Pointwise evaluation of Bochner integrals in Marcinkiewicz spaces

by Robert R. Nelson

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, U.S.A.

Communicated by Prof. J. Korevaar at the meeting of March 28, 1981

ABSTRACT

Let \mathcal{M}_p, $1 \leq p < \infty$, be the Marcinkiewicz Banach space. The elements of \mathcal{M}_p are equivalence classes of Borel measurable scalar-valued functions on the reals. Let F be an \mathcal{M}_p-valued function on a set Λ which is Bochner integrable with respect to a σ-finite measure μ over Λ. In Theorem I it is shown that there exists a function-valued function G on Λ such that for μ almost all λ, $G(\lambda)$ is a representative of $F(\lambda)$, and the function of t obtained by integrating, for each t, the scalar-valued function $(G(\cdot))(t)$ with respect to μ, is a representative of the Bochner integral of F. In Theorem II we find a large class of functions G for which the above holds. We thereby extend the work of Dunford and Schwartz on L_p spaces to the \mathcal{M}_p spaces. Some applications of these theorems in the study of infinitesimal generators and convolutions are indicated.

1. INTRODUCTION

Let \mathcal{A} be a σ-algebra over a set Γ, and let X be a vector space over \mathbb{F} (= \mathbb{R} or \mathbb{C}) whose elements are \mathcal{A}-Borel measurable \mathbb{F}-valued functions on Γ.

Suppose that this X is a Banach space and that $F(\cdot)$ is a Bochner integrable function on a measure space $(\Lambda, \mathcal{A}, \mu)$ to X. Then its Bochner integral

$$\int_{\Lambda} F(\lambda) \mu(d\lambda)$$

is in X, and hence is itself a \mathcal{A}-borel measurable function on Γ to \mathbb{F}. The
question naturally arises as to whether this function can be evaluated at a point \(y \in \mathcal{F} \) by simply integrating the \(\mathcal{F} \)-valued function \(F(\cdot)(y) \) on \(A \), i.e. whether

\[
\int_A F(\lambda)(y) \mu(d\lambda) = \int_A \int \lambda F(\mu)(d\lambda)(y).
\]

In many important situations our vector space \(X \) is merely a complete semi-normed space and only the associated space \(\mathcal{X} \), whose elements are equivalence classes \(f \) of functions \(f \in \mathcal{F} \), is complete normed, i.e. Banach. For such Banach spaces (of equivalence classes) the corresponding question breaks into two questions:

Question I. Given \(F(\cdot) \in L^1(A, \mathcal{A}, \mu; \mathcal{X}) \), cf. Def. 1.2c), does there exist a function \(G(\cdot) \) on \(A \) to \(X \) such that

\[
\begin{align*}
G(\lambda) &\in \mathcal{F}(\lambda) \text{ for } \lambda \in A, \\
G(\cdot)(-) &\text{ is } \mathcal{A} \otimes \mathcal{B}(\mathcal{F}) \text{ measurable,}^1 \\
\forall y \in \mathcal{F}, G(\cdot)(y) &\in L_1(A, \mathcal{A}, \mu; \mathcal{F}),
\end{align*}
\]

and

\[
\int_A G(\lambda)(-\mu(d\lambda)) \in \int_A \mathcal{F}(\lambda) \mu(d\lambda)?
\]

An affirmative answer to Question I then raises a second question.

Question II. Given \(F(\cdot) \in L^1(A, \mathcal{A}, \mu; \mathcal{X}) \), is there a nice condition (*) on functions \(G(\cdot) \) satisfying (1.1) such that (1.1) together with (*) entails (1.2)?

The aim of this paper is to answer these questions affirmatively, when \((A, \mathcal{A}, \mu) \) is a \(\sigma \)-finite nonnegative measure space and \(\mathcal{X} \) is the Marcinkiewcz Banach space \(\mathcal{M}_p(\mathbb{R}) \), \(1 \leq p < \infty \), cf. Def. 2.1, which has been the object of recent study [6] [7], cf. also [1]. In [4, p. 198, Thm. 17] Dunford and Schwartz have shown that when \((A, \mathcal{A}, \mu) \) and \((\mathcal{F}, \mathcal{F}, \nu) \) are both finite or \(\sigma \)-finite nonnegative measure spaces, and \(\mathcal{X} = L_1(\mathcal{F}, \mathcal{B}, \nu; \mathcal{F}) \), \(1 \leq p \leq \infty \), there exists a function \(G(\cdot) \) on \(A \) to \(\mathcal{X} \) such that (1.1) and (1.2) hold; moreover if \(G_0(\cdot) \) is any function on \(A \) to \(\mathcal{X} \) satisfying (1.1), then (1.2) holds for \(G_0 \). We shall use their result and some of their techniques to obtain first an analogous result, Theorem 4.2, for a Banach space \(\mathcal{M}_p(\mathbb{R}) \) closely related to \(\mathcal{M}_p(\mathbb{R}) \). Then by use of the theory of continuous selections due to E. Michael [9], we will prove two main theorems for \(\mathcal{M}_p(\mathbb{R}) \). To state these theorems we must specify our terminology:

1.2 Definitions

Let \(\mathcal{A} \) be a \(\sigma \)-algebra over a set \(A \) and \(\mu \) be a countably additive measure on \(\mathcal{A} \) to \([0, \infty]\). Let \(\mathcal{Y} \) be a Banach space over \(\mathcal{F} \).

a) We say that a function \(F(\cdot) \) on \(A \) to \(\mathcal{Y} \) is *ball measurable* iff \(F(\cdot) \in M(\mathcal{A}, \mathcal{B}(\mathcal{Y})) \), \(2 \) where \(\mathcal{B}(\mathcal{Y}) \) is the \(\sigma \)-algebra generated by the family \(\mathcal{N} \) of all open balls in \(\mathcal{Y} \).

b) \(L_1(A, \mathcal{A}, \mu; \mathcal{Y}) \) will denote the set of all functions \(F(\cdot) \in M(\mathcal{A}, \mathcal{B}(\mathcal{Y})) \) for which \(\int_A |F(\lambda)| \mu(d\lambda) < + \infty \).

