WS23.1 Models of the 3D structure of CFTR: from the understanding of the protein functions to the design of correctors
B. Hoffmann1, J.-P. Monnier1, B. Boucherle2, A. Fortune3, R. Haudecoeur3, C. Bommel1, M. Jollivet1, J.-L. Decout2, F. Becq3, P. Leh9, I. Callebaut1
1 Université Pierre et Marie Curie, CNRS, MNHN, IRD, IMPMC, UMR 7590, Paris, France; 2 Université Joseph Fourier, UJF/CNRS, DPM, UMR 5063, Grenoble, France; 3 Université de Poitiers, CNRS, Laboratoire STIM, UMR 7368, Poitiers, France; 4 Université de Bourgogne Occidentale, INSERM U1078, Brest, France

In the absence of experimental 3D structures at atomic resolution for the entire CFTR protein, homology models were built from 3D experimental structures of ABC exporters. These models provide valuable insights into the structural and functional characteristics of CFTR. These initial models were recently enriched by other modeling studies and molecular dynamics, offering a description of the possible architecture of the anion channel as a “bottleneck” with a significant narrowing of the pore.

We performed molecular dynamics experiments from our model of the open form of CFTR protein made by homology on the Sav1866 template. This model was validated using structural information provided by homology models of ABC exporters, and by taking into account the internal symmetry involving the two halves of the protein. We were able to explore the stability and the conformational variability of the 3D structure. We obtained a relevant model of the full open form of the anion channel, particularly well consistent with the experimental data available today. A lateral access path for ions and molecules from the cytosol was also highlighted.

These models provide insight into the molecular mechanisms ensuring the proper functioning of the CFTR protein, as well as the impact of mutations in patients with cystic fibrosis (CFTR2 database). In addition, we also used models of mutated forms of CFTR (F508del-CFTR in particular) to perform rational drug design. A series of molecules with a potential corrective effect are currently synthesized and their biological activity evaluated by functional tests.

This work is supported by the French Association “Vaincre la Mucoviscidose”.

WS23.2 Characterization of the CFTR mutation c.3700 A>G informs strategies for future medical intervention
S.V. Molinski1,2, T. Gonska3,4, L.J. Huan1, B. Baskin1, I.A. Janahi4, P.N. Ray5,6, C.E. Bear1,2,3,7, “Hospital for Sick Children, Molecular Structure and Function, Toronto, Canada; 2University of Toronto, Dept. Biochemistry, Toronto, Canada; 3Hospital for Sick Children, Physiology and Experimental Medicine, Toronto, Canada; 4University of Toronto, Dept. Pediatrics, Toronto, Canada; 5Uppsala University, The Rudbeck Laboratory, Dept. Immunology, Genetics & Pathology, Uppsala, Sweden; 6Hamad Medical Corporation, Section of Pediatric Pulmonology, Dept. Pediatrics, Doha, Qatar; 7Hospital for Sick Children, Genetics and Genomic Biology, Toronto, Canada; 8University of Toronto, Dept. Molecular Genetics, Toronto, Canada; 9University of Toronto, Dept. Physiology, Toronto, Canada

The CFTR variant c.3700 A>G, predicted to cause the missense mutation p.Ile1234_Arg1239del or alternative splicing, exhibits variable CF disease severity [1]. This variant, while rare in North America and Europe, is relatively common in the Middle East (~12% of CF population). The purpose of this study was to determine the consequences of this mutation. Clinical assays revealed that individuals homozygous for c.3700 A>G exhibited defective CFTR function. Genomic DNA from these patients was sequenced, and total RNA extracted from epithelial cells was transcribed into cDNA and sequenced. We found that this mutation in exon 19 activates a cryptic donor splice-site 18 bp upstream of the original donor splice-site, resulting in the in-frame deletion of 6 amino acids (p.3700_3717del, p.Ile1234_Arg1239del). A CFTR cDNA clone was constructed containing the deletion (p.Ile1234_Arg1239del) and heterologously expressed to test CFTR protein biosynthesis. This deletion, like the major CF-causing mutation p.Phe508del, caused a primary defect in processing. Importantly, Lumacaftor (VX-809), currently in clinical trial for CF patients with p.Phe508del, partially ameliorated the processing defect exhibited by p.Ile1234_Arg1239del. These studies highlight the need to define molecular and clinical consequences of rare CFTR variants in order to define possible therapeutic strategies.

