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It was conjectured by Fulkerson that the edge-set of any bridgeless graph can be
covered by six cycles (union of circuits) such that each edge is in exactly four cycles.
We prove that if Fulkerson's conjecture is true, then the edge-set of every bridgeless
graph G can be covered by three cycles whose total length is at most % |E(G)|. We
also prove that there are infinitely many bridgeless graphs G whose edge-set cannot
be covered by three cycles of total length less than £ |E(G)|  © 1994 Academic Press. Inc.

1. INTRODUCTION

Let G be a graph. A circuit cover of G is a collection of circuits of G such
that each edge of G is in at least one of the circuits. The length of a circuit
cover is the sum of the lengths of the circuits in the cover. We define a cycle
to be the union of disjoint circuits. It is clear that a circuit cover can be
represented by a collection of cycles. We call a circuit cover a k-cycle cover
if it can be represented by k cycles. (The empty set ¢J is regarded as a cycle
of any graph.) In other words, a k-cycle cover of G is a collection of k
cycles such that each edge of G is in at least one of the cycles.

The shortest circuit cover problem (SCCP) is to find a circuit cover of
shortest length. In this paper, we investigate connections between the
SCCP and Fulkerson’s conjecture. It was conjectured by Fulkerson [4] (or
see Seymour [9]) that every bridgeless cubic graph has six perfect
matchings such that each edge is in exactly two of the matchings. This
conjecture can be reformulated (see Jaeger [6]) as
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Fulkerson’s Conjecture. Every bridgeless graph has a 6-cycle cover such
that each edge is in exactly four cycles.

Bermond, Jackson, and Jaeger [1] have proved that every bridgeless
graph G has a 3-cycle cover of length at most 3 | E(G)|. We shall prove that

THEOREM 1.1. If Fulkerson’s conjecture is true, then every bridgeless
graph G has a 3-cycle cover of length at most 2% |E(G)|.

THEOREM 1.2. There are infinitely many bridgeless graphs G that have no
3-cycle cover of length less than % |E(G)|.

2. 3-CycLE COVERS

The symmetric difference of two sets 4 and B is denoted by
A®B=(AUB\(ANB). Let ¥ be a cycle cover of a graph G; /(¥)
denotes the length of ¥ and S(¥) is the set of edges in ¥ which are
contained in precisely one cycle of €.

LEMMA 2.1. Let € be a 3-cycle cover of a graph G; then G has a 3-cycle
cover of length at most 2 |E(G)| + 3 |S(€)| — 3 [(€).

Proof. Let €= {C,,C,, Cy} and set S,=S(¥)nC,, 1 <i<3. We have
that

HE)=|C| +1C,| +|C5] and |S(E)] =181 + 1S5, +1551. (2.1)
Let €' ={C,®C,,C:®C,, C,®C,@®C,}. Then €’ covers each element
in §, exactly three times, each element in C\:S, exactly once, and each
element of the rest exactly twice. It follows that the length of €” is

H(€)=31S| +ICAS || + 2 [E(GN\C,| =2 |E(G)| +2 |5, —IC|.
Similarly, there are 3-cycle covers €”, €" such that

HE")=2|E(G) +21S5,| —|Cyl,  UE")=2]E(G)| +21|5;5] —|Csl.
Using these equalities and taking (2.1) into account, we obtain that
€)Y+ UE")+I(E")=6|E(G) +2|S(¥) —(€).

Hence, one of the three 3-cycle covers €', €”, €” must be of length at most
2 |E(G)| +5|S(€)| — 3{(%), as required by the lemma. |
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The central part of the proof of Jaeger’s 8-flow Theorem [5] is that
every bridgeless graph has a 3-cycle cover. A traditional approach to the
shortest circuit cover problem is to find directly a cycle cover of length as
short as possible. As an alternative, we try to find a 3-cycle cover of length
as long as possible and then relate the length of the long 3-cycle cover to
upper bounds of short cycle covers. More precisely, we shall prove that

THEOREM 2.2. [f a graph G has a 3-cycle cover of length at least m, then
G has a 3-cycle cover of length at most 3 |E(G)| — 3m.

Proof. Choose a 3-cycle cover € of G such that /(%) is maximum; then
(€¢)=m. Let | denote the minimum length of a 3-cycle cover of G. By
Lemma 2.1,

1<2|E(G)] + % IS(€)] — 1(%). (2.2)
Let T be the set of elements which are in all of the three cycles of €; then
(€)=2|E(G)| +|T|—|S(¥)l. (2.3)

Set ¢={C,,C,,C;}. Since SE)uT=C,®C,HC,, we seec that
{C,, Cy, Cy, S(€)u T} is a 4-cycle cover of G which covers each element
of T exactly four times and each element of E(G)\T exactly twice. It
follows that any three cycles of {C,, C,, Cy, S(¥)u T} form a 3-cycle
cover of G, and by the maximality of (%), |S(¥)uT|<|C),1<i<3.
Thus, |S(%)|+|TI<3(C,) +]C;| +|C5])=3I(¥). Combining this with
(2.3) yields that S(%) < |E(G)| — 1i(%), which together with (2.2) gives that
I<¥E(G)) — 3(6) <3 |E(G)| — 3m, as required. §

3. PROOF OF MAIN THEOREMS

Proof of Theorem 1.1. If Fulkerson’s conjecture is true, then there is a
6-cycle cover F such that each edge of G is contained in exactly four cycles
of F. Let € be any subset of three cycles of F. (Note that F is formed by
six cycles.) We see that each edge of G must appear in at least one cycle
of #; that is, ¥ is a 3-cycle cover of G. Let [ denote the minimum length
of a 3-cycle cover of G. By Lemma 2.1,

IS2|E(G)] +31S(8)| - 3U(%).

