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Strict requirements of scientific journals allied to the need to prove the experimental data are (in)significant from
the statistical standpoint have led to a steep increase in the use and development of statistical software. In this
aspect, it is observed that the increasing number of software tools and packages and theirwide usage has created
a generation of ‘click and go’ users, who are eagerly destined to obtain the p-values and multivariate graphs
(projection of samples and variables on the factor plane), but have no idea on how the statistical parameters
are calculated and the theoretical and practical reasons he/she performed such tests. However, in this paper,
some published examples are listed and discussed in detail to provide a holistic insight (positive points and
limitations) about the uses andmisuses of some statistical methods using different available statistical software.
Additionally, a brief description of several commercial and free statistical software is made highlighting their
advantages and limitations.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

It is noteworthy that the use of mathematical and statistical
methods, including chemometrics and many other statistical methods/
algorithms, in food science and technology has increased steeply in
the last 20 years (Fig. 1), and this trend is clearly followed by the
development of different algorithms and computational software that
facilitates the widespread use of those methods. This trend can be
attributable to the low cost of computers and the increasing capacity
of processing techniques to analyze complex and high volumes of
experimental results. In addition, there is a concern by software
developers in providing computational packages with user-friendly
interfaces. In this sense, mathematicians and statisticians have
optimized and developed new methods to solve problems in different
areas, such as medicine, chemistry, agronomy, biology, food science
and technology, among others. These methods or models have been
implemented in computational packages (software) and scientists
have been benefited from their use as the manual calculation is time-
consuming and usually imprecise (for large datasets). As well outlined
by Granato and Calado (2014), it is still common to find researchers
using inefficient statistical methods to analyze experimental results,
especially experiments that do not follow an experimental design
(when the designwould allowmuchbetter understanding of the gener-
ated data). In addition, as well noted by Passari, Soares, and Bruns
(2011), many researchers still have difficulties in understanding and
interpreting crucial statistical concepts and results from computational
software. This is an aspect of concern as contemporary issues demand
the use of multidisciplinary approaches, which are usually based on
the use of computational software and on the understanding of statisti-
cal and modeling concepts.

Computational tools available can be used not only to run statistical
analysis such as univariate and bivariate tests as well as multivariate
calibration and development of complexmodels, but also to run simula-
tions of different scenarios considering a set of inputs or simply making
predictions for specific data sets or conditions. Conducting a quick
search in the most reputable scientific databases (Pubmed,
ScienceDirect, Scopus), it is possible to observe that statistical methods
have gained a huge space in different areas (Fig. 1B), and there is a great
interest in using these approaches inmany scientific fields (i.e., microbi-
ology, nutrition, optimization of products and processes, food chemis-
try, food technologies). In addition, several modeling tools for
predictions of microbial behavior, stability of chemical compounds dur-
ing food processing and for simulations are available and become well
known and increasingly applied in the field (Corradini and Peleg,
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Fig. 1. Number of published articles in ScienceDirect from 1997 to 2014 using the term
‘statistical analysis’ (A), ‘chemometrics’ (B), and some other statistical techniques used
in data treatment (from 2010 to June 2015) (C). Note: RSM= response surface method-
ology; ANN=artificial neural networks; PCA=principal component analysis; CA= clus-
ter analysis; PLSDA = partial least-squares discriminant analysis; KNN = k-nearest
neighbors; SIMCA= soft independentmodeling of class analogy; PaS=parametric statis-
tics; NPaS = non-parametric statistics.
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2006, van Boekel, 2008, Tenenhaus-Aziza and Ellouze, 2015). These
facts highlight the relevance of statistical and computational tools in
the advancements and understanding of important aspects dealing
with quality and safety problems of foods.

Despite recent increased awareness of the benefits of using these
tools, it is important to mention that they have not been widely applied
by all scientists due to many technical reasons. Among them, we could
highlight the lack of explanation on how these techniques can be used
and how they should be used with different types of experimental
data. Another debatable issue is that most statistical books are aimed
to mathematicians and chemists, which means that the technical lan-
guage used by authors is somewhat difficult to understand and a deep
knowledge on basic statistics and mathematical modeling are required
to use these books as references. Notwithstanding, it is very important
to stand out the importance of using accurate statistical techniques of
data from food science, including sensory evaluation, development of
food products/processes and food microbiology, as well as in quality
control in food industries. In this sense, the concept of statistics applied
in food research is widespread, but concern exists on how the statistical
analyses have been carried out, especially when computational
software is used, and how researchers have interpreted and reported
the results. Based on this concern, the objective of this paper is to give
emphasis on the use and misuses of several commercial and free
statistical software for conduction of statistical analysis. Nonetheless,
in this article, wewill focus on the aspects related to advantages, limita-
tions and applications of some statistical software used in food science
and technology.

2. Analysis of the literature: does the use of software represent a
good strategy for the food scientist?

There is no right answer to this general question as the use of soft-
ware may represent an excellent and required strategy in some cases,
such as multivariate calibration using partial least-square regression,
butmay beunnecessary to calculate themeans for threemeasurements,
for example. Therefore, answering this question mainly depends on the
type of study and characteristics of the generated data (i.e., quantitative,
qualitative).

