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Abstract

Herzog, Huneke, and Srinivasan have conjectured that for any homogeneous k-algebra, the mul-
tiplicity is bounded above by a function of the maximal degrees of the syzygies and below by a
function of the minimal degrees of the syzygies. The goal of this paper is to establish the multiplic-
ity conjecture of Herzog, Huneke, and Srinivasan about the multiplicity of graded Cohen–Macaulay
algebras over a field k for k-algebras k[x1, . . . , xn]/I when I is a determinantal ideal of arbitrary
codimension.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let R = k[x1, . . . , xn] be a polynomial ring in n variables over a field k, let deg(xi) = 1
and let I ⊂ R be a graded ideal of arbitrary codimension. Consider the minimal graded
free R-resolution of R/I :

0 →
⊕
j∈Z

R(−j)βp,j (R/I) → ·· · →
⊕
j∈Z

R(−j)β1,j (R/I) → R → R/I → 0
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where we denote βi,j (R/I) = dim TorRi (R/I, k)j the (i, j)th graded Betti number of R/I .
Many important numerical invariants of I and the associated scheme can be read off from
the minimal graded free R-resolution of R/I . For instance, the Hilbert polynomial, and
hence the multiplicity e(R/I) of I , can be written down in terms of the shifts j such that
βi,j (R/I) �= 0 for some i, 1 � i � p.

Let c denote the codimension of R/I . Then c � p and equality holds if and only if R/I

is Cohen–Macaulay. We define mi(I) = min{j ∈ Z | βi,j (R/I) �= 0} to be the minimum
degree shift at the ith step and Mi(I) = max{j ∈ Z | βi,j (R/I) �= 0} to be the maximum
degree shift at the ith step. We will simply write mi and Mi when there is no confusion. If
R/I is Cohen–Macaulay and has a pure resolution, i.e., mi = Mi for all i, 1 � i � c, then
Huneke and Miller showed in [9] that

e(R/I) =
∏c

i=1 mi

c! .

Generalizing their result Herzog, Huneke, and Srinivasan made the following multiplic-
ity conjecture:

Conjecture 1.1. If R/I is Cohen–Macaulay then

∏c
i=1 mi

c! � e(R/I) �
∏c

i=1 Mi

c! .

Conjecture 1.1 has been extensively studied, and partial results have been obtained. It
turns out to be true for the following type of ideals:

• complete intersections [8];
• powers of complete intersection ideals [7];
• perfect ideals with a pure resolution [9];
• perfect ideals with a quasi-pure resolution (i.e., mi � Mi−1) [8];
• perfect ideals of codimension 2 [8];
• Gorenstein ideals of codimension 3 [12];
• perfect stable monomial ideals [8];
• perfect square free strongly stable monomial ideals [8];
• zero-dimensional subschemes Y that are residual to a zero-scheme Z of certain

type [6].

The goal of this paper is to prove Conjecture 1.1 for determinantal ideals of arbitrary
codimension c, i.e., ideals generated by the maximal minors of a t × (t + c − 1) homo-
geneous polynomial matrix. Determinantal ideals are a central topic in both commutative
algebra and algebraic geometry. Due to their important role, their study has attracted many
researchers and has received considerable attention in the literature. Some of the most re-
markable results about determinantal ideals are due to J.A. Eagon and M. Hochster in [3],
and to J.A. Eagon and D.G. Northcott in [4]. J.A. Eagon and M. Hochster proved that
generic determinantal ideals are perfect. J.A. Eagon and D.G. Northcott constructed a fi-
nite graded free resolution for any determinantal ideal, and as a corollary, they showed
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that determinantal ideals are perfect. Since then many authors have made important con-
tributions to the study of determinantal ideals, and the reader can look at [1,2,5,11] for
background, history and a list of important papers.

In this short note we verify that determinantal ideals I satisfy the Herzog–Huneke–
Srinivasan Conjecture which relates the multiplicity e(R/I) to the minimal and maximal
shifts in the graded minimal R-resolution of R/I .

Next we outline the structure of the paper. In Section 2, we first recall the basic facts on
determinantal ideals I of codimension c defined by the maximal minors of a t × (t + c−1)

homogeneous matrix A and the associated complexes needed later on. We determine the
minimal and maximal shifts in the graded minimal free R-resolution of R/I in terms of the
degree matrix U of A and we state some technical lemmas used in the inductive process of
the proof of our main theorem (cf. Theorem 3.1).