There are totally () =20 choices for €. List these twenty 3-cycle covers as
b, %, .., o Then we have that

IS2|E(G) +31S(6)| —i(€), 1<i<20.
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Summing over all i, 1 <i< 20, yields that

20 20
20/<40 |EG) +2 Y IS(%) -1 Y 1(%),

i=1 i=1
and so
20

20
IS2IEG) +% ) IS@E) —5 ) UE). (3.1)

i=1 i=1

Now, for each edge e e E(G), there are two and only two cycles of F, say
C’, C”, which do not contain e. So, e€ S(%;) if and only if {C",C"} = %,.
There are precisely four such %’s (precisely four choices for the third cycle).
Thus ¢ is counted precisely four times in the sum 32° | |S(%,)|. Since this
is true for every e€ E(G),

20
2. IS(€) =4 {E(G). (32)

i=1

We note that each edge of G appears in precisely four cycles of F and each

cycle of F appears in precisely (3)=10 of the twenty 3-cycle cover &s.

Therefore each edge of G is counted precisely 40 times in the sum
20 [(%,). 1t follows that

i=1
20

Y I(€, =40 |E(G)|. (3.3)

i=1

Substituting (3.3) and (3.2) into (3.1) gives that / < £ |E(G)| and completes
the proof of Theorem 1.1. |}

DerFiNiTION.  Denote by uv the edge with ends u and v. Let v be a vertex
in a cubic graph and let vx, vy, vz be the three edges incident with v. We
say that v is split into three vertices (of degree one) if v is replaced by three
new vertices v,, v,, v; and vx, vy, vz are replaced by three new edges v, x,

vy, U3z,

Proof of Theorem 12. Let G be any bridgeless cubic graph. We
associate with each vertex of G a copy of the Petersen graph, denoted
by P,. Let P, be the graph obtained by splitting a vertex of P, into
three vertices, say v}, vy, v5. Now, for each vertex v of G, split v into
three vertices, say v,, v,, vy, and identify », with v/, 1<i<3. Denote
the resulting graph by G,. We have that |E(G,)| =15 |{V(G)| + |E(G)|.
Now let J be the graph obtained from G, by contracting all the edges of G.
(These are the graphs used by Jamshy and Tarsi in [8].) Then |E(J)| =
15 1V(G)|. Since G is bridgeless, G, is bridgeless, and so is J. We claim that
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J has no 3-cycle cover of length less than #|E(J)|. If this is false, let
%=1{C,,C,,C5} be a 3-cycle cover of J such that {¥)<Z|E(J)
(=22 {¥(G){). For each ve V(G), set €,={C,nP,, C,nP,,CynP,}.
Then %, is a 3-cycle cover of the Petersen graph. From the fact that
{€)=2%.cwq) (6,), it follows that the Petersen graph has a 3-cycle cover
of length less than 22, but it is easy to check that this is impossible. This
contradiction proves the claim. Since J is constructed from an arbitrary
bridgeless cubic graph, the theorem follows. ||

Remark. In the proofs of Lemma 2.1, Theorem 2.2, and Theorem 1.1,
the key property we need for a graph is that the symmetric difference of
two cycles is a cycle. Since a binary matroid has such property, all the three
results could be directly generalized to binary matroids. For example, a
generalization of Theorem 1.1 could be as follows. Let M be a binary
matroid on a set E. If E can be covered by at most six cycles such that each
element of E is in exactly four cycles, then E can be covered by at most
three cycles whose total length is at most 2 |E|.

4. OPEN PROBLEMS

In Theorem 2.2, if m>2 |E(G)|, then G has a 3-cycle cover of length at
most & | E(G)|, a significant improvement on 3 | E(G)| (even better than the
bound £ |E(G)| obtained by assuming that G has a nowhere-zero 5-flow
[7]). This leads us to the problem of finding a longest 3-cycle cover of a
graph. We propose the following two conjectures.

Conjecture 4.1. Every bridgeless graph G has a 3-cycle cover of length
at least 2 |E(G).

Remark. Using the arguments in [3], one may show that every
bridgeless graph G has a 3-cycle cover of length at least 4 |E(G)I.

Conjecture 4.2. Every bridgeless cubic graph has three perfect
matchings M, M,, My such that M\ " M, n M=

Remark. The matching polytope theorem of Edmonds [2] implies that
every bridgeless cubic graph has three distinct perfect matchings; it is
known (see Jaeger [6]) that every 3-edge-connected cubic graph has three
spanning trees T, 7,, Ty such that T\n T, n Ty = .

If € is a 3-cycle cover, of length at least 2 | E(G)|, of a cubic graph G,
then each cycle of ¥ must be a 2-factor of G, and so the complement is a
perfect matching. It follows that Conjectures 4.1 and 4.2 are equivalent for
cubic graphs, and they are weaker than Fulkerson’s conjecture.
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