2.1. Statistical software: concepts, advantages and limitations

Many statistical software are available for the data analysis. Al-
though there are a large variety of free software (freely downloaded
and used in their fully-functional mode), such as OpenStat, SOFA,
EpiInfo, ViSta, and PSPP, many statistical software need to be purchased
in order to be used, and licenses, overall, need to be upgraded from time
to time, which is somehow a limiting factor for young scientists and
students. Some of these commercial software are Statistica, Stata, Un-
scrambler, Minitab, SAS, Pirouette, Design-Expert, Matlab, MathCad,
Statistical Package for the Social Sciences _ SPSS, Origin, Microsoft
Excel, among others.

Because of costs involved in acquiring those commercial statistical
packages, currently there is an increasing and encouraging demand for
the use of free software. Such programs include public domain and
may be used for statistical and/or mathematical analysis. Some of
these packages are: R and [PSPP], composed of many researchers from
all over the world, IDAMS (UNESCO), EpiInfo (Centers for Disease
Control and Prevention, USA), BROffice (Brazil), Chemoface and
SensoMaker (UFLA, Brazil), and Action (Statcamp, Brazil), among
others. The advantages of using these programs in food research are
clear: graphs with a high definition can be generated in seconds,
simulations of results can also be performed using a small amount of
time, software represents an auxiliary educational means of teaching
theoretical requirements to students with varying knowledge of
mathematics and statistics, and complex algorithms and equations are
also made in seconds.

All these free and commercial mathematical and statistical software
are able to perform a large amount of calculations as well as algorithms
to solve different types of problems in food research, such as descriptive
and inferential statistics, design of experiments, andmultivariate statis-
tical techniques. Additionally, they are widely used to build databases,
fix spreadsheets, design and analyze experiments, and optimize prod-
ucts and processes (Teófilo & Ferreira, 2006). Among themain functions
and use of statistical programs, the most common methods are: cross-
confirmation of data in different databases, recoding of variables for
analysis, descriptive statistics including frequency calculation, calcula-
tion of position measurements (average, median, quartiles, mode),
measures of dispersion (range, variance, standard error, standard
deviation, coefficient of variation), analysis of data normality andhomo-
scedasticity, parametric statistics, non-parametric statistics, and multi-
variate statistics.

Although many of these methods are easily performed by statistical
packages due to their friendly interface, before using them, it is a
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reasonable idea to know how the methods in the different areas of sta-
tistics (inferential, descriptive, probabilistic) actually work, bearing in
mind their advantages and limitations, ensuring the right choice.
Then, this specific software can be employed to the best advantage to
choose themost suitable test and always taking into account all the nec-
essary assumptions are met, so that the right conclusions can be stated.
It is also important to stress that the scientist needs to know how these
packages make the calculations.

In this sense, no statistical/mathematical software has the ability to
perform all the methods and tests needed by a scientist. Thus, reading
the tutorial guide of each software is highly recommended. In general,
usually two or more software are required to analyze different experi-
mental data. Then, limitations in using these software also need to be
stated: lack of interest of the scientist in understanding how the statis-
tics are calculated,many packages do notwork if there aremissing data,
byusingmultiple programsmay lead to conflicting outputs, and someof
these packages, such as R and EpiInfo, require intermediate knowledge
of programming, which limits their use.

Table 1 briefly describes the most commonly used statistical
packages in food science, technology and engineering, with special
attention to accessibility, limitations and overall positive characteristics
and features.

As the use of statistical andmathematicalmethods is usually divided
into univariate (graph analysis, descriptive statistics), bivariate (correla-
tion, linear regression analysis) andmultivariate methods (exploratory,
class-modeling, and classificationmethods),we listed some characteris-
tics of such methods in the following sections.

2.2. Univariate and bivariate methods

In food science and technology, statistics may be used for different
purposes: design of experiments, modeling of response variables using
response surface methodology, and recently, the application of multi-
variate statistical methods has been more widely spread (Alezandro,
Granato, Lajolo, & Genovese, 2011; Besten et al., 2013). In this sense,
as mentioned by Granato, Calado, and Jarvis (2014), undoubtedly,
descriptive analysis (basic statistics: means, median, correlation, linear
regression, standard deviation, among others) followed by inferential
statistics (i.e., analysis of variances and multiple comparison of means)
are the most frequently used methods.