1 For arbitrary \(\sigma \)-algebras \(\mathcal{A} \) and \(\mathcal{B} \), \(\mathcal{A} \otimes \mathcal{B} \) denotes the \(\sigma \)-algebra generated by their product. For an arbitrary topological space \(Y \), \(\mathcal{B}(Y) \) denotes the \(\sigma \)-algebra of all Borel sets in \(Y \).
2 For \(\sigma \)-algebras \(\mathcal{B}_1, \mathcal{B}_2 \) of subsets of \(\mathcal{F}_1, \mathcal{F}_2 \) respectively, \(M(\mathcal{B}_1, \mathcal{B}_2) \) denotes the set of all measurable functions on \((\mathcal{F}_1, \mathcal{B}_1) \) to \((\mathcal{F}_2, \mathcal{B}_2) \).
c) $L^{\text{sep}}_1(\lambda,\mathcal{A},\mu; Y)$ will denote the set of all functions in $L_1(\lambda,\mathcal{A},\mu; Y)$ which have separable range. A function $F(\cdot)$ on Λ to Y is said to be Bochner integrable w.r.t. μ iff $F(\cdot) \in L^{\text{sep}}_1(\lambda,\mathcal{A},\mu; Y)$.

Obviously we have

\[(1.3) \quad F(\cdot) \in M(\mathcal{A}, \mathcal{B}, (Y)) \Leftrightarrow \forall y \in Y, |F(\cdot) - y| \in M(\mathcal{A}, \mathcal{B}(\mathbb{R})).\]

Also, cf. [9, p. 97, Thm. 13],

\[(1.4) \quad \{ \text{when the range of } F(\cdot) \text{ is separable} \}
\quad F(\cdot) \in M(\mathcal{A}, \mathcal{B}, (Y)) \Leftrightarrow F(\cdot) \in M(\mathcal{A}, \mathcal{B}(\mathbb{R})).\]

In the following theorem we affirmatively answer Question I for $\mathcal{M}_p(\mathbb{R})$, $1 \leq p < \infty$.

1.5 THEOREM I. Let $(\Lambda, \mathcal{A}, \mu)$ be a σ-finite nonnegative measure space, and $F(\cdot) \in L^{\text{sep}}_1(\lambda,\mathcal{A},\mu; \mathcal{M}_p(\mathbb{R}))$, $1 \leq p < \infty$. Then there exists a function $G(\cdot)$ on Λ to $\mathcal{M}_p(\mathbb{R})$, cf. Def. 2.1c, satisfying the following conditions:

\[a) \quad G(\cdot)(\cdot) \in L^p(\mathcal{A}, \mathcal{B}(\mathbb{R})), \mathcal{M}(\mathcal{F}), \quad \forall t \in \mathbb{R}, G(\cdot)(t) \in L_1(\lambda, \mathcal{A}, \mu; \mathbb{R}).\]

\[b) \quad \int_{\Lambda} G(\cdot)(\cdot) \mu(d\lambda) \in \int_{\Lambda} F(\cdot) \mu(d\lambda)\]

where the last integral is Bochner in the Banach space $\mathcal{M}_p(\mathbb{R})$.

c) \[\sup_{T > 0} \left(\frac{1}{2T} \int_{-T}^{T} |G(\cdot)(t)|^p dt \right)^{1/p} \in L_1(\lambda, \mathcal{A}, \mu; \mathbb{R}).\]

The following theorem provides an affirmative answer to Question II for $\mathcal{M}_p(\mathbb{R})$, $1 \leq p < \infty$.

1.6 THEOREM II. Let $\Lambda, \mathcal{A}, \mu, p, \tilde{F}$ be as in Theorem I. Let $G(\cdot)$ be any function on Λ to $\mathcal{M}_p(\mathbb{R})$ such that

\[a) \quad G(\cdot)(\cdot) \in L^p(\mathcal{A}, \mathcal{B}(\mathbb{R})), \mathcal{M}(\mathcal{F}), \quad \forall t \in \mathbb{R}, G(\cdot)(t) \in L_1(\lambda, \mathcal{A}, \mu; \mathbb{R}),\]

\[b) \quad \int_{\Lambda} G(\cdot)(\cdot) \mu(d\lambda) \in \int_{\Lambda} \tilde{F}(\cdot) \mu(d\lambda)\]

and such that for some $T_0 > 0$,

\[\sup_{T > T_0} \left(\frac{1}{2T} \int_{-T}^{T} |G(\cdot)(t)|^p dt \right)^{1/p} \in L_1(\lambda, \mathcal{A}, \mu; \mathbb{R}).\]

Then

\[\int_{\Lambda} G(\cdot)(\cdot) \mu(d\lambda) \in \int_{\Lambda} \tilde{F}(\cdot) \mu(d\lambda)\]

where the last integral is Bochner in the Banach space $\mathcal{M}_p(\mathbb{R})$. 367
2. THE BANACH SPACES $\mathcal{F}_p(\mathbb{R})$ AND $\mathcal{M}_p(\mathbb{R})$

Let $1 \leq p < \infty$. For each $B \in \mathcal{B}(\mathbb{R})$, let $L_p(B)$ be the space of Borel measurable functions h on B to \mathbb{F} for which $\|h\|_p := \left(\int_B |h(s)|^p ds\right)^{1/p} < \infty$. Let $L_p^{\text{loc}}(\mathbb{R})$ be the vector space of all Borel measurable functions f on \mathbb{R} to \mathbb{F} such that $\chi_B(\cdot)f(\cdot) \in L_p(\mathbb{R})$ for all bounded Borel sets B in \mathbb{R}.

2.1 DEFINITIONS.

Let $1 \leq p < \infty$, $B \in \mathcal{B}(\mathbb{R})$ and $f \in L_p^{\text{loc}}(\mathbb{R})$.

a) For all $h \in L_p(B)$

$$h = \{g : g \in L_p(B) \& \|g - h\|_p = 0\}$$

and

$$L_p(B) = \{h : h \in L_p(B)\}.$$

b) For each $T > 0$

$$\|f\|_{p,T} := \left(\frac{1}{2T} \int_{-T}^T |f(t)|^p dt\right)^{1/p} < \infty.$$

c) For all $f \in L_p^{\text{loc}}(\mathbb{R})$

$$\|f\|_p = \lim_{T \to \infty} \|f\|_{p,T}$$

and

$$M_p(\mathbb{R}) = \{g : g \in L_p^{\text{loc}}(\mathbb{R}) \& \|g\|_p < \infty\}.$$

d) For all $f \in M_p(\mathbb{R})$

$$f = \{g : g \in M_p(\mathbb{R}) \& \|g - f\|_p = 0\}$$

and

$$\mathcal{M}_p(\mathbb{R}) = \{g : g \in M_p(\mathbb{R})\}.$$

$\mathcal{M}_p(\mathbb{R})$ given the norm $\|\cdot\|_p$ is called the p-th Marcinkiewicz space.

