. 

 
 Table 4 presents the resistance of the 3.7 m HWB model 

and 2.64 m LWB model, both measured in CT. The 
resistance of both the models is almost equal to each other 
at all speeds (within the dynamometer inaccuracies) even 
though their lengths differ by about 1.1 m. Such closeness 
in resistance values could be attributed to the blunt nose of 
LWB compared to the ogive shaped nose of the HWB. CFD 
analysis carried out earlier to analyse the effect of nose 
shape on body resistance too shows the high resistance of a 
flat LWB nose compared to a HWB nose. A summary of 
the CFD analysis is presented in Table 5 to corroborate the 
experimental findings. 
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Table 3 Normalized resistance of LWB in CT and in HSTT. 
 

LWB with Faired Dummy Hub in CT & HSTT 

 L=2.64m   L=2.64m 
Res HSTT 
/Res CT 

 CT HSTT  

V [m/s] R' R'  

6 0.205 0.121 0.59 

7 0.201 0.119 0.59 

7.5 0.201 0.119 0.59 

8 0.199 0.117 0.59 

8.5 0.198 0.117 0.59 

9 0.199 0.116 0.58 

 
Table 4 Normalized resistance of LWB & HWB in CT. 
 

 LWB HWB 

 L=2.64m L=3.72m 

V [m/s] R' R' 

5 0.199 0.205 

6 0.205 0.201 

7 0.201 0.198 

7.5 0.201 0.196 

8 0.199 0.195 

8.5 0.198 0.195 

9 0.199 0.195 

 
 
CFD Analysis of Nose Shapes 

 
In order to evaluate the effect of nose shape on resistance, 

CFD analysis was carried out first with LWB body fitted with 
2 different nose shapes as indicated in Fig. 6. The results of 
CFD analysis given in Table 5 show that the drag for a flat 
LWB nose is 262 Kg for a speed . When the LWB nose is 
replaced by ogive HWB nose, the drag reduces to 200 Kg, i.e. 
a reduction of nearly 24%. This drastic reduction in drag of 
HWB compared to LWB due to change in nose shape, 
corroborates the similarities of their resistance values found 
experimentally. 

 
Table 5 CFD results of body with flat and ogive nose shapes. 

Profile 
Length 
(mm) 

Rn 
Drag 
(Kg) 

1: Flat LWB Nose with body 2640 4.36E+07 262 

2: Ogive HWB Nose with body 2798.8 4.62E+07 200 

 
 
Fig. 6 Nose profiles used for CFD analysis. 
 

Considering the above results, it is reasonable to assume 
that the resistance of LWB (2.64 m) and the HWB (3.7 m) in 
HSTT will be close to each other.  Therefore, the HSTT 
resistance test data of LWB (already measured) can be used 
(as given in Table 6) for HWB (3.7m) since no experimental 
data is available for this scale. It is evident from Table 6 that 
the HWB resistance values in HSTT are 60% of the 
corresponding values in CT, which matches very well with 
the LWB test data in CT and HSTT (Table 3). Therefore, we 
have taken 60% of the HWB/Mod2 model resistance values 
measured in CT to get the corresponding free field values. 
Table 5 gives the resistance correction to be added to the CT 
measurements for 2.91 m model at different speeds to get 
their corresponding free field values. 

 
Table 6 Normalized resistance data of HWB (in HSTT & CT). 
 

HWB 
CT HSTT Res HSTT 

/Res CT L =3.72m L=3.72m 

V [m/s] R' R'  

5 0.205 0.124 0.61 

6 0.201 0.121 0.6 

7 0.198 0.119 0.6 

8 0.195 0.117 0.6 

9 0.195 0.116 0.6 

10 0.194 0.115 0.59 

 
Table 7 Normalized blockage corrections for 2.91m model. 
 

 
Res CT 

Res HSTT 
= 0.59Res CT 

BLOCKAGE 
CORRECTION

V (m/s) CORR [N] 

6 0.188 0.111 -114 

7 0.186 0.110 -154 

8 0.185 0.109 -200 

9 0.185 0.109 -253 

10 0.185 0.109 -312 
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 Reduction in rotor thrust for the design could be estimated 

reasonably well using the technique. 
 

 The CT results were found reasonably close to the HSTT 
results. It suggests that systematic resistance and propulsion 
tests of submerged models can be done entirely in the CT 
without the apprehensions of tunnel wall effects. 
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