With respect to this issue, most papers do not demonstrate in the
‘Material and Methods’ section if the statistical assumptions prior to
the application of inferential methods were evaluated, that is, normality
and homoscedasticity. Testing whether a set of data (usually n ≥ 4
observations) follows a normal distribution is of major relevance for
statistical procedures, namely parametric tests. Normality can be
assessed visually, through histograms and plots (such as boxplot, Q–Q
and P–P plots) and through normality tests such as Kolmogorov–
Smirnov (K–S) test, Anderson–Darling test and Shapiro–Wilk test,
among others (Ghasemi & Zahediasl, 2012; Schoder, Himmelmann, &
Wilhelm, 2006). Further, homoscedasticity is an important feature for
parametric tests when conducting inferential tests (i.e. multiple com-
parison of means). This is relevant because homoscedasticity of data
means that different groups present the similar standard deviations.
This is important because otherwise the chances of getting false posi-
tives can be higher than the α-value established at the beginning of
the experiment (P b 0.05 or 5%) (McDonald, 2014). There is no consen-
sus with regard on how to deal with the lack of homoscedasticity (i.e.,
heteroscedasticity); however, one possible way to reduce the deviation
is the use of transformations such as log10, square root, natural log,
among others (McDonald, 2014). These approaches have been widely
used by food scientists to stabilize variance in data obtained in their
experiments (Alber & Schaffner, 1992; Sant'Ana, Franco, & Schaffner,
2012; Schaffner, 1998). Before these aspects are considered, for exam-
ple, when correlation analysis needs to be carried out, normality of
data should be assessed. In this case the question is: how should
correlation coefficient be calculated: by using the mean values or all
replicates? Other requirements such as number of experimental points
should also be considered. The same question applies when linear
regression analysis is performed, especially when a calibration curve is
plotted. Souza and Junqueira (2005), Granato, Calado, and Jarvis
(2014) and Cozzolino (2014)made useful comments on the application
of thesemethods in food research and listed the prerequisites needed to
be checked prior to the analysis. Answering the above question is
simple: using all replicates to generate regression models or calculate
the r-value and its significance (p-value)makes amore realistic correla-
tion coefficient. Imagine an analyst assessing n = 5 apple juices, in
triplicate, for antioxidant activity and quantifying the content of total
(+)-catechin. The correlation analysis using the mean values for both
responses (n = 5 each), rendered r = 0.89 and p = 0.02. However, if
the triplicate values for both responses (n = 15 each) were used, r =
0.49 and p = 0.08 were obtained. From this example, it is obvious that
the correlation coefficient is dependent on the number of observations.
In some fields, such as food microbiology, when dealing with microbial
behavior under stress conditions (interface between growth and no-
growth), in which variability is high; the number of replicates and
data points must be carefully appraised. Therefore, it is advisable to al-
ways mention how the r-values and p-values were calculated.

Many authors do not pay attention to homoscedasticity of data
when samples/treatments need to be compared using inferential tests,
that is, if the variances among treatments are equivalent from the statis-
tical standpoint. As well outlined by our previous work (Granato,
Calado, & Jarvis, 2014), various formal tests can be used to check for
homogeneity of variances, such as Hartley, Cochran, Bartlett, Levene,
and Brown-Forsythe. Overall, the same test must be applied for all
data sets in order to be coherent and consistent, once these tests use dif-
ferent ways to calculate the statistics. For example, consider the follow-
ing fact: a scientist needs to compare the ascorbic acid content in three
different fruit juices (A, B, and C), in which the three independent repli-
cate results (mg/250mL)were: A (10.55; 10.56; 10.52), B (10.02; 10.10;
10.03), and C (11.25; 11.09; 12.20), respectively. If one applies the
Levene test (using Statistica v.7 software), the F-value = 12.26 and p-
value= 0.0076 are obtained, whereas if the Brown-Forsythe test is car-
ried out, F-value= 1.41 and p-value= 0.3142 are obtained. For the first
test, data would be considered heteroscedastic and for the latter test
data would be regarded as homoscedastic. Consistency in the use of
the same test throughout the study is required.

The development and reengineering of products and optimization of
processes in food research is also another important application of
statistics. There are two main options to conduct these studies: using a
design of an experiment coupled to response surface methodology
(Bas & Boyaci, 2007; Bassani, Nunes, & Granato, 2014; Domínguez-
Perles, Teixeira, Rosa, & Barros, 2014; Farris & Piergiovanni, 2009;
Granato, Castro, Ellendersen, & Masson, 2010; Granato, Grevink,
Zielinski, Nunes, & van Ruth, 2014) or by using the ‘one variable at a
time’ approach, that is, the application of random levels of selected
factors (i.e. ingredients or process parameters) (Bassett et al., 2014;
Boobier, Baker, & Davis, 2006; Granato, Castro, Piekarski, Benincá, &
Masson, 2011; Haj-Isa & Carvalho, 2011). However, when the research-
er uses the ‘one variable at a time’ approach to develop products and
processes, the main effects of factors and their interactions cannot be
calculated and the relationship between the response and the factors
cannot be estimated. Another disadvantage of this approach is the
high number of experiments required to conduct the research, leading
to a more time-consuming methodology and investment in reagents/
chemicals. More importantly, when this approach is used, the solution
obtained usually does not represent the ‘optimal’ conditions to obtain
the desired conditions. In order to avoid these technical drawbacks,
Bezerra, Santelli, Oliveira, Villar, and Escaleira (2008) and Granato and
Calado (2014) explain in detail the types of experimental designs and
their practical applications together with the steps on how to analyze
data. It is important to stress that in some areas of food science, such



Table 1
Brief description of some statistical packages used in food science and technology research.