2.2. DEFINITIONS.

Let $1 \leq p < \infty$.

a) For all $f \in L_p^{\text{loc}}(\mathbb{R})$

$$|f|_{S_p} = \sup_{T > 0} |f|_{p,T}$$

and

$$S_p(\mathbb{R}) = \{g : g \in L_p^{\text{loc}}(\mathbb{R}) \& \|g\|_{S_p} < \infty\}.$$

b) For all $f \in S_p(\mathbb{R})$

$$f = \{g : g \in S_p(\mathbb{R}) \& \|g - f\|_{S_p} = 0\}$$

and

$$\mathcal{S}_p(\mathbb{R}) = \{g : g \in S_p(\mathbb{R})\}.$$
Note that

\[(2.3) \quad \begin{cases} \mathcal{S}_p(\mathbb{R}) \subseteq M_p(\mathbb{R}), \\
\|f\|_{S_p} = 0 \text{ iff } f(\cdot) = 0 \text{ a.e. Leb. iff } |f|_p = 0,
\end{cases}\]

but \(|f|_p = 0\) for all \(f \in L_p(\mathbb{R})\). The last fact shows that equivalence classes \(f\) in \(M_p(\mathbb{R})\) are quite large and a careful distinction must be made between functions \(f\) in \(M_p(\mathbb{R})\) and equivalence classes \(\tilde{f}\) in \(\mathcal{S}_p(\mathbb{R})\).

The following theorem is known. The part for \(\mathcal{S}_p(\mathbb{R})\) is due to Marcinkiewicz [8] and independently Bohr and Følner [3]. The part for \(\mathcal{S}'(\mathbb{R})\) is due to K. Lau [7, Prop. 2.2(i)].

2.4 THEOREM. For \(1 \leq p < \infty\), \(\mathcal{S}_p(\mathbb{R})\) and \(\mathcal{S}'(\mathbb{R})\) are Banach spaces under norms \(\|\cdot\|_{S_p}\) and \(\|\cdot\|_p\) respectively.

The Banach spaces \(\mathcal{S}_p(\mathbb{R})\) and \(\mathcal{S}'(\mathbb{R})\) are closely related, as shown in the following result due to K. Lau, for the proof of which we refer the reader to Lau and Lee [7, Prop. 2.2(ii)].

2.5 PROPOSITION. Let \(1 \leq p < \infty\). Then

a) the correspondence \(J\) defined for all \(f \in \mathcal{S}_p(\mathbb{R})\) by \(J(f) = \tilde{f}\), is a linear contraction on \(\mathcal{S}_p(\mathbb{R})\) onto \(\mathcal{S}'(\mathbb{R})\).

b) For all \(f \in \mathcal{S}_p(\mathbb{R})\), \(\tilde{f} \subseteq J(f)\).

c) For all \(f \in \mathcal{S}'(\mathbb{R})\),

\[
\|\tilde{f}\|_p = \inf \{ \|g\|_{S_p} : g \in J^{-1}(\{\tilde{f}\}) \}.
\]

d) The quotient space \(\mathcal{S}'_p(\mathbb{R})/J^{-1}(\{0\})\) is isometrically isomorphic to \(\mathcal{S}'(\mathbb{R})\).

2.6 TRIVIALITY. Let \(f \in L^\text{loc}_p(\mathbb{R})\) and \(\phi(T) = \|f\|_{p,T}\) for all \(T > 0\). Then

a) \(\phi(\cdot)\) is a continuous function on \((0, \infty)\) to \([0, \infty)\).

b) \n
\[\|f\|_{S_p} = \sup_{T \in \mathbb{Q}_+} \|f\|_{p,T}.\]

\[c) \|f\|_p = \inf_{T_0 \in \mathbb{Q}_+} \sup_{T \geq T_0} \|f\|_{p,T}.\]

PROOF. a) Let \(T_0 > 0\). Set

\[
\psi(T) = \frac{1}{T} \int_{-T}^T |f(s)|^p ds, \quad VT > 0.
\]

Since \(\text{Leb} \{[-T,T] \Delta [-T_0,T_0]\} \to 0\) as \(T \to T_0\), \(\Delta\) denoting the symmetric difference,

\[
|\psi(T) - \psi(T_0)| \leq \int_{[-T,T] \Delta [-T_0,T_0]} |f(s)|^p ds \to 0 \text{ as } T \to T_0.
\]

\[\mathbb{Q}_+ \text{ denotes the set of positive rational numbers.}\]
Therefore $\psi(\cdot)$ is continuous at T_0 and hence $\phi(T) = ((1/2T)\psi(T))^{1/\rho}$ is continuous at T_0.

b) and c) follow from a) and Def. 2.2a) and 2.1c). □

3. PRODUCT MEASURABLE REPRESENTATIVES

Throughout this section we make the following:

3.1 ASSUMPTION. \mathcal{A} is a σ-algebra of subsets of a set Λ and μ is a σ-finite nonnegative measure on \mathcal{A}.

$\text{Leb}(\cdot)$ will denote Lebesgue measure on $\mathcal{M}(\mathbb{R})$, and $(\mu \times \text{Leb})(\cdot)$ will denote the product of μ and Leb on the product σ-algebra $\mathcal{A} \otimes \mathcal{M}(\mathbb{R})$. The following result, cf. Halmos [5, p. 141, 147], will be used in the proofs of our main theorems.

3.2 TRIVIALITY. Let $P \in \mathcal{A} \otimes \mathcal{M}(\mathbb{R})$. For each $\lambda_0 \in \Lambda$ and $t_0 \in \mathbb{R}$ let

$$P_{\lambda_0,t_0} = \{t \in \mathbb{R} : (\lambda_0, t) \in P\},$$

$$P_{\lambda_0} = \{\lambda \in \Lambda : (\lambda, t_0) \in P\}.$$

Then a) for all $\lambda \in \Lambda$, $P_{\lambda} \in \mathcal{M}(\mathbb{R})$ and for all $t \in \mathbb{R}$, $P_{t} \in \mathcal{A}$.

b) The following are equivalent:

1) $(\mu \times \text{Leb})(P) = 0$.

2) There exists an $N \in \mathcal{A}$ such that $\mu(N) = 0$, and $\text{Leb}(P_{\lambda}) = 0$ for all $\lambda \in \Lambda \setminus N$.

3) There exists an $E \in \mathcal{M}(\mathbb{R})$ such that $\text{Leb}(E) = 0$, and $\mu(P_{t}) = 0$ for all $t \in \mathbb{R} \setminus E$.

