
Rick Admiraal1,2,3,4, Robert Chiesa5, Marc Bierings1, A. Birgitta Versluijs1, Prashant Hiwarkar6, Juliana Silva6, Paul Veys5, Jaap Boelens1,7. 1 Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, Netherlands; 2 Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden, Netherlands; 3 U-DANCE, Tumorimmunology, Lab Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands; 4 Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands; 5 Great Ormond Street Hospital for Children, London, United Kingdom; 6 Blood and Marrow Transplantation Program, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom; 7 Applied Tumor Immunology Section, Lab Translational Immunology, UMC Utrecht, Utrecht, Netherlands

Background: Relapse of leukemia after pediatric hematopoietic cell transplantation (HCT) is a frequent cause of treatment failure. Immune reconstitution (IR) early after HCT is pivotal to generate a potent graft-versus-leukemia effect. We studied the association between IR of various lymphocyte subsets and outcomes in children receiving a cord blood HCT for hematological malignancies.

Methods: All consecutive patients with a hematological malignancy receiving a cord blood HCT between 2004-2014 at Great Ormond Street Hospital London and at the UMC Utrecht were included. Patients received a myeloablative regimen ± Thymoglobulin. Primary endpoint was relapse; secondary endpoints were overall survival, non-relapse mortality (NRM), acute GvHD (grade 2-4) and chronic GvHD. Lymphocyte-subsets (CD3+, CD4+, CD8+, NK and B-cells) were monitored every other week after engraftment. Various definitions of IR were analyzed including one in line with a reported association: CD4+ T-cell count > 50/μL in 2 consecutive measurements within 100 days post-HCT (Bartelink et al, BBMT 2013). Cox proportional hazard models and logistic regression models were used.

Results: 89 patients were included, with a median age of 7.1 years (range 0.7-18): 36 ALL (19 CR1, 14 CR2, 3 CR3), 49 AML (14 refractory, 35 CR) and 4 other malignancies. 36 patients received Thymoglobulin (Utrecht only). CD4-IR (count > 50, twice < 100 days) was the best predictor for endpoints; in multivariate (MV) analyses, CD4-IR was a predictor for lower probability of relapse in AML patients (MV: HR 0.29, 95% CI 0.03-0.98, p = 0.04; figure 1), but not in ALL (p = 0.14). CD4-IR was also a predictor for NRM (MV: HR 0.13, 95% CI 0.03-0.52, p = 0.004; figure 2). CD4-IR predicted OS in AML (MV: HR 0.17, 95% CI 0.06-0.53, p = 0.002), but not in ALL. However, CD4-IR did not have an impact on acute grade 2-4 (p = 0.41) or chronic GvHD (p = 0.12). Successful CD4-IR was less frequent in patients receiving Thymoglobulin (MV: OR 0.04, 95% CI 0.002-0.27, p = 0.005). Associations with the endpoints for the other lymphocyte-subsets were less predictive.

Conclusion: Early CD4-IR post cord blood HCT predicts the probability of relapse in AML as well as NRM in all patients. Thymoglobulin negatively impacts CD4-IR post cord blood HCT, hence the use and/or the dosing of Thymoglobulin should be carefully re-considered.

Higher Incidence of Grade III and IV Toxicities in Adolescents Undergoing Allogeneic Hematopoietic Cell Transplantation and Its Impact on Mortality at One Year Post-Transplant: A Retrospective Cohort Study of Pediatric Patients Undergoing Allogeneic Stem

Naima Al Mulla, Justine Kahn, Mahvish Qureshi, Grace Kim, Zhezhen Jin, Anya Levinson, Monica Bhatia, Esra Karamehmet, James Garvin, Diane George.