Software Website Accessibility Advantages and limitations

Microsoft
Excel

http://products.office.com/en-us/excel Commercial, no
internet access

- Advantages:
- Easy to conduct basic statistics (descriptive and inferential)
- Possible to analyze data using the add-in ‘Data Analysis’
- Correlation and linear regression analysis are included
- F-test for two variances
- Limitations:
- It does not include normality and homoscedasticity tests
- It does not include multivariate statistical methods
- Graphical representations are not of high-quality
- Correlation analysis cannot be evaluated by methods other than Pearson's method

Statistica www.statsoft.com Commercial, no
internet access

- Advantages:
- Descriptive and inferential analysis can be easily carried out
- Multivariate exploratory and classification techniques, including principal component

analysis, clustering techniques, and data mining techniques (including neural networks) are
included

- Multiple and linear regressions can be performed with detection of outliers and residual analysis
- Possibility to perform non-parametric analysis
- Quality control charts can be made
- Software has a user's guide manual explaining the rationale of each test
- Graphical representations are of high quality
- Limitations:
- Very expensive to acquire add-ins for all statistical analysis;
- User must know a priori the principle of the tests
- For multivariate analysis, the software only performs auto-scaling as data pre-processing
- Up to version 9, Welch test (ANOVA procedure for non-homoscedastic data) cannot be applied

Pirouette www.infometrix.com Commercial, no
internet access

- Advantages:
- Graphical outputs are excellent
- Multivariate exploratory, class-modeling and classification techniques can be performed
- Models can be validated using leave-one-out cross-validation
- Various pre-processing methods can be applied and analysis are made simultaneously
- Limitations:
- It is not easy to perform external validation: the user must separate data randomly using

other packages (Excel is an option) to perform the external-validation
- Software dedicated to multivariate statistical techniques

Matlab www.mathworks.com/products/matlab/ Commercial, no
internet access

- Advantages:
- A large number of tests (uni- and multivariate) can be implemented
- Users can implement algorithms in order to improve the analyses
- The software has a very elaborated and useful help
- The help presents illustrative examples
- Features can be improved by additional toolboxes
- Users can contribute with free code/toolboxes via File Exchange

(http://www.mathworks.com/matlabcentral/fileexchange/)
- High quality graphics can be obtained
- Limitations:
- It requires intermediate knowledge of programming, limiting the number of users

Action www.portalaction.com.br Free,
downloadable

- Advantages:
- Both descriptive and inferential (both parametric and non-parametric) tests can be used
- Homoscedasticity and normality tests are included
- Software has a user's guide manual explaining the rationale of each test and how to perform

the analysis
- Quality control charts and statistics regarding metrology can be made
- Design of experiments (response surface methodology) is included
- Limitations:
- Only multivariate analysis of variances (MANOVA) and cluster analysis can be performed as

multivariate statistics
- It requires the use of Microsoft Excel to be run.

R-Project www.r-project.org/ Free,
downloadable

- Advantages:
- It incorporates all of the standard statistical tests, models, and analyses
- It is able to perform both univariate or multivariate tests
- Graphical capabilities surpasses most other statistical packages
- It is open source and has been reviewed by many statisticians and computational scientists
- Features can be improved by additional packages
- Limitations:
- It requires intermediate knowledge of programming, limiting the number of users

Chemoface www.ufla.br/chemoface Free,
downloadable

- Advantages:
- It has an user-friendly interface
- Various pre-processing methods can be easily applied
- It is easy to perform cross-validation and external validation
- The is a tool for data plot which is useful mainly to view continuous data, such as spectra and

chromatograms
- There are tools to detect outliers in multivariate calibration models
- The software has a user guide with examples
- Limitations:

(continued on next page)
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Fig. 2. Concept of genuine replicates (R): R1→ 3 should be summed and one mean value is
obtained for one beer sample. Then, themean value of beer 1, beer 2, and beer 3 should be
averaged to obtain the mean value of the analyte.

Table 1 (continued)

Software Website Accessibility Advantages and limitations

- Software dedicated to multivariate statistical techniques
- Graphic editing is limited

Sensomaker www.ufla.br/sensomaker Free,
downloadable

- Advantages:
- It has an user-friendly interface
- There are interfaces to collect data from sensory tests
- Both univariate or multivariate analysis can be performed
- Parallel Factor Analysis (PARAFAC) can be applied to build preference maps
- The software has a user guide with examples
- Limitations:
- Software dedicated to sensory analysis
- Graphic editing is limited
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as food and process development and optimization, not using a design
of experiments represents an old-fashioned and not exact approach to
perform a scientific study.

DOE has also been applied to study the effects of some independent
variables (factors) on selected responses (screening methods). The use
of screening experimental designs, such as the 22 and 23 types, is useful
because through this approach, factors that have less significant effects
may be unconsidered in a future study (Silva, Sant'Ana, & Massaguer,
2010). For example, if the aim of a study was intended to verify the ef-
fects of time and temperature of extraction of bioactive compounds
from a food matrix and the data analysis showed that the temperature
of extraction had a non-significant effect (p = 0.445) on the content
of bioactive compounds. Thus, in a future work, the researcher may
use other factors (i.e., particle size, presence of agitation, pH of extrac-
tion) to optimize the system and obtain extracts with a high content
of bioactive components.

In general, when DOE is used in combination with response surface
methodology to analyze the experimental data, multiple regression
equations relating to the independent variables with the response
(y) are obtained and one can use this mathematical equation to predict
the quantitative value of the response, inside the range of the tested
values, for values (of the independent factors) not tested in the experi-
ment. For industrial purposes, this methodology can be of great interest
as the data can be used to have a quantitative idea about the impact of
changing the factors on the response (Badoei-Dalfard & Karami, 2013;
Joshi, Yadav, & Desai, 2008; Pedro, Granato, & Rosso, in press).