3.3 DEFINITION. Let X be a space with seminorm $\| \cdot \|_X$, such that

$$X \subseteq M(\mathcal{M}(\mathbb{R}), \mathcal{M}(\mathbb{R})),$$

let \hat{X} be the normed space of all equivalence classes f of functions $f \in X$, where

$$f = \{g : g \in X \& \| g - f \|_X = 0\}$$

and let $F(\cdot)$ be any function on Λ to \hat{X}. We say that a function $G(\cdot)$ on Λ to X is a representative of $F(\cdot)$, iff $G(\lambda) \in \hat{F}(\lambda)$ for all $\lambda \in \Lambda$.

It follows easily from Triv. 3.2a) that

$$(3.4) \quad G(\cdot)(\cdot) \in M(\mathcal{A} \otimes \mathcal{M}(\mathbb{R}), \mathcal{M}(\mathbb{R})) \Rightarrow \forall t \in \mathbb{R}, \ G(\cdot)(t) \in M(\mathcal{A}, \mathcal{M}(\mathbb{R})).$$

By use of (3.4), it can be easily shown that for the spaces $X = L_\rho(\mathbb{R})$, $X = \mathcal{C}_p(\mathbb{R})$, and $X = \mathcal{C}_b(X)$ a function $F(\cdot) \in M(\mathcal{A}, \mathcal{M}(\mathbb{R}))$ can have representatives $G(\cdot)$ which are not product measurable.

The following useful lemma asserts that the measurability of the function $F(\cdot)(\cdot)$ on $\Lambda \times \mathbb{R}$ entails the ball measurability of the function $\hat{F}(\cdot)$ on Λ.

370
3.5 LEMLMA. Let $X = L_p(\mathbb{R})$ or $S_p(\mathbb{R})$ or $M_p(\mathbb{R})$, $1 \leq p < \infty$. Then under the assumption 3.1,

$$F(\cdot) \in X^A \& F(\cdot)(-) \in M(\mathcal{A} \otimes \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{F})) = \hat{F}(\cdot) \in M(\mathcal{A}, \mathcal{B} (X)).$$

PROOF. Let $F(\cdot) \in X^A$ and $F(\cdot)(-) \in M(\mathcal{A} \otimes \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{F}))$.

Case I. Let $X = L_p(\mathbb{R})$. Let $g \in L_p(\mathbb{R})$ and define $G(\cdot)$ on Λ to X by $G(\cdot)(-) = g(-)$. Then obviously $G(\cdot)(-)$ on $\Lambda \times \mathbb{R}$ to \mathbb{F} is in $M(\mathcal{A} \otimes \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{F}))$ and

$$|F(\cdot)(-) - g(-)|^p \in M(\mathcal{A} \otimes \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{F})).$$

Also for each $\lambda \in \Lambda$, since $F(\lambda)$ and g are in $L_p(\mathbb{R})$,

$$\int_{\mathbb{R}} |F(\lambda)(t) - g(t)|^p dt \in \mathbb{R}.$$

By (1), (2), and Tonelli’s Theorem [4, p. 194, Thm. 14],

$$\int_{\mathbb{R}} |F(\cdot)(-) - g(\cdot)|^p dt \in M(\mathcal{A} \otimes \mathcal{B}(\mathbb{R})).$$

Hence $|F(\cdot) - g|^p \in M(\mathcal{A}, \mathcal{B}(\mathbb{R}))$ and by (1.3) $\hat{F}(\cdot)$ is ball measurable.

Next assume that $F(\cdot)$ is $L_p^{loc}(\mathbb{R})$-valued and let $T > 0$. Then

$$\forall \lambda \in \Lambda, \chi_{[-T, T]}(-)F(\lambda)(-) \in L_p(\mathbb{R})$$

and

$$\chi_{[-T, T]}(-)F(\cdot)(-) \in M(\mathcal{A} \otimes \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{F})).$$

It follows from Case I (cf. (3) et seq.) that for each $g \in L_p^{loc}(\mathbb{R})$,

$$|F(\cdot) - g|_{p, T} = (2T)^{-1/p} \chi_{[-T, T]} F(\cdot) - \chi_{[-T, T]} g |_{p} \in M(\mathcal{A}, \mathcal{B}(\mathbb{R})).$$

Case II. Let $X = S_p(\mathbb{R})$. Then by Triv. 2.6b) and (4) for $g \in S_p(\mathbb{R})$

$$|F(\cdot) - g|_{S_p} = \sup_{T \in \mathbb{Q}_{+}} |F(\cdot) - g|_{p, T} \in M(\mathcal{A}, \mathcal{B}(\mathbb{R})).$$

Therefore by (1.3) $\hat{F}(\cdot)$ is ball measurable.

Case III. Let $X = M_p(\mathbb{R})$. Then by Triv. 2.6c) and (4) for each $g \in M_p(\mathbb{R})$,

$$|F(\cdot) - g|_{p} = \inf_{T \in \mathbb{Q}_{+}} \left\{ \sup_{T \in \mathbb{Q}_{+}} |F(\cdot) - g|_{p, T} \right\} \in M(\mathcal{A}, \mathcal{B}(\mathbb{R})).$$

Therefore by (1.3) $\hat{F}(\cdot)$ is ball measurable.

The next proposition is useful in applications of Theorem II.

3.6 PROPOSITION. Let \mathcal{A} and μ be as in 3.1, $1 \leq p < \infty$, and $F(\cdot)$ be a function on Λ to $M_p(\mathbb{R})$ such that

(i) $F(\cdot)(-) \in M(\mathcal{A} \otimes \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{F}))$, 371
(ii) the range of $F(\cdot)$ is a separable subset of $\mathcal{M}_p(\mathbb{R})$, and

(iii) $\sup_{T \geq T_0} |F(\cdot)|_{p, T} \in L_1(\Lambda, \mathcal{A}, \mu; \mathbb{R})$ for some $T_0 > 0$.

Then

a) $\hat{F}(\cdot) \in L^1_{\text{sep}}(\Lambda, \mathcal{A}, \mu; \mathcal{M}_p(\mathbb{R}))$.

b) $F(\cdot)(t) \in L_1(\Lambda, \mathcal{A}, \mu; \mathbb{R})$ for almost all (Leb.) $t \in \mathbb{R}$.

c) Letting

$$B = \{ t : t \in \mathbb{R} \& F(\cdot)(t) \in L_1(\Lambda, \mathcal{A}, \mu; \mathbb{R}) \}$$

and

$$G(\lambda)(t) = \chi_B(t)F(\lambda)(t), \quad \lambda \in \Lambda, t \in \mathbb{R},$$

the function $G(\cdot)$ on Λ to $M_p(\mathbb{R})$ satisfies 1.6(i), (ii).