Section 3 is completely devoted to proving Conjecture 1.1 for determinantal ideals I of
arbitrary codimension. To prove it we use induction on the codimension c of I and for any
c induction on the size t of the homogeneous t × (t + c−1) matrix whose maximal minors
generate I by successively deleting columns and rows of the largest possible degree when
we prove the lower bound, and columns and rows of the smallest possible degree when
we prove the upper bound. We end the paper with an example which illustrates that the
upper and lower bounds for the multiplicity e(R/I) of a determinantal ideal I given in
Theorem 3.1 are sharp.

2. Determinantal ideals

In the first part of this section, we provide the background and basic results on determi-
nantal ideals needed in the sequel, and we refer to [2,5] for more details.

Let A be a homogeneous matrix, i.e., a matrix representing a degree 0 morphism
φ :F → G of free graded R-modules. In this case, we denote by I (A) the ideal of R

generated by the maximal minors of A.

Definition 2.1. A homogeneous ideal I ⊂ R of codimension c is called a determinantal
ideal if I = I (A) for some t × (t + c − 1) homogeneous matrix A.

Let I ⊂ R be a determinantal ideal of codimension c generated by the maximal minors
of a t × (t + c − 1) matrix A = (fij )

j=1,...,t+c−1
i=1,...,t where fij ∈ k[x1, . . . , xn] are homoge-

neous polynomials of degree aj − bi . The matrix A defines a degree 0 map

F =
t⊕

i=1

R(bi)
A−→ G =

t+c−1⊕
j=1

R(aj )

v �→ v ·A

where v = (f1, . . . , ft ) ∈ F and we assume without loss of generality that A is minimal;
i.e., fij = 0 for all i, j with bi = aj . If we let ui,j = aj − bi for all j = 1, . . . , t + c − 1
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and i = 1, . . . , t , the matrix U = (ui,j )
j=1,...,t+c−1
i=1,...,t is called the degree matrix associated

to I . By re-ordering degrees, if necessary, we may also assume that b1 � · · · � bt and
a1 � a2 � · · · � at+c−1. In particular, we have:

ui,j � ui+1,j and ui,j � ui,j+1 for all i, j. (1)

Note that the degree matrix U is completely determined by u1,1, u1,2, . . . , u1,c , u2,2,
u2,3, . . . , u2,c+1, . . . , ut,t , ut,t+1, . . . , ut,c+t−1 because of the identity ui,j + ui+1,j+1 −
ui,j+1 − ui+1,j = 0 for all i, j . Moreover, the graded Betti numbers in the minimal free
R-resolution of R/I (A) depend only upon the integers

{ui,j }i�j�c+i−1
1�i�t

⊂ {ui,j }j=1,...,t+c−1
i=1,...,t

as described below.

Proposition 2.2. Let I ⊂ R be a determinantal ideal of codimension c with degree matrix
U = (ui,j )

j=1,...,t+c−1
i=1,...,t as above. Then we have:

(1) mi = u1,1 + u1,2 + · · · + u1,i + u2,i+1 + u3,i+2 + · · · + ut,t+i−1 for 1 � i � c,
(2) Mi = u1,c−i+1 + u2,c−i+2 + · · · + ut,t+c−i + ut,t+c−i+1 + ut,t+c−i+2 + · · · + ut,t+c−1

for 1 � i � c.

Proof. We denote by ϕ :F → G the morphism of free graded R-modules of rank t and
t + c − 1, defined by the homogeneous matrix A associated to I . The Eagon–Northcott
complex D0(ϕ

∗):

0 →
t+c−1∧

G∗ ⊗ Sc−1(F ) ⊗
t∧

F →
t+c−2∧

G∗ ⊗ Sc−2(F ) ⊗
t∧

F → ·· ·

→
t∧

G∗ ⊗ S0(F ) ⊗
t∧

F → R → R/I → 0

gives us a graded minimal free R-resolution of R/I (see, for instance, [2, Theorem 2.20];
and [5, Corollaries A2.12 and A2.13]). Now the result follows after a straightforward com-
putation. �

We will now fix the notation and prove the technical lemmas needed in the induction
process we will use in next section for proving the multiplicity conjecture for determinantal
ideals of arbitrary codimension.