Another important observation about the design of experiments
must be made: regardless of the design and/or mathematical/statistical
method used to analyze data, the statistical software and its version
must always be stated in the report. This is required once some software
calculate the parameters different from the other packages. For exam-
ple, if the homogeneity of variances is assessed by the Levene test
using Action (Estatcamp, Brazil) package, the output will be different
from the result obtained by Statistica software (Statsoft, USA). This is
because Action calculates the statistics using the median (and not the
mean value) while Statistica uses the means. In this specific case, in
Statistica, the Brown-Forsythe test uses the median to assess homosce-
dasticity. Once there are numerous statistical packages, both from free
and commercial versions, the researcher needs to know the theoretical
principles involved in the calculation of each parameter prior to the use
of the computational software to analyze data.

To be consistent, a consideration regarding the number of replicates
should be made: usually authors state the ‘analyses were performed in
triplicate’, but sometimes, this information is not totally clear: indepen-
dent samples means the process of making a beer, for example, must be
performed three times to obtain three products. If the scientist produces
only one beer and the analysis of ethanol is performed three times, this
situation is not an example of true/genuine replicates. The ideal situa-
tion is that the beer is produced three times and each beer must be
analyzed in triplicate for a certain attribute (i.e., ethanol content), in
which the mean value of the attribute for each beer must be averaged
(Fig. 2). The concept of ‘triplicates’ is simple: using two alcohol contents
in beer (i.e., 4.80 and 4.90), it is easy to calculate the mean value (x =
(4.80+4.90)/2=4.85). The reason to perform the analysis in triplicate
is based on the fact that measuring three times the same property is an
acceptable standard concerning the precision and the work to be per-
formed. According to Passari et al. (2011), the mean value of triplicate
measurements is the best estimate of the analyte in the sample, and
the standard deviation is the best estimate of the experimental error.
This can be also explained by the confidence interval of the mean
value shown in Eq. (1):

μ ¼ x� tn−1
s
ffiffiffi

n
p ð1Þ

whereby x is the mean value (with n measurements), s is the standard
deviation from n measurements, and t represents the critical value de-
rived from the Student-t distribution with n − 1 degree of freedom.
Using this equation and the Student-t distribution, it is possible to
infer that the larger the number of measurements (replicates), the
higher the precision. For example, at a 95% confidence level, the t-
values (based on n − 1 degree of freedom) are: 12.71, 4.30, 3.18, and
2.78 when n goes from 2 to 5. Therefore, when the analyst performs
the experiment in triplicate rather than in duplicate, the precision is
highly improved.

Regarding analysis of variances (ANOVA), there are several types of
approaches that can be used: one-way, two-way, three-way, main ef-
fects, repeated measures, multivariate, and factorial ANOVA. However,
few papers actually state which ANOVA was used in the experiments
and this information is required so other scientists can use the exact
data treatment listed in earlier works (Polanco-Lugo, Dávila-Ortiz,
Betancur-Ancona, & Chel-Guerrero, 2014). Aiming at comparing the
means of the three juices (A, B, and C), if one-way ANOVA was applied
after Levene test, which would be wrong, an F-value = 13.77 and p-
value = 0.0057 would be attained, but if the Welch-ANOVA was used,
which is the advisable test to be performed for heteroscedastic data,
an F-value=132.96 and p-value=0.0009would be obtained. Obvious-
ly, differenceswere obtained by using both ANOVA procedures, and one
may say that the type of ANOVA employed is irrelevant. However, the
right analysis of variances should always be chosen to express the

http://www.ufla.br/sensomaker


400160028004000
-4

-2

0

2

4

cm-1

-10

-5

0

5

10
60

70

80

90

100

A

B

C

Fig. 3. Mid-infrared spectra using no preprocessing (A), mean-centering (B) and
autoscaling (C).

275C.A. Nunes et al. / Food Research International 75 (2015) 270–280
statistical significance and this is dependent on the data normality and
also on the homoscedasticity.