Studies supported by the Canadian Institutes of Health Research, CF Canada, Genome Canada, Qatar National Research Fund, Al Qamrah Holding Group, and Hamad Medical Corporation.

Reference(s)

WS23.3 ICX is sensitive to detect potentiation of CFTR-mediated Cl− secretion in patients with cystic fibrosis and the G551D mutation treated with ivacaftor
S.Y. Graether1,2, M.J. Hug1, O. Sommerburg2,3, J.G. Mainz4, A. Heinzenmann4, B. Tummer4, M.A. Malt1,2, 1Department of Translational Pulmonology, Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany; 2Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany; 3Pharmacy, University Medical Center Freiburg, Freiburg, Germany; 4Department of Pediatriiscs, CF-Centre, Jena University Hospital, Jena, Germany; 5Centre for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany; 6Department of Pediatrics, Hannover Medical School, Hannover, Germany; 7Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATHE), Member of the German Center for Lung Research, Hannover, Germany

Objectives: Sensitive outcome measures of CFTR function may facilitate the implementation of mutation-specific therapy with CFTR modulators in patients with cystic fibrosis with non-G551D mutations. Intestinal current measurement (ICX) is a sensitive assay for functional assessment of mutant CFTR in rectal biopsies and was recently shown to detect potentiation effects of 1-EBIO ex vivo (Roth E. et al., PLOS One 2011). The aim of this study was to determine, if ICX is sensitive to detect potentiation of CFTR-mediated Cl− secretion in rectal epithelia from CF patients with a G551D mutation treated with ivacaftor.

Methods: Rectal biopsies were obtained from 8 patients carrying a G551D-CFTR mutation before and at least four weeks after the start of ivacaftor therapy. Rectal tissues were mounted in micro-Ussing chambers and CFTR-mediated Cl− secretion was determined from Cl− secretory responses induced by cAMP (IBMX/forskolin)- and Ca2+(charbachol)-mediated stimulation.

Results: Before ivacaftor therapy, ICX detected variable residual CFTR-mediated Cl− secretion in rectal tissues from CF patients with a G551D mutation. In the presence of ivacaftor therapy, CFTR-mediated Cl− secretory responses were increased in all 8 patients.

Conclusion: We conclude that ICX is sensitive to detect in vivo potentiation of mutant CFTR function by treatment with ivacaftor. Our results indicate that ICX may be a useful bioassay to determine therapeutic responses at the level of the basic CF defect of ivacaftor and potentially other clinical CFTR modulators in CF patients with non-G551D mutations.

WS23.4 Rare CF genotype with severe hepatic failure associated with medium chain acid deficiency (MCAD) in a neonate

We report the case of young baby boy born in Romania, admitted to our emergency department at the age of 1 month for severe neonatal cholestasis associated with coagulation dysfunction and pulmonary infection with multiple pathogens. The first hypothesis was a immune deficiency but not confirmed. The Guthrie test performed at that time was normal for the CF screening, but evidenced a MCAD, which was subsequently confirmed by the presence of the mutation C895A>G. The appropriate food regimen was started. Because of continued clinical deterioration and of lack of diagnosis despite broad etiological research, a sweat test was performed at 2 months of age, pathological. The screening of the CFTR gene confirmed CF diagnosis and found a rare homozygous mutation c.1853_1863del. Fecal elastase was low. Despite aggressive medical and surgical management, he developed severe portal hypertension and ascitis. A liver transplant is considered. In June 2018, he developed a severe hepatocellular carcinoma with life-threatening obstructions, and pulmonary infection with Pseudomonas aeruginosa and Staphylococcus aureus. Unfortunately, this child died at the age of 7 months.

Conclusion: This case is of interest for several reasons: (a) This genotype was never described before, and (b) is associated here with very early and severe hepatic dysfunction. C8h is unusual in CF, (3) ivacaftor can rescue MCAD. Unusual reports.