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First we contemplate the operational definition of space–time in four dimensions in light of basic
principles of quantum mechanics and general relativity and consider some of its phenomenological
consequences. The quantum gravitational fluctuations of the background metric that comes through
the operational definition of space–time are controlled by the Planck scale and are therefore strongly
suppressed. Then we extend our analysis to the braneworld setup with low fundamental scale of
gravity. It is observed that in this case the quantum gravitational fluctuations on the brane may become
unacceptably large. The magnification of fluctuations is not linked directly to the low quantum gravity
scale but rather to the higher-dimensional modification of Newton’s inverse square law at relatively large
distances. For models with compact extra dimensions the shape modulus of extra space can be used as
a most natural and safe stabilization mechanism against these fluctuations.

© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

From the inception of quantum mechanics the physical quanti-
ties are usually understood to be observable, that is, they should
be specified in terms of real or Gedanken measurements per-
formed by well-prescribed measuring procedures. The concept of
measurement has proved to be a fundamental notion for revealing
the genuine nature of physical reality [1]. Space–time represent-
ing a frame in which everything takes place is one of the most
fundamental concepts in physics. The importance of operational
definition of physical quantities gives a strong motivation for a
critical view how one actually measures the space–time geome-
try [2,3]. The first natural question in this way is to understand
to what maximal precision can we mark a point in space by plac-
ing there a test particle. Throughout this Letter we will use system
of units h̄ = c = 1. In the framework of quantum field theory a
quantum takes up at least a volume, δx3, defined by its Comp-
ton wavelength δx � 1/m. Not to collapse into a black hole, gen-
eral relativity insists the quantum on taking up a finite amount
of room defined by its gravitational radius δx � l2P m. Combining
together both quantum mechanical and general relativistic require-
ments one finds

δx � max
(
m−1, l2P m

)
. (1)

From this equation one sees that a quantum occupies at least the
volume ∼l3P . Therefore in the operational sense the point can-
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not be marked to a better accuracy than ∼l3P . As any measure-
ment we can perform (real or Gedanken) is based on the using
of quanta, from Eq. (1) one infers that we can never probe a
length to a better accuracy than ∼lP . Since our understanding of
time is tightly related to the periodic motion along some length
scale, this result implies in general an impossibility of space–
time distance measurement to a better accuracy than ∼lP . This
point of view was carefully elaborated in [3]. This apparently triv-
ial conclusion encountered serious bias when it was originally
suggested by Mead [4]. Starting from the 1980s the operational
definition of space–time attracted considerable continuing interest
[5–10].

Our fundamental theories of physics involve huge hierarchies
between the energy scales characteristic of gravitation E P =
1/

√
G N ∼ 1028 eV and particle physics EEW ∼ 1 TeV. In the atomic

and subatomic world therefore, gravity is so weak as to be neg-
ligible. This is one reason gravity is not included as part of the
Standard Model of particle physics. But when energy scale ap-
proaches the Planck one gravity enters the game. The question
of operational definition of space–time becomes particularly in-
teresting and important in regard with the higher-dimensional
theories with low quantum scale of gravity (close to the elec-
troweak scale). First we summarize different approaches for op-
erational definition of Minkowskian space–time that enables one
to estimate the rate of quantum-gravitational fluctuations of the
background metric. Then we address some of the implications
of these fluctuations. Having discussed the case of 4D space–
time, we generalize the operational definition to the brane-
induced space–time and consider its phenomenological conse-
quences.
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2. Károlyházy uncertainty relation

2.1. Approach 1

For space–time measurement an unanimously accepted method
one can find in almost every textbook of general relativity consists
in using clocks and light signals [11]. Let us consider a light-clock
consisting of a spherical mirror inside which light is bouncing. That
is, a light-clock counts the number of reflections of a pulse of light
propagating inside a spherical mirror. Therefore the precision of
such a clock is set by the radius of the clock ∼rc . It is clear that
physically the coordinate system is defined only by explicitly carry-
ing out the space–time distance measurements. Let us consider the
construction of a coordinate system for a time interval t and with
a spatial fineness δx in a Minkowski space–time [10]. Since a clock
must be localized in a region with the size δx, the clock inevitably
has a momentum of the order δp ∼ 1/δx, obtained from the uncer-
tainty relation of quantum mechanics. Thus the clock moves with
a finite velocity of order δv ∼ 1/mδx, where m denotes the mass
of the clock. This implies that the coordinate system will be de-
stroyed by the quantum effect in a finite period δx/δv ∼ m(δx)2.
This period must be larger than the time interval t of the coordi-
nate. Hence we obtain

t � m(δx)2. (2)