When the ANOVA highlights a probability value (p-value) below the
stipulatedα-value, usually 0.05 or 0.01, a post-hoc test is usually applied
to check for differences among means, and Tukey's test is shown to be
the most preferred option in food research (Galvão, Narain, & Nigam,
2014; Pasqualin Cavalheiro et al., 2014). In this sense, adopting α =
0.05 is less restrictive than α = 0.01 or α = 0.001. As in food research
the inferential tests are usually applied to check for differences among
treatments (food samples, methods, processes, among others), an
α = 0.05 is preferred (Andrade et al., 2014; Bortolotto, Bueno, Braga,
Barbosa, & Sanzovo, 2014; Ferrari, Clerici, & Chang, 2014). In pharma-
ceutical and medical sciences, stricterα-values (0.01 or 0.001) are gen-
erally used (Wanigasinghe, Arambepola, Ranganathan, & Muhandiram,
2014). In practice, the use of Tukey test seems to be based on ‘tradition’
rather than taking on its effectiveness in discriminating differences
among treatments/samples. Granato, Calado, and Jarvis (2014) stated
that Tukey's testmay be a good option depending on the data character-
istics but overall its use is not recommended as it is not robust, that is,
often fails in detecting difference among means (n ≥ 3). Thus, Duncan's
or Fisher's least significance difference tests are recommended in all sci-
ence fields (Mezquita, Barragán-Huerta, Ramírez, & Hinojosa, 2014).
Consider that a scientist measured the total copper chelating power of
some food extracts and obtained the following data (expressed as %):
Extract 1: 48.23; 47.56; 48.68; Extract 2: 46.58; 46.89; 47.06; and
Extract 3: 52.36; 53.74; 52.99. The Levene test (using Statistica v.7
software) was used to assess the equality of variances and the p-value
was 0.4484. Once the hypothesis of equality of variances was accepted,
one-way ANOVA was used to check for differences between extracts
and a p-value b 0.0001 was obtained. Then, the efficiency of different
multiple tests to compare the means was assessed and it was possible
to observe that by using Fisher LSD and Duncan tests, the means of all
treatments seemed to be different (p b 0.05), while by using Scheffé,
Tukey, and Bonferroni tests, Extract 1 (means = 48.16%) and 2
(means = 46.84%) were statistically similar but different from Extract
3 (means = 53.03%). By analyzing these results, we emphasize the
importance of understanding how these tests work prior to deciding
which one will be used to analyze experimental data. Regardless of
this, as mentioned earlier, Duncan and Tukey tests should be used
consistently.

2.3. Misuses on chemometrics

Chemometric techniques are increasingly being applied not only
in food science and technology but also in related fields such as
experimental nutrition (Alezandro, Granato, & Genovese, 2013; Corrêa
et al., 2014; Domingo, Tirelli, Nunes, Guerreiro, & Pinto, 2014; Nunes,
2014; Zielinski, Alberti et al., 2014), and nowadays ready-to-use tool-
boxes are available to developmodels using various techniques, includ-
ing pattern recognition, classification and multivariate calibration.
Chemometrics enable a multivariate analysis of complex data and the
extraction of relevant information is clearly observed. However, getting
significant results requires not only meaningful data but also rational
analysis and understanding of the purpose of the analysis. Many
sophisticated chemometric techniques are applied by uninitiated
scientists who do not have a fundamental knowledge of the capabilities
and the limits of the chosen method (Kjeldahl & Bro, 2010; Pretsch &
Wilkins, 2006). Next, considerations about common misuses on data
preprocessing, pattern recognition, classification and regressionmodels
are carried out.

2.3.1. Data preprocessing
An important step for multivariate data analysis is the data prepro-

cessing. It is used in order to reduce or remove random or systematic
sources of variation in the data set. There are a lot of preprocessing tech-
niques, but mean-centering and autoscaling are the most widely
employedmethods. However, themisuse of these techniques can result
in outputs with different possible ways of interpretations. In this sense,
another observation should be made regarding the use of chemometric
tools: sequential publications from some authors have evidenced the
lack of study in the pre-treatment (pre-processing) of data, that is,
only one method is usually used and results are solely discussed using
that specific approach. Understanding the importance of testing differ-
ent preprocessingmethods, it is advisable to test at least three different
approaches (i.e., mean-centering, autoscaling, smoothing, among
others), compare results and choose the option that fits best the objec-
tives of the work. Following this, some authors have compared the
results and choosing the most suitable approach for different types of
analytes and food matrices (Capuano et al., 2014; Özdestan et al.,
2013; Tres, Heenan, & van Ruth, 2014).

Mean-centering is accomplished by subtracting the mean of a vari-
able column from every element in the column. After this, the variable
has a mean of zero, the data are shifted by mean and the center of the
data becomes the new origin; consequently the information about the
origin is lost, but the distances between the data points remain
unchanged (Varmuza & Filzmoser, 2009). Mean-centering is useful for
data including offsets since the purpose of centering is to remove this
feature. It can be useful if different variables have different means, but
usually do not have amajor influence on pattern recognition and classi-
fication results (Brereton, 2009). For a dataset containing variables
measured in different units of different magnitude, the different ranges
manifest themselves in the modeling of the data, where the variables
with little variation will not be modeled to a significant degree. Mean-
centering does not remove these scale differences, but if the mean-
centered variables are scaled to have the same standard deviation, i.e.,
autoscaling the data, these differences disappear.

Autoscaling consists of dividing each mean-centering element in a
column by the standard deviation of this variable. Autoscaling shifts
the centroid of the data points to the origin and changes the scaling of
the axes. Consequently the relative distances between the data points
are changed and causes a blow-up (highlight) of variables with small
values (Varmuza & Filzmoser, 2009). If a dataset is autoscaled, all vari-
ables have the same variance; every variable has the same opportunity
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of entering the model. On the other hand, if continuous data (such as
spectra and chromatograms) are autoscaled, every variable, i.e., real
signal or noise from baseline, has the same standard deviation. This
blow-up of the noise can impair dramatically the quality of the model.
These effects can be visualized in Fig. 3, which spectral data were
mean-centered and autoscaled. The blow-up effect of variables with in-
tensities close to the baseline (2800–1600 cm−1) can be observed,
while in the mean-centering the baseline is not highlighted and its
magnitude is preserved