Proof. a) By Lemma 3.5, $\hat{F}(\cdot)$ is a ball measurable $\mathcal{M}_p(\mathbb{R})$-valued function. By hypothesis the range of $\hat{F}(\cdot)$ is separable. Obviously from the hypothesis $|F(\cdot)|_{p, T} \in L_1(\Lambda, \mathcal{A}, \mu; \mathbb{R})$. Therefore $\hat{F}(\cdot) \in L^1_{\text{sep}}(\Lambda, \mathcal{A}, \mu; \mathcal{M}_p(\mathbb{R}))$.

b) Let $n \geq T_0$. Then by (i) and Tonelli’s Theorem, by Hölder’s Inequality, and by (ii), respectively,

$$\frac{1}{2^n} \int_{-n}^{n} \left\{ \int_{\Lambda} |F(\lambda)(t)| \mu(d\lambda) \right\} dt = \int_{\Lambda} \left(\frac{1}{2^n} \int_{-n}^{n} |F(\lambda)(t)| \cdot 1 \right) \mu(d\lambda)$$

$$\leq \int_{\Lambda} \left(\frac{1}{2^n} \int_{-n}^{n} |F(\lambda)(t)|^p dt \right)^{1/p} \left(\frac{1}{2^n} \int_{-n}^{n} dt \right)^{1/p} \mu(d\lambda)$$

$$\leq \int_{\Lambda} \{ \sup_{T \geq T_0} |F(\lambda)(t)|_{p, T} \mu(d\lambda) < + \infty.$$

Hence $F(\cdot)(t) \in L_1(\Lambda, \mathcal{A}, \mu; \mathbb{R})$ for almost all $t \in [-n, n]$, i.e. the Borel set

$$E_n = \{ t : -n \leq t \leq n \& \int_{\Lambda} |F(\lambda)(t)| \mu(d\lambda) = \infty \}$$

is Lebesgue negligible. Let $E = \bigcup_{-\infty}^{\infty} E_n$. Then E is Lebesgue negligible and

$$\forall t \in \mathbb{R} \setminus E, \quad F(\cdot)(t) \in L_1(\Lambda, \mathcal{A}, \mu; \mathbb{R}).$$

c) Let $G(\cdot)(-) = \chi_B(\cdot)F(\cdot)(-)$. Then

$$\forall \lambda \in \Lambda, \quad G(\lambda)(-) = F(\lambda)(-) \text{ a.e. Leb.},$$

$$G(\cdot)(-) \in M(\mathcal{A} \otimes \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R})),$$

$$\forall t \in \mathbb{R}, \quad G(\cdot)(t) \in L_1(\Lambda, \mathcal{A}, \mu; \mathbb{R}).$$

Thus the function $G(\cdot)$ on Λ to $M_p(\mathbb{R})$ satisfies 1.6(i), and by (iii) also satisfies 1.6(ii). □

4. QUESTIONS I AND II IN $\mathcal{S}_p(\mathbb{R})$

Questions I and II will now be answered affirmatively for functions

$$\tilde{F}(\cdot) \in L^1_{\text{sep}}(\Lambda, \mathcal{A}, \mu; \mathcal{S}_p(\mathbb{R})).$$
Our proof depends on transforming this problem to one in \(L_p(B) \), cf. Def. 2.1a), where \(B \) is a bounded Borel set in \(\mathbb{R} \). The proof requires the following triviality.

4.1 TRIVIALITY

Let \(B \) be a bounded Borel subset of \(\mathbb{R} \) and \(1 \leq p < \infty \). Then

a) for all \(f \in \mathcal{S}_p(\mathbb{R}) \), \(R \text{str}_p f \in L_p(B) \);

b) defining \(R_B \) on \(\mathcal{S}_p(\mathbb{R}) \) to \(L_p(B) \) by

\[
R_B(f) = \{ \text{str}_p f(\cdot) \} \cdot \forall f \in \mathcal{S}_p(\mathbb{R}),
\]

we have that \(R_B \) is a continuous linear operator on \(\mathcal{S}_p(\mathbb{R}) \) to \(L_p(B) \) with operator norm

\[
| R_B | \leq [2 \sup \{ |t| : t \in B \}]^{1/p}.
\]

Proof.

a) follows directly from Def. 2.2a).

b) Obviously \(R_B \) is linear. By (2.3) \(R_B \) is single valued. Since \(B \) is bounded, we have \(B \subseteq [-T_0, T_0] \), for some \(T_0 > 0 \). Thus by (2.3) for all \(f \in \mathcal{S}_p(\mathbb{R}) \),

\[
| R_B(f) |_p = (\int_{B} |f(t)|^p dt)^{1/p} \leq (2T_0)^{1/p} \int_{[-T_0, T_0]} |f|_p \leq (2T_0)^{1/p} \int_{\mathcal{S}_p}.
\]

where \(f \in \mathcal{F} \). Hence \(| R_B | \leq (2T_0)^{1/p} \). \(\square \)

The following theorem is the analogue for \(\mathcal{S}_p(\mathbb{R}) \) of the combined Theorems I and II, and will be needed for their proofs.

4.2 THEOREM

Let \((A, \mathcal{A}, \mu) \) be a \(\sigma \)-finite measure space and

\[
\mathcal{F}(\cdot) \in \mathcal{L}^\mathcal{D}(A, \mathcal{A}; \mathcal{S}_p(\mathbb{R})), \ 1 \leq p < \infty.
\]

Then

a) there exists a function \(G(\cdot) \) on \(A \) to \(\mathcal{S}_p(\mathbb{R}) \) such that

(i) \(G((\cdot))(-) \in M(\mathcal{A} \otimes \mathcal{M}(\mathbb{R}), \mathcal{M}(\mathbb{F})) \),

(ii) \(G(\lambda) \in \mathcal{F}(\lambda) \) for \(\mu \) almost all \(\lambda \in A \),

(iii) \(\forall t \in \mathbb{R}, \ G(\cdot)(t) \in L_1(A, \mathcal{A}, \mu; \mathbb{F}) \),

and

(iv) \(\int_A G(\cdot)(\cdot)(\cdot) \mu(d\lambda) \in \int_A \mathcal{F}(\lambda) \mu(d\lambda) \)

where the last integral is Bochner in \(\mathcal{S}_p(\mathbb{R}) \).

b) If \(G_0(\cdot) \) is any function on \(A \) to \(\mathcal{S}_p(\mathbb{R}) \) such that \(a)(i)-(iii) \) hold for \(G_0 \) then \(G_0((\cdot)(\cdot)(\cdot)) = G((\cdot)(\cdot)(\cdot)) \) a.e. \(\mu \times \text{Leb} \) on \(A \times \mathbb{R} \) and

\[
\int_A G_0(\lambda)(\cdot)(\cdot)(\cdot) \mu(d\lambda) \in \int_A \mathcal{F}(\lambda) \mu(d\lambda).
\]