This gives a lower bound for the clock mass m for given t and δx.
From Eq. (2), we need clock with a larger mass to construct a finer
coordinate system. However there is an upper bound on the clock
mass for no clock should become a black hole. Thus the clock’s
Schwarzschild radius should not exceed the localization region of
the clock:

l2P m � δx. (3)

The clock mass can be chosen arbitrary if it satisfies Eq. (2) and
Eq. (3). Combining Eqs. (2), (3) one gets

l2P t � (δx)3. (4)

Taking note that our light-clock having the size δx cannot mea-
sure the time to a better accuracy than δt = δx one arrives at the
equation

δtmin � t2/3
P t1/3. (5)

Eq. (5) was first obtained by Károlyházy in 1966 and was subse-
quently analyzed by him and his collaborators in much detail [12].
Notice that throughout this discussion the clock parameters allow-
ing maximum precision in measuring the length scale l (that is,
the optimal clock parameters) are as follows

rc � l2/3
P l1/3, m � l1/3

l4/3
P

. (6)

2.2. Approach 2

It is instructive to take into account gravitational time delay
of the clock [13]. After introducing the clock the metric takes the
form

ds2 =
(

1 − 2l2P m

r

)
dt2 −

(
1 − 2l2P m

r

)−1

dr2 − r2 dΩ2.

The time measured by this clock is related to the Minkowskian
time as [11]

t′ =
(

1 − 2l2P m

rc

)1/2

t.

From this expression one sees that the disturbance of the back-
ground metric to be small, the size of the clock should be much
greater than its gravitational radius rc � 2l2pm. Under this assump-
tion for gravitational disturbance in time measurement one finds

t′ =
(

1 − l2P m

rc

)
t.

Since we are using light-clock its mass cannot be less than π/rc ,
which by taking into account that the size of the clock determining
its resolution time represents in itself an error during the time
measurement gives

δt = 2rc + π
tt2

P

r2
c

,

which after minimization with respect to rc leads to Eq. (5).
The final result in the above approaches is the same Eq. (5).

Nevertheless the second approach strongly discourages to take the
optimal size of the clock to be close to its gravitational radius (6).
For the optimal parameters of the clock in measuring the space–
time distance l one finds

rc � l2/3
P l1/3, m � 1

rc
.

3. Field theory view

Effective quantum field theory with built in IR and UV cutoffs
satisfying the black-hole entropy bound leads to Eq. (5), where l
and δl play the roles of IR and UV scales respectively [14]. For an
effective quantum field theory in a box of size l with UV cutoff Λ

the entropy S scales as

S ∼ l3Λ3.

That is, the effective quantum field theory counts the degrees of
freedom simply as the numbers of cells Λ−3 in the box l3. Never-
theless, considerations involving black holes demonstrate that the
maximum entropy in a box of volume l3 grows only as the area of
the box [15]

SBH �
(

l

lP

)2

.

So that, with respect to the Bekenstein bound [15] the degrees
of freedom in the volume should be counted by the number of
surface cells l2P . A consistent physical picture can be constructed
by imposing a relationship between UV and IR cutoffs [14]

l3Λ3 � SBH �
(

l

lP

)2

. (7)

Consequently, one arrives at the conclusion that the length l, which
serves as an IR cutoff, cannot be chosen independently of the UV
cutoff, and scales as Λ−3. Rewriting this relation wholly in length
terms, δl ≡ Λ−1, one arrives at Eq. (5). Is it an accidental coinci-
dence? Indeed not. The relation (7) can be simply understood from
Eq. (5). The IR scale l cannot be given to a better accuracy than
δl � l2/3

P l1/3. Therefore, one cannot measure the volume l3 to a bet-
ter precision than δl3 � l2P l and correspondingly maximal number
of cells inside the volume l3 that may make an operational sense
is given by (l/lP )2. Thus the Károlyházy relation implies the black-
hole entropy bound given by Eq. (7). These ideas lead to the far
reaching holographic principle for an ultimate unification that may
perhaps be achieved when the basic aspects of quantum theory,
particle theory and general relativity are combined [16].