2.3.2. Principal component analysis
One of the most used chemometric methods in food research is the

Principal Component Analysis (PCA). The PCA scores plot is commonly
used in order to grouping samples based on their similarities or dissim-
ilarities usually using a 2D or 3D projection of the samples. In addition,
an interpretation about how the variables influence this pattern is
achieved through a loadings plot. However, some practices can contrib-
ute to misinterpreted results. Firstly, axes scales in scores plot must be
comparable to avoid misinterpretations, i.e., to say that two samples
are similar based on their position, the axes on the scores plot must
have comparable (equivalent) scales. Likewise, stretching the axes
must be avoided (Geladi, Manley, & Lestander, 2003; Kjeldahl & Bro,
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Fig. 4. PCA scores filled plot (A), scores with equivalent scales (B) and loadings plot (C).
2010). Indeed most software does not produce plots with comparable
scales because the plottingmostly aims filling the plot area. It is also im-
portant to note the amount of variancedescribed by each principal com-
ponent (PC). In the scores plot of the Fig. 4A, sample C is far fromB along
PC2, i.e., sample C seems to be so different from B like E or F. However
PC2 retains a very low amount of variance; so if this is considered, the
difference between C and B is much less significant that the difference
between C and E or F. This can be verified when PC2 and PC1 are in
equivalent scales (Fig. 4B). Another point is that when interpreting the
loadings plot, which represents the contribution (load) of a variable to
discriminate the samples along the PC axes. A variable with large load-
ing value in a PC contributes expressively to this PC; but if the amount of
variance for this PC is low, the variable may not be truly important
(Beebe, Pell, & Seasholtz, 1998). In the loadings plot presented in
Fig. 4C, variable 5 seems to greatly influence PC2 because of its large
loading value. However, in practice, this PC represents a very low
amount of variance in relation to PC1.

2.3.3. Discriminant analysis
Classification methods, such as Linear Discriminant Analysis (LDA)

and Partial Least Squares Discriminant Analysis (PLS-DA) have been
widely used in food research in order to obtain classification models
(Granato, Oliveira, Caruso, Nagato, & Alaburda, 2014; Macatelli et al.,
2009). In LDA or PLS-DA a function is used to model descriptors against
categorical dependent variables. Singularity problems arise for high-
dimensional data if the variables are highly correlating or if less samples
than variables are available. In this case, the information contained in
the descriptors can be summarized by latent variables that allow for
dimension reduction, which can be achieved by PLS-DA (Varmuza &
Filzmoser, 2009). These methods use a special y variable with a binary
“dummy” system and the predicted y is not a quantitative value like
PLS regressionmodels; it is a number which indicates a class. Therefore,
RootMean Square Errors (RMSE) are not valid as a performance param-
eter for these classificationmodels. RMSEmeasures the error in terms of
deviations from a reference value, and larger deviations contribute
more to the RMSE. So, this approach does not consider the classification
rules and the actual class borders (Kjeldahl & Bro, 2010). If a class with
y-value initially defined as 1 is predicted by the model as class 2, this
will represent a numerical error of 1. Likewise, if this class 1 is predicted
as class 3, the numerical error is 2. If this approach is considered, the
prediction error from class 1 to class 3 is more significant than class 2.
Indeed this is not true and irrelevant because what’s important is that
the model fails to predict the membership of class 1. The performance
of the model can be better measured by the percentage of samples
correctly classified (%CC) (Kjeldahl & Bro, 2010). As an example,
Table 2 presents two caseswith the same %SS, but if the RMSE (calculat-
ed by the difference between numerical values for actual and predicted
classes) approach is considered, case B would be better that case A,
while in fact they have equal performance.

Another critical point to be considered in classificationmodels is the
total number of samples. If the number of samples in the dataset is
small, the percentage of samples correctly classified can be very
Table 2
Two cases showing the effect of RMSE approach to evaluate the performance of classifica-
tion models with equal %CC.

Case A Case B

Actual class Predicted class Actual class Predicted class

1 1 1 1
1 3 1 2
2 2 2 2
2 1 2 1
3 1 3 2
3 3 3 3
%CC 50 %CC 50
RMSE 0.8 RMSE 0.5
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sensitive to random results. Brereton (2009) reported an example that
illustrates this problem: if a coin is tossed 10 times, and it obtained 8
heads and2 tails, does this evidence that the coin is biased? Analogously
if a predictive model is tested on 10 samples and 8 are correctly classi-
fied, does this evidence that this model really has a good performance?
So the percentage of samples correctly classified must be critically used
to measure the model performance on small datasets. If the number of
samples is sufficiently large, the central limit theorem can be applied.
Table 3
Data to illustrate the use of different similarity indices and amalgamation rules in hierar-
chical cluster analysis.