Let I ⊂ R be a homogeneous ideal of codimension c. Assume that I is determinantal
and let A (respectively U ) be the t × (t + c − 1) homogeneous matrix (respectively degree
matrix) associated to I . Let A′ (respectively U ′) be the (t − 1) × (t + c − 2) homogeneous
matrix (respectively degree matrix) obtained by deleting the last column and the last row
of A, and denote by I ′ the codimension c determinantal ideal generated by the maximal
minors of A′. Since the multiplicity of R/I and R/I ′ are completely determined by the
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corresponding degree matrices, it is enough to consider an example of an ideal for any
degree matrix. So, from now on, we take

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
u1,1
1 x

u1,2
2 · · · x

u1,c−1
c−1 x

u1,c
c 0 0 · · · 0 0

0 x
u2,2
1 x

u2,3
2 · · · x

u2,c

c−1 x
u2,c+1
c 0 · · · 0 0

0 0 x
u3,3
1 x

u3,4
2 · · · x

u3,c+1
c−1 x

u3,c+2
c · · · 0 0

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 x
ut−1,t−1
1 x

ut−1,t

2 · · · x
ut−1,c+t−3
c−1 x

ut−1,c+t−2
c 0

0 0 0 · · · 0 x
ut,t

1 x
ut,t+1
2 · · · x

ut,t+c−2
c−1 x

ut,t+c−1
c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

A′ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x
u1,1
1 x

u1,2
2 · · · x

u1,c−1
c−1 x

u1,c
c 0 0 · · · 0

0 x
u2,2
1 x

u2,3
2 · · · x

u2,c

c−1 x
u2,c+1
c 0 · · · 0

0 0 x
u3,3
1 x

u3,4
2 · · · x

u3,c+1
c−1 x

u3,c+2
c · · · 0

...
...

...
...

...
...

...
...

...

0 0 · · · 0 x
ut−1,t−1
1 x

ut−1,t

2 · · · x
ut−1,c+t−3
c−1 x

ut−1,c+t−2
c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let J ⊂ R be the codimension c − 1 determinantal ideal generated by the maximal minors
of the t × (t + c − 2) homogeneous matrix

B :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
u1,1
1 x

u1,2
2 · · · x

u1,c−1
c−1 x

u1,c
c 0 0 · · · 0

0 x
u2,2
1 x

u2,3
2 · · · x

u2,c

c−1 x
u2,c+1
c 0 · · · 0

0 0 x
u3,3
1 x

u3,4
2 · · · x

u3,c+1
c−1 x

u3,c+2
c · · · 0

...
...

...
...

...
...

...
...

...

0 0 · · · 0 x
ut−1,t−1
1 x

ut−1,t

2 · · · x
ut−1,c+t−3
c−1 x

ut−1,c+t−2
c

0 0 0 · · · 0 x
ut,t

1 x
ut,t+1
2 · · · x

ut,t+c−2
c−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

obtained by deleting the last column of A. Analogously, let A′′ (respectively U ′′) be the
(t −1)× (t +c−2) homogeneous matrix (respectively degree matrix) obtained by deleting
the first column and the first row of A, and we denote by I ′′ the codimension c determinan-
tal ideal generated by the maximal minors of A′′. Let C be the t × (t + c−2) homogeneous
matrix obtained by deleting the first column of A and let K ⊂ R be the codimension c − 1
determinantal ideal generated by the maximal minors of C.

The ideal I is obtained from I ′ by a basic double G-link, as well as from I ′′ by a basic
double G-link. Indeed, we have

Lemma 2.3. With the above notation,

(1) I = J + x
ut,t+c−1
c I ′ and I = K + x

u1,1
1 I ′′;

(2) e(R/I) = e(R/I ′) + ut,t+c−1 · e(R/J ) and e(R/I) = e(R/I ′′) + u1,1 · e(R/K).
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Proof. (1) The equalities of ideals are immediate.
(2) It follows from [10, Lemma 4.8]. �

Lemma 2.4. With the above notation, we have

(1) mi = mi(I) = mi(I
′) + ut,t+i−1 = m′

i + ut,t+i−1 for all 1 � i � c,
(2) Mi = Mi(I) = Mi(I

′′) + u1,c−i+1 = M ′′
i + u1,c−i+1 for all 1 � i � c,

(3) mi(J ) = mi(I) = mi for all 1 � i � c − 1, and
(4) Mi(K) = Mi(I) = Mi for all 1 � i � c − 1.

Proof. This follows from Proposition 2.2. �

3. The multiplicity conjecture

Using the fact that the ideal I is obtained from the ideal I ′ (respectively I ′′) by a basic
double G-link, we can now show that Conjecture 1.1 is true for determinantal ideals of
arbitrary codimension.