4. Energy density of the fluctuations

Károlyházy uncertainty relation naturally translates into the
metric fluctuations, as if it was possible to measure the metric pre-
cisely one could estimate the length between two points exactly.
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As we are dealing with the Minkowskian space–time the rate of
metric fluctuations over a length scale l can be simply estimated
through Eq. (5) as

δgμν ∼ δl

l
∼

(
lP

l

)2/3

.

We naturally expect there to be some energy density associated
with the fluctuations. One can use the following simple reason-
ing for estimating the energy budget of Minkowski space [10,13].
With respect to Eq. (5) a length scale t can be known with a max-
imum precision δt determining thereby a minimal detectable cell
δt3 � t2

P t over a spatial region t3. Such a cell represents a mini-
mal detectable unit of space–time over a given length scale and if
it has a finite age t , its existence due to time energy uncertainty
relation cannot be justified with energy smaller then ∼t−1. Hence,
having the above relation, Eq. (5), one concludes that if the age of
the Minkowski space–time is t then over a spatial region with lin-
ear size t (determining the maximal observable patch) there exists
a minimal cell δt3 the energy of which due to time–energy uncer-
tainty relation cannot be smaller than

Eδt3 � t−1. (8)

Hence, for energy density of metric fluctuations of Minkowski
space one finds

ρ ∼ Eδt3

δt3
∼ 1

t2
P t2

, (9)

which for t ∼ H−1
0 gives the observed value [17]

ρ0 ∼ H2
0

l2p
.

The time will lose its physical meaning when δt � t which is tan-
tamount to the decreasing of background energy density, Eq. (9),
below the � t−4. One can say the existence of this background en-
ergy density assures maximal stability of Minkowski space–time
against the fluctuations as Eq. (5) determines maximal accuracy
allowed by the nature.

On the basis of the above arguments one can go further and
see that due to Károlyházy relation, the energy E coming from the
time energy uncertainty relation Et ∼ 1 is determined with the ac-
curacy δE ∼ Eδt/t . Respectively, one finds that the energy density
ρ = E/δt3 is characterized by the fluctuations δρ = δE/δt3 giving

δρ

ρ
∼ δt

t
∼

(
tP

t

)2/3

. (10)

The attempts to estimate the dynamics of dark energy predicted
by the Károlyházy relation during the cosmological evolution of
the universe and other cosmological implications can be found in
[18].

5. Experimental signatures

A question of paramount importance is to estimate the observ-
able effects induced by the quantum gravitational fluctuations of
the background metric. Metric fluctuations naturally produce the
uncertainties in energy–momentum measurements, for the parti-
cle with momentum p has the wavelength λ = 2π p−1 and due
to length uncertainty one finds δp = 2πλ−2δλ, δE = pE−1δp. An
interesting idea for detecting the space–time fluctuations was pro-
posed in [19]. The theoretical framework put forward in [19] to
describe the incoherence of light from distant astronomical sources
due Planck scale quantum gravitational fluctuations of the back-
ground metric is as follows. It is assumed that the light coming
from the distant extragalactic sources, the diffraction/interference
images of which are seen through the two slit telescopes is co-
herent from the beginning but can accumulate appreciable phase
incoherence tδω even for small δω caused by the quantum gravita-
tional fluctuations of the background metric if the length of propa-
gation, t , is large enough. So it is simply understood that the time-
dependence of the wave, tω, varies due to quantum gravitational
fluctuations as δ(tω) = ωδt + tδω and because the second term is
dominating it is taken as a main source of phase incoherence. The
condition tδω � 2π is understood as a criterion for incoherence
that should lead to the destroy of the diffraction/interference pat-
terns when the source is viewed through a telescope. In [20] the
distance through which the wave-front recedes when the phase in-
creases by tδω is taken as an error in measurement of a length, t ,
by the light with wavelength 2π/ω, and due to this length varia-
tion an apparent blurring of distant point sources was estimated.
In [21] to mitigate the situation the cumulative factor t/λ in phase
incoherence