Proof.

a) Let \(n \in \mathbb{N} \) and \(B_n = (n, n + 1] \). By Triv. 4.1,

\[
(R_B \circ \mathcal{F})(\cdot) \in \mathcal{L}^\mathcal{D}(A, \mathcal{A}, \mu; L_p(B_n)),
\]

\(\text{If } f(\cdot) \text{ is a function on a set } A \text{ and } B \subseteq A, \text{ then } R \text{str}_B f(\cdot) \text{ denotes the restriction of } f(\cdot) \text{ to } B. \)
and by [4, p. 113, Thm. 19(c)],

\[(1) \quad R_{B_n}\{\int_A \tilde{F}(\lambda)\mu(d\lambda)\} = \int_A R_{B_n}\{\tilde{F}(\lambda)\}\mu(d\lambda)\]

where the first integral is in \(\mathcal{L}_p(\mathbb{R})\) and the second in \(L_p(B_n)\). By [4, p. 198, Thm. 17] for each \(n \in \mathbb{N}\), there exists a function \(h_n\) and a set \(N_n\) such that

\[(2) \quad h_n(\cdot, t) \in M(\mathcal{A} \otimes \mathcal{B}(B_n), \mathcal{B}(\mathbb{F}))\],

\[(3) \quad N_n \in \mathcal{A} \text{ is } \mu \text{ negligible},\]

\[(4) \quad \forall \lambda \in A \setminus N_n, \quad h_n(\lambda, -) \in R_{B_n}\{\tilde{F}(\lambda)\},\]

\[(5) \quad \forall t \in B_n, \quad h_n(\cdot, t) \in L_1(A, \mathcal{A}, \mu; \mathcal{F}),\]

and

\[(6) \quad \int_A h_n(\lambda, -)\mu(d\lambda) \in \int_A R_{B_n}\{\tilde{F}(\lambda)\}\mu(d\lambda).\]

Now let \(F(\cdot)\) be any representative of \(\tilde{F}(\cdot)\). Then since for each \(\lambda \in A \setminus N_n,\)
\[R_{B_n}F(\lambda)(-) \in R_{B_n}\{\tilde{F}(\lambda)\},\]

it follows by (4) that there exists a Lebesgue negligible Borel subset \(E_n\) of \(B_n\) such that

\[(7) \quad \forall t \in B_n \setminus E_n, \quad h_n(\lambda, t) = F(\lambda)(t).\]

Let \(f(\cdot)\) be a representative of \(\int_A \tilde{F}(\lambda)\mu(d\lambda)\). Then
\[R_{B_n}f(\cdot) \in R_{B_n}\{\int_A \tilde{F}(\lambda)\mu(d\lambda)\} = \int_A R_{B_n}\{\tilde{F}(\lambda)\}\mu(d\lambda),\]

and comparison with (6) shows that there exists a Lebesgue negligible Borel subset \(E_n\) of \(B_n\) such that

\[(8) \quad \forall t \in B_n \setminus E_n, \quad \int_A h_n(\lambda, t)\mu(d\lambda) = f(t).\]

Define

\[(9) \quad G(\lambda)(t) = \sum_{-\infty}^{\infty} \chi_{B_n}(t)h_n(\lambda, t), \quad \lambda \in A, \quad t \in \mathbb{R}.\]

For each \(n, \mathcal{B}(B_n) \subset \mathcal{B}(\mathbb{R})\); therefore

\[\mathcal{A} \otimes \mathcal{B}(B_n) = \sigma\text{-ring} (\mathcal{A} \times \mathcal{B}(B_n)) \subset \sigma\text{-ring} (\mathcal{A} \times \mathcal{B}(\mathbb{R})) = \mathcal{A} \otimes \mathcal{B}(\mathbb{R}).\]

Now for each \(B \in \mathcal{B}(\mathbb{F}),\)

\[\{(\lambda, t) : G(\lambda)(t) \in B\} = \bigcup_{-\infty}^{\infty} h_n^{-1}(B) \in \mathcal{A} \otimes \mathcal{B}(\mathbb{R});\]

hence by (2) \(G(\cdot)(-) \in M(\mathcal{A} \otimes \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{F})).\) Let

\[
N = \bigcup_{-\infty}^{\infty} N_n, \quad E = \bigcup_{-\infty}^{\infty} E_n, \quad \text{and} \quad \forall \lambda \in A \setminus N, \quad E_{n, \lambda} = \bigcup_{-\infty}^{\infty} E_{n, \lambda}.\]

5 If \(\mathcal{F} \subset 2^\mathcal{F}\) then \(\sigma\text{-ring} (\mathcal{F})\) denotes the smallest \(\sigma\text{-ring} \) containing \(\mathcal{F}.)
Then N is μ negligible, and E and E^λ are Lebesgue negligible. By (9) and (7) for each $\lambda \in A \setminus N$, and for all $t \in \mathbb{R} \setminus E^\lambda$,

$$G(\lambda)(t) = \sum_{n=-\infty}^{\infty} \chi_{B_n}(t) F(\lambda)(t) = F(\lambda)(t),$$

and thus for all $\lambda \in A \setminus N$, $G(\lambda) \in \bar{F}(\lambda)$.

Now let $t_0 \in \mathbb{R}$. Then $t_0 \in B_{n_0}$ for some n_0, and therefore by (9) and (5)

$$G(\cdot)(t_0) = h_{n_0}(\cdot, t_0) \in I_1(A, \mathcal{S}, \mu, \mathcal{F}).$$

Finally let $t_0 \in \mathbb{R} \setminus E$. Then $t_0 \in B_{n_0} \setminus E_{n_0}$ for some n_0 and by (8)

$$\int_A G(\lambda)(t_0)\mu(d\lambda) = \int_A h_{n_0}(\lambda, t_0)\mu(d\lambda) = f(t_0).$$