Theorem 3.1. Let I ⊂ R be a determinantal ideal of codimension c. Then the following
lower and upper bounds hold:

(1) e(R/I) �
∏c

i=1 mi

c! , and

(2) e(R/I) �
∏c

i=1 Mi

c! .

Proof. As we explained in Section 2, it is enough to prove the result for the ideal I gener-
ated by the maximal minors of the t × (t + c − 1) matrix

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
u1,1
1 x

u1,2
2 · · · x

u1,c−1
c−1 x

u1,c
c 0 0 · · · 0 0

0 x
u2,2
1 x

u2,3
2 · · · x

u2,c

c−1 x
u2,c+1
c 0 · · · 0 0

0 0 x
u3,3
1 x

u3,4
2 · · · x

u3,c+1
c−1 x

u3,c+2
c · · · 0 0

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 x
ut−1,t−1
1 x

ut−1,t

2 · · · x
ut−1,c+t−3
c−1 x

ut−1,c+t−2
c 0

0 0 0 · · · 0 x
ut,t

1 x
ut,t+1
2 · · · x

ut,t+c−2
c−1 x

ut,t+c−1
c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(1) We proceed by induction on the codimension c of I . If c = 1 then I is a principal
ideal and the result is trivial. For c = 2 the result was proved by Herzog and Srinivasan
in [8]. Assume c � 3. We will now induct on t . If t = 1 then I is a complete intersection
ideal and hence the result is well known. Assume t > 1. Let A′ (respectively B) be the
matrix obtained by deleting the last column and the last row (respectively the last column)
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of the matrix A and let I ′ (respectively J ) be the ideal generated by the maximal minors of
A′ (respectively B). Let mi , m′

i and mi(J ) be the minimal shifts in the graded minimal free
R-resolution of R/I , R/I ′ and R/J , respectively (see Proposition 2.2 and Lemma 2.4).

By Lemma 2.3(2),

e(R/I) = e
(
R/I ′) + ut,t+c−1 · e(R/J ),

by the induction hypothesis on c and Lemma 2.4(3), we have

e(R/J ) �
∏c−1

i=1 mi(J )

(c − 1)! =
∏c−1

i=1 mi

(c − 1)! ,

and by the induction hypothesis on t we have

e
(
R/I ′) �

∏c
i=1 m′

i

(c)! .

Therefore, since mi = m′
i + ut,t+i−1 (Lemma 2.4(1)), we have

c!e(R/I) �
c∏

i=1

mi

if and only if

c∏
i=1

m′
i + cut,t+c−1

c−1∏
i=1

mi

�
c∏

i=1

mi =
c∏

i=1

(
m′

i + ut,t+i−1
)

= ut,t+c−1

c−1∏
i=1

mi +
c∏

i=1

m′
i + m′

c

c−2∑
r=0

(
ut,t+rm1 · · ·mrm

′
r+2 · · ·m′

c−1

)

= ut,t+c−1

c−1∏
i=1

mi +
c∏

i=1

m′
i +

c−2∑
r=0

(
ut,t+rm1 · · ·mrm

′
r+2 · · ·m′

c−1m
′
c

)

if and only if

(c − 1)ut,t+c−1

c−1∏
i=1

mi �
c−2∑
r=0

(
ut,t+rm1 · · ·mrm

′
r+2 · · ·m′

c−1m
′
c

)
.

Since, for all integers i, 1 � i � c − 1, and for all integers r , 0 � r � c − 2, we have the
inequalities
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mi − m′
i+1 = (u1,1 + u1,2 + · · · + u1,i + u2,i+1 + u3,i+2 + · · · + ut,t+i−1)

− (u1,1 + u1,2 + · · · + u1,i + u1,i+1 + u2,i+2 + u3,i+3 + · · · + ut−1,t+i−1)

= (u2,i+1 − u1,i+1) + (u3,i+2 − u2,i+2) + · · · + (ut,t+i−1 − ut−1,t+i−1) � 0,

and

ut,t+c−1 � ut,t+r ,

we obtain

ut,t+c−1

c−1∏
i=1

mi �
(
ut,t+rm1 · · ·mrm

′
r+2 · · ·m′

c−1m
′
c

)

for all r , 0 � r � c − 2, and the lower bound follows.
(2) The upper bound is proved similarly. We again proceed by induction on the codi-

mension c of I . If 1 � c � 2 then the result holds. So, let us assume c � 3. We will now
induct on t . If t = 1 then I is a complete intersection ideal and the result is true. Assume
t > 1. Let A′′ (respectively C) be the matrix obtained by deleting the first column and the
first row (respectively the first column) of the matrix A and let I ′′ (respectively K) be the
ideal generated by the maximal minors of A′′ (respectively C). Let Mi , M ′′

i and Mi(K)

be the maximal shifts in the graded minimal free R-resolution of R/I , R/I ′′ and R/K ,
respectively.