tδω = ω
t

λ
δλ, (11)

was replaced (actually in an ad hoc manner) by (t/λ)1/3. This re-
duced expression for the phase incoherence is used in [22] as well.
Soon after the appearance of the paper [19] it was noticed in [23]
that such a naive approach overestimates the effect as the authors
of [19] do not take into account the van Cittert–Zernike formalism
representing basics of stellar interferometry [24]. Actually the rate
of this effect is discouragingly small to be detectable by the stellar
interferometry observations [25].

Let us emphasize the main points ignored in [19], which prove
to be important in estimating the correct rate of the effect. Light
from a real physical source is never strictly monochromatic but
rather quasi-monochromatic, even the sharpest spectral line has a
finite width. In a wave produced by a real source: the amplitude
and phase undergo irregular fluctuations, the rapidity of which de-
pends on the width of spectrum δω. Such a quasi-monochromatic
wave which is usually referred to as a wave packet is characterized
with a mean wave frequency ω̄, where

δω

ω̄
� 1. (12)

The width δω determines duration of the wave packet δt � δω−1,
which is an important characteristic for the interference effect dur-
ing a superposition of the quasi-monochromatic beams. Namely,
the interference effect to take place the path difference between
quasi-monochromatic beams must be small than the coherence
length δt . There is an increment of the wave packet width due
to background metric fluctuations which can be simply estimated
as

δω = ω̄
δλ

λ̄
� ω̄

(
lP

λ̄

)2/3

.

A wavelength of the light from stellar objects considered in [19,
20,22] is in the region λ̄ � μm and correspondingly for the width
increment of a wave packet one finds

δω

ω̄
� 10−19.

Such a small increment does not affect neither Eq. (12) nor the
requirement the path difference between quasi-monochromatic
beams coming from distant stellar objects to be small than the
coherence length δω−1 [25]. The expression that comes from the
van Cittert–Zernike approach has the form [24]

D = 0.16λ̄r

ρ
, (13)

where D denotes maximal separation between the interferometer
slits for which the interference still takes place for the light with
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wavelength λ̄ received from a celestial source located at a dis-
tance r and having the size ρ . As we stressed there is no effect
in Eq. (13) due to quantum-gravitational increment of λ̄. Now by
taking the variations of ρ, r in Eq. (13) one finds

δD � D5/3
(

lP

0.16λ̄r

)2/3

. (14)

Let us estimate the maximum of this variation by choosing the cor-
responding parameters from the data [19,20,22], that is, r ∼ 1 kpc,
D ∼ 103 cm, λ̄ ∼ 10−4 cm. For this set of parameters from Eq. (14)
one finds

δD ∼ 10−28 cm. (15)

The separation between the slits, D , for observations analyzed in
[19,20,22] varies from 1 m to the 25 m. So that the observations
analyzed in [19,20,22] are simply insensitive to such a small vari-
ation of D , that is, they have no chance to detect the effect of
quantum gravitational fluctuations.