Product Feature 1 Feature 2 Feature 3 Feature 4

A 20 4.56 100.36 55.56
B 10 2.22 90.25 54.25
C 5 2.00 77.36 20.13
D 7 0.89 55.47 43.25
E 7.5 0.69 23.35 40.12
F 9 1.66 71.23 29.98
G 15.6 3.34 80.73 17.56
2.3.4. Coefficient of determination (R2)
Squared correlation coefficient (or coefficient of determination —

R2) is a performance parameter commonly used to check the concor-
dance between actual and predicted values in multivariate calibration
models. In general it is uncritically assumed that high R2 implies in
good concordance between actual and predicted values. As an example,
Fig. 5 shows that a high R2 does not necessarily indicate high quality of
the data. The correlation between actual andmeasured values in Fig. 5A
presents a low R2 in comparison with the data in Fig. 5B. However it is
verified that the prediction error (RMSE) is a lot higher for case B,
even presenting a higher R2. Another critical point is the distribution
of the intervals among the tested values. It is common to verify datasets
with extremevalues far frommost values,which can induce an “untrue”
high R2. Fig. 5C shows an actual-predicted correlation with an extreme
value presenting an elevated R2, but if this extreme value is removed
from the dataset, theR2 assumes a very lowvalue, in addition to a higher
RMSE. Sometimes R2 is close to 1 merely because the number of
observations (samples) is low in comparison to the number of model
parameters; therefore adjusted R2, which “penalizes” R2 for the low
number of degree of freedom, is also used. In the example, adjusted R2

values also present similar behavior, which was 0.69, 0.94, 0.90, and
0.40 for the cases A, B, C, and D of the Fig. 5 respectively. So, it is prudent
to checkRMSE valueswhen evaluating R2. Graphs correlating actual and
predicted values are also useful to avoid misinterpretations of R2 and
RMSE. Some useful references report the important details on how
how to evaluate the statistical quality of proposed models based on R2

values (Badertscher & Pretsch, 2006; Hibbert, 2005).
2.3.5. Clustering methods
Clustering techniques are employed in a high frequency in quality

control programs, provenancing of various specialty foods, to detect
adulteration and therefore to attest authenticity and also to analyze
the physicochemical, sensory, chemical, nutritional value, and rheolog-
ical properties of various foods and beverages (Dahimi et al., 2014;
Souza et al., 2011; Torres, Garbelotti, & Neto, 2006; Yudthavorasit,
Wongravee, & Leepipatpiboon, 2014; Zielinski, Haminiuk, Alberti et al.,
2014). In summary, cluster analysis is an exploratory multivariate tech-
nique used to explore the data structure and overall characteristics
when little (or even none) information about group structure is avail-
able (Ares, 2014). Themost used type of CA is the hierarchical approach
(HCA). HCA is based on the determination of a distance between objects
(degree of similarity/dissimilarity) and the application of an agglomer-
ative (amalgamation) method to establish clusters of n-objects. Objects
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in the same group present similar features among themselves, while a
distinct difference is observed as compared to the objects pertaining
to other clusters. Once there are many ways to calculate the degree of
similarity/dissimilarity between objects, such as Euclidean, squared
Euclidean, and Manhattan distances, it is advisable to test which one
suits better the purpose of the work. Likewise, one should test which
amalgamation method is better to discriminate samples, and there are
many ways to do that, but simple linkage, complete linkage, average
linkage, and Ward's method are most widely employed. Ares (2014)
and Zielinski, Haminiuk, Nunes et al. (2014) explained in details the us-
ability and application of these methods.

To illustrate the use and application of these methods, consider the
data presented in Table 3. In this example, data were autoscaled and
different methods were applied to obtain dendrograms for samples
(Fig. 6). As expected, different results are obtained when different
amalgamation rules and similarity distances are used. In this figure it
is possible to note that depending on the selected method to agglomer-
ate samples into groups, distinct outputs can be obtained. From the
statistical standpoint, all projections are meaningful; however, the
choice for any of these projections should be based on the judgment
and expertise of the analyst. Thus, it is appropriate to stress that the
final solution ofHCA is not unique anddepends not only on themethods
employed to generate the dendrograms but also on the distance select-
ed by the analyst (see differences in results if lines are in blue or in red
are chosen). From a practical point of view, tree-clustering, Ward's
method and Euclidean distances are usually used to form homogenous
groups of objects, that is, groups with similar number of objects
(Ginon, Ares, Issanchou, Laboissière, & Deliza, 2014; Rocha, Deliza,
Corrêa, Carmo, & Abboud, 2013; Ropodi, Pavlidis, Mohareb, Panagou,
& Nychas, 2015).
More details on the application of othermultivariate statistical tech-
niques in food science and technology are comprehensively described
elsewhere (Zielinski, Haminiuk, Nunes, et al., 2014) and practical
examples on the use of multivariate statistical methods in many fields
of food science, such as food technology, microbiology, sensory studies,
and clinical protocols (Alezandro et al., 2011; Peltier, Visalli, & Schlich,
2015; Solieri, Bianchi, Mottolese, Lemmetti, & Giudici, 2014; Yang &
Rose, 2014).

3. Perspectives and final comments

In this article, we highlighted that some positive characteristics and
limitations of some commonly used free and commercial statistical
packages. Some examples on howmathematical and statisticalmethods
should be actually performed were also provided and described. In this
sense, authors encourage the food research scientist to learn about
different mathematical and statistical methods prior to choosing the
most suitable software and statistical/mathematical approach to
analyze experimental data. In this aspect, we strongly discourage
those that use computational software to ‘click and go’ and do not
know what was obtained or how to interpret holistically the outputs.
In order to avoid this conduct, a series of published guidelines on statis-
tical methods in food science and technology was listed and a critical
evaluation on some of the most frequently used methods was made.
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