By Lemma 2.3(2),

e(R/I) = e
(
R/I ′′) + u1,1 · e(R/K),

by the induction hypothesis on c and Lemma 2.4(4), we have

e(R/K) �
∏c−1

i=1 Mi(K)

(c − 1)! =
∏c−1

i=1 Mi

(c − 1)! ,

and by the induction hypothesis on t we have

e
(
R/I ′′) �

∏c
i=1 M ′′

i

(c)! .

By Lemma 2.4(2), Mi = Mi(I) = Mi(I
′′)+u1,c−i+1 = M ′′

i +u1,c−i+1 for all 1 � i � c.
Therefore, we have

c!e(R/I) �
c∏

i=1

Mi

if and only if
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c∏
i=1

M ′′
i + cu1,1

c−1∏
i=1

Mi

�
c∏

i=1

Mi =
c∏

i=1

(
M ′′

i + u1,c−i+1
)

= u1,1

c−1∏
i=1

Mi +
c∏

i=1

M ′′
i + M ′′

c

c−2∑
r=0

(
u1,c−rM1 · · ·MrM

′′
r+2 · · ·M ′′

c−1

)

= u1,1

c−1∏
i=1

Mi +
c∏

i=1

M ′′
i +

c−2∑
r=0

(
u1,c−rM1 · · ·MrM

′
r+2 · · ·M ′′

c−1M
′′
c

)

if and only if

(c − 1)u1,1

c−1∏
i=1

Mi �
c−2∑
r=0

(
u1,c−rM1 · · ·MrM

′′
r+2 · · ·M ′′

c−1M
′′
c

)
.

Because, for all integers i, 1 � i � c − 1, and all integers r , 0 � r � c − 2, we have

Mi − M ′′
i+1

= (u1,c−i+1 + u2,c−i+2 + · · · + ut−1,t+c−i−1 + ut,t+c−i + ut,t+c−i+1 + · · · + ut,t+c−1)

− (u2,c−i+1 + u3,c−i+2 + · · · + ut,t+c−i−1 + ut,t+c−i + ut,t+c−i+1 + · · · + ut,t+c−1)

= (u1,c−i+1 − u2,c−i+1) + (u2,c−i+2 − u3,c−i+2) + · · · + (ut−1,t+c−i−1 − ut,t+c−i−1)

� 0,

and

u1,1 � u1,c−r ,

we deduce

u1,1

c−1∏
i=1

Mi �
(
u1,c−rM1 · · ·MrM

′′
r+2 · · ·M ′′

c−1M
′′
c

)

for all r , 0 � r � c − 2. This completes the proof of the upper bound, and hence the proof
of the theorem. �

Since the power I s of a complete intersection ideal I ⊂ R is an example of determinan-
tal ideal, we recover Guardo and Van Tuyl’s result (see [7, Proposition 3.2]) as a corollary
of Theorem 3.1. In fact, we have
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Corollary 3.2. Let I ⊂ R be a complete intersection ideal and let s be any positive integer.
Then Conjecture 1.1 is true for R/I s .

We will end this note with an example which illustrate that the bounds given in Theo-
rem 3.1 are optimal.

Example 3.3. Let I ⊂ R be a codimension c determinantal ideal generated by the maximal
minors of a t × (t + c − 1) matrix all whose entries are homogeneous polynomials of fixed
degree 1 � d ∈ Z. Thus, we have

mi(I) = Mi(I) = td + (i − 1)d for all i, 1 � i � c.

Therefore, we conclude that

e(R/I) =
∏c

i=1 mi(I)

c! =
∏c

i=1 Mi(I)

c! =
∏c

i=1(td + (i − 1)d)

c! = dc

(
t + c − 1

c

)
.

Note added in proof

While the paper was in press, I received a preprint by Herzog and Zheng and a preprint
by Migliore, Nagel and Römer where they give another proof of Theorem 3.1.
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