Since E is Lebesgue negligible, it follows that

$$\int_A G(\lambda)(-\lambda)\mu(d\lambda) \in \mathcal{F}(\lambda)\mu(d\lambda).$$

b) Let $G_0(\cdot)$ be a function on A to $S_p(\mathbb{R})$ such that a) (i)–(iii) (with G_0 replacing G) hold. Let N_0 be a μ negligible set such that $G_0(\lambda) \in \bar{F}(\lambda)$ for all $\lambda \in A \setminus N_0$. Then by (a) and (2.3) for each $\lambda \in A \setminus (N \cup N_0)$, $G_0(\lambda)(-\lambda) = G(\lambda)(-\lambda)$ a.e. \mathbb{R}. Hence by Triv. 3.2b)

$$(\mu \times \text{Leb}) \{(\lambda, t) : G_0(\lambda)(t) \neq G(\lambda)(t)\} = 0,$$

and there exists a Lebesgue negligible Borel set E_0 such that for each $t \in \mathbb{R} \setminus E_0$, $G_0(\cdot)(t) = G(\cdot)(t)$ a.e. μ. Hence for each $t \in \mathbb{R} \setminus E_0$,

$$\int_A G_0(\lambda)(t)\mu(d\lambda) = \int_A G(\lambda)(t)\mu(d\lambda).$$

Therefore by (2.3) and (iv) of part a),

$$\int_A G_0(\lambda)(-\lambda)\mu(d\lambda) \in \mathcal{F}(\lambda)\mu(d\lambda).$$

5. PROOFS FOR THEOREMS I AND II

We proceed to deduce Theorems I and II from Theorem 4.2. Starting with the linear contraction J on $\mathcal{H}_p(\mathbb{R})$ onto $\mathcal{M}_p(\mathbb{R})$ defined in 2.5, we first appeal to the following theorem on continuous selections due to E. Michael [10, p. 375, Prop. 7.2].

5.1 THEOREM. Let X and Y be Banach spaces over \mathbb{F} and J be a continuous linear operator on X onto Y. Then for each $\alpha > 1$, there exists a continuous (in general non-linear) function S_α on Y into X such that for all $y \in Y$,

a) $S_\alpha(y) \in J^{-1}(\{y\})$

b) $|S_\alpha(y)|_X \leq \alpha \inf \{ |x|_X : x \in J^{-1}(\{y\}) \}$

c) $S_\alpha(ay) = aS_\alpha(y) \forall a \in \mathbb{F}$. 375
From Proposition 2.5 and Theorem 5.1 we at once get the following lemma:

5.2 **Lemma.** Let $1 \leq p < \infty$, J be as in 2.5, and $\alpha > 1$. Then there exists a continuous function S_α on $\mathcal{M}_p(\mathbb{R})$ into $\mathcal{S}_p(\mathbb{R})$ such that for all $f \in \mathcal{M}_p(\mathbb{R})$,

- $S_\alpha(f) \lesssim f$ and $J(S_\alpha(f)) = f$
- $|S_\alpha(f)|_{S_p} \leq \alpha |f|_p$
- $S_\alpha(\alpha f) = a S_\alpha(f)$ for all $a \in \mathbb{R}$.

With the aid of the S_α (with $\alpha = 2$) just obtained, we shall now deduce Theorem I from Theorem 4.2.

5.3 **Proof of Theorem I.** By Lemma 5.2 there exists a continuous function S_2 on $\mathcal{M}_p(\mathbb{R})$ to $\mathcal{S}_p(\mathbb{R})$ such that $S_2(f) \lesssim f$ and $|S_2(f)|_{S_p} \leq 2|f|_p$ for all $f \in \mathcal{M}_p(\mathbb{R})$. Since $\hat{F}(\cdot) \in L^1(\mathcal{M}_p(\mathbb{R}))$, it follows that the range of $\hat{F}(\cdot)$ is separable and $\hat{F}(\cdot) \in M(\mathcal{A}, \mathcal{B}(\mathcal{S}_p(\mathbb{R})))$, cf. (1.4). Thus, S_2 being continuous, the range of $(S_2 \circ \hat{F})(\cdot)$ is separable in $\mathcal{S}_p(\mathbb{R})$ and $(S_2 \circ \hat{F})(\cdot) \in M(\mathcal{A}, \mathcal{B}(\mathcal{S}_p(\mathbb{R})))$. Hence by (1.4) $(S_2 \circ \hat{F})(\cdot) \in M(\mathcal{A}, \mathcal{B}(\mathcal{S}_p(\mathbb{R})))$. Also $|(S_2 \circ \hat{F})(\cdot)|_{S_p} \leq 2 \| \hat{F}(\cdot) \|_p$ so that

\begin{equation}
(S_2 \circ \hat{F})(\cdot) \in L^1(\mathcal{M}_p(\mathbb{R}), \mathcal{A}(\mathbb{R})).
\end{equation}

It follows from Theorem 4.2 that there exists a function $G(\cdot)$ on \mathcal{A} to $\mathcal{S}_p(\mathbb{R})$ such that

\begin{align}
G(\lambda) &\in (S_2 \circ \hat{F})(\lambda) \subseteq \hat{F}(\lambda) \text{ for } \mu \text{ almost all } \lambda \in \mathcal{A}, \text{ cf. } 5.2a),
G(\cdot)(-) \in M(\mathcal{A}, \mathcal{B}(\mathcal{S}_p(\mathbb{R}))),
\forall t \in \mathbb{R}, G(\cdot)(t) \in L^1(\mathcal{A}, \mathcal{A}; \mathbb{F}),
\end{align}

and

\begin{equation}
\int_{\mathcal{A}} G(\lambda)(-) \mu(\lambda) = \int_{\mathcal{A}} (S_2 \circ \hat{F})(\lambda) \mu\mu(\lambda).
\end{equation}

Since, cf. (2.3), for all $\lambda \in \mathcal{A}$, $G(\lambda) \in \mathcal{M}_p(\mathbb{R})$, by (2) we have established the conditions 1.5a).

Let J be defined as in Prop. 2.5. Then by 2.5b),

\begin{equation}
\int_{\mathcal{A}} (S_2 \circ \hat{F})(\lambda) \mu(\lambda) \lesssim J\{\int_{\mathcal{A}} (S_2 \circ \hat{F})(\lambda) \mu(\lambda)\}.
\end{equation}

By [4, p. 113, Thm. 19(c)] and Lemma 5.2a)

\begin{equation}
J\{\int_{\mathcal{A}} (S_2 \circ \hat{F})(\lambda) \mu(\lambda)\} = \int_{\mathcal{A}} (J \circ S_2 \circ \hat{F})(\lambda) \mu(\lambda) = \int_{\mathcal{A}} \hat{F}(\lambda) \mu(\lambda).
\end{equation}

Combining (3), (4), and (5) we have that

\begin{align}
\int_{\mathcal{A}} G(\lambda)(-) \mu(\lambda) = \int_{\mathcal{A}} \hat{F}(\lambda) \mu(\lambda),
\end{align}

i.e. we have 1.5b).
Finally, it follows from (2), Def. 2.2a), and (1) that
\[\sup_{T > 0} \left(\frac{1}{2T} \int_{-T}^{T} |G(\cdot)(t)|^p dt \right)^{1/p} = |(S_2 \circ \hat{F})(\cdot)|_{S_p} \in L_1(A, \mathcal{A}, \mu; \mathbb{R}), \]
i.e. 1.5c) holds. \(\square \)

The following result is needed for the proof of Theorem II. Its proof consists of an easy application of Fatou’s Lemma to an appropriate sequence \((T_n)\) tending to \(+ \infty\).

5.4 TRIVIALITY. Let \(\{\psi_T : T > 0\} \subset M(\mathcal{A}, \mathcal{M}(\mathbb{R})) \) be such that \(0 \leq \psi_T(\cdot) \leq \psi(\cdot), \) a.e. \(\mu \), where \(\psi(\cdot) \in L_1(A, \mathcal{A}, \mu; \mathbb{R}) \) and
\[\lim_{T \to \infty} \psi_T(\cdot) \in M(\mathcal{A}, \mathcal{M}(\mathbb{R})). \]

Then
\[\lim_{T \to \infty} \int_A \psi_T(\lambda) \mu(d\lambda) \leq \int_A \left\{ \lim_{T \to \infty} \psi_T(\lambda) \right\} \mu(d\lambda). \]

5.5 PROOF OF THEOREM II. Since \(\hat{F}(\cdot) \in L_1^{sp}(A, \mathcal{A}, \mu; \mathcal{M}(\mathbb{R})) \), by Theorem I there exists an \(H(\cdot) \) on \(A \) to \(M_p(\mathbb{R}) \) satisfying the following conditions:
\[\begin{cases}
H(\lambda) \in \hat{F}(\lambda) \text{ for } \mu \text{ a.a. } \lambda \in A, \\
H(\cdot)(-) \in M(\mathcal{A}, \mathcal{M}(\mathbb{R}), \mathcal{M}(\mathbb{R})), \\
\forall t \in \mathbb{R}, \ H(\cdot)(t) \in L_1(A, \mathcal{A}, \mu; \mathbb{R}), \\
(1) \\
(2) \end{cases} \]

and
\[(3) \quad \hat{h} = \int_A \hat{F}(\lambda) \mu(d\lambda) \text{ where } h(t) = \int_A H(\lambda)(t) \mu(d\lambda). \]

By hypothesis, \(G(\cdot) \) is a function on \(A \) to \(M_p(\mathbb{R}) \) satisfying condition (1) (with \(G \) replacing \(H \)) and
\[(4) \quad \sup_{T \geq T_0} |G(\cdot)|_{p,T} \in L_1(A, \mathcal{A}, \mu; \mathbb{R}) \text{ for some } T_0 > 0. \]

Obviously \(\|H(\cdot) - G(\cdot)\|_p = 0, \) a.e. \(\mu. \) It follows from (2) and (4) that for all \(T \geq T_0 \)
\[(5) \quad |H(\cdot) - G(\cdot)|_{p,T} \leq \sup_{T > 0} |H(\cdot)|_{p,T} + \sup_{T \geq T_0} |G(\cdot)|_{p,T} \in L_1(A, \mathcal{A}, \mu; \mathbb{R}). \]

Define
\[g(t) = \int_A G(\lambda)(t) \mu(d\lambda), \quad t \in \mathbb{R}. \]

377
Now by the generalized Minkowski inequality, cf. [4, p. 530, Ex. 11.13], we have for each $T > 0$ that

$$\left| h - g \right|_{p, T} \leq \left\{ \frac{1}{2T} \int_{-T}^{T} \left[H(\lambda)(t) - G(\lambda)(t) \right]^p dt \right\}^{1/p}$$

(6)

$$\leq \int_{A} \left\{ \frac{1}{2T} \int_{-T}^{T} \left| H(\lambda)(t) - G(\lambda)(t) \right|^p dt \right\}^{1/p} \mu(d\lambda)$$

$$\leq \int_{A} \left| H(\lambda) - G(\lambda) \right|_{p, T} \mu(d\lambda).$$

Also by Lemma 3.5, $H - G \in M(\mathcal{A}, \mathcal{B}(\mathcal{M}(\mathbb{R})))$, and so by (1.3)

$$\lim_{T \to \infty} \left| H(\cdot) - G(\cdot) \right| \left(p, T \right)_{\mathcal{M}(\mathcal{A})} \mathcal{H}(\mathbb{R}) = 0.$$

Thus by (6), (5), and Triviality 5.4,

$$\left| h - g \right| \leq \lim_{T \to \infty} \int_{A} \left| H(\lambda) - G(\lambda) \right|_{p, T} \mu(d\lambda)$$

$$\leq \int_{A} \left\{ \lim_{T \to \infty} \left| H(\lambda) - G(\lambda) \right|_{p, T} \right\} \mu(d\lambda) = 0.$$

Therefore by (3)

$$g = h = \int_{A} \hat{f}(\lambda) \mu(d\lambda). \quad \square$$

6. SOME APPLICATIONS

We shall briefly indicate some uses of Theorem II. Consider the group \{ $V_s : s \in \mathbb{R}$ \} defined by

$$V_s(f) = \{ f(\cdot + s) \}^{\wedge}, f \in M_{b}(\mathbb{R}).$$

To show that its infinitesimal generator is differentiation, we must evaluate integrals such as

$$\int_{a}^{b} V_s(\hat{g}) ds \text{ and } \int_{0}^{\infty} V_s(\hat{h}) e^{-s} ds,$$

for which Theorem II is useful.

For the next application we first note that Theorem II holds for real and complex measures. Now in [1, p. 19] Bertrandias defined the convolution of an f in $\mathcal{M}_{b}(\mathbb{R})$ with a (bounded) complex measure ν on $\mathcal{B}(\mathbb{R})$ by

$$f \ast \nu = \lim_{A \to \infty, B \to -\infty} \left\{ \int_{-A}^{B} f(\cdot - s) \nu(ds) \right\}^{\wedge}$$

by first showing that the limit in $\mathcal{M}_{b}(\mathbb{R})$ exists. Moreover, he showed that when $\nu(\cdot)(f)$ is continuous on \mathbb{R},

$$f \ast \nu = \int_{\mathbb{R}} V_{-A}(f) \nu(ds),$$

where the integral is Bochner in $\mathcal{M}_{b}(\mathbb{R})$, cf. [1, p. 21]. This result emerges as a corollary of our Prop. 3.6, and Theorem II extended to complex measures.
REFERENCES