6. ADD braneworld setup

If E P ∼ 1019 GeV represents a proper quantum gravity scale,
then one can say at least two extremely different fundamental
scales, the electroweak scale EEW ∼ 1 TeV and the Planck scale E P ,
appear to be present in the universe. The fact that their ratio ap-
pears to be around EEW/E P ∼ 10−16 is a puzzle for many reasons.
First, one can have theoretical prejudice that a deeper comprehen-
sion of physics should lead us to a theory with one single energy
scale. So the fact that gravity is so much weaker than other forces
of Nature seems a problem whose resolution will lead us to a bet-
ter understanding of our Universe. Second, even if we assume that
the fundamental theory has two different energy scales, one has to
understand what is there in the “desert” between these two scales,
and at which scale new physics will appear? This is a very impor-
tant question both for experimental purposes (is it worth building
accelerators to explore this desert?) and for theoretical problems.
In fact, the new physics scale is assumed to set the ultraviolet cut-
off for the presently known particle physics. It is well known that
the standard model of particle physics suffers from a major the-
oretical problem, which is the stability of the Higgs mass against
the radiative corrections: the Higgs mass is quadratically sensitive
to the ultraviolet cutoff and if the cutoff scale is much higher than
the electroweak scale an extreme fine-tuning between the bare
mass and the one-loop correction is required to give a low value
for the physical mass. It is plausible therefore that the new physics
scale to be very close to EEW. However, the problem could still
persist going up to the Planck scale, which is the highest known
scale, unless the new physics is able to “screen” the sensitivity to
E P . This possibility is the main motivation for models of low-scale
supersymmetry. However, no hint for the low-scale supersymme-
try has been found in accelerators until now, and the arrival of the
Large Hadron Collider (LHC) calls for other possibilities. An alterna-
tive possibility, attracting considerable continuing interest assumes
one fundamental scale in presence of large extra dimensions [26].
The weakness of gravity in this model comes from the fact that
only gravity propagates in the bulk. (For earlier braneworld parti-
cle physics phenomenology one can see the papers [27].)

Let us briefly recapitulate the basics of ADD model. Extra di-
mensions run from 0 to L where the points 0 and L are identi-
fied [26]. The standard model particles are localized on the brane
while the gravity is allowed to propagate throughout the higher-
dimensional space and the fundamental scale of gravity is taken to
be close to the electroweak one, E F ∼ TeV. The mass gap between
the nth and (n+1)th KK modes is ∼L−1 and correspondingly mod-
ification of Newton’s inverse square law (due to exchange of KK
modes) takes place beneath the length scale L. Roughly the grav-
itational potential on the brane produced by the brane localized
point-like particle m looks like

V (r) =
{

l2+n
F m/r1+n, for r � L,

l2Plm/r, for r > L.
(16)

From Eq. (16) one simply finds the relation between Planck and
fundamental lengths

l2+n
F � Lnl2P . (17)

Strictly speaking the transition of four-dimensional gravity from
the region r � L to the higher-dimensional law for r � L is more
complicated near the transition scale ∼L than it is schematically
described in Eq. (16), but it is less significant for purposes of our
discussion.

7. Operational definition of brane-induced space–time

7.1. Approach 1

Let us repeat the discussions for measurement of space–time
distances by the brane localized clocks and light signals. Nothing
changes up to the Eq. (2). If the fineness δx is smaller than L, that
is δx � L, the requirement the clock not to become black hole gives
instead of Eq. (3)(
l2+n
F m

) 1
1+n � δx. (18)

Combining Eqs. (18) and (3), Eq. (4) changes to

l2+n
F t � δx3+n,

which by taking into account that our light-clock having the size
δx cannot measure the time to a better accuracy than δt = δx leads
to

δlmin � l
2+n
3+n
F l

1
3+n . (19)

If the gravitational radius of the clock is greater than L, that is,
rg > L, one gets Eq. (5).

7.2. Approach 2

If the size of the clock is smaller than L, that is rc < L, the
gravitational time delay takes the form

t′ =
(

1 − 2l2+n
F m

r1+n
c

)1/2

t.

The disturbance of the background metric to be small, the size of
the clock should be much greater than its gravitational radius rc �
(l2+n

F m)
1

1+n . Under this assumption for gravitational disturbance in
time measurement one finds

t′ =
(

1 − l2+n
F m

r1+n
c

)
t.

Since we are using light-clock its mass cannot be less than π/rc ,
which by taking into account that the size of the clock determining
its resolution time represents in itself an error during the time
measurement gives

δt � rc + l2+n
F t

r2+n
c

,

which after minimization with respect to rc leads to Eq. (19).
For the brane-induced space–time also these approaches lead to

the same result for space–time uncertainty, Eq. (19), but again one
should notice that second approach strongly discourages to take
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the optimal size of the clock to be close to its gravitational radius.
The first approach does not take into account the gravitational time
delay of the clock and correspondingly gives the misleading results
about the optimal parameters of the clock. For the optimal param-
eters of the clock for measuring the length scale l � L3+nl−(2+n)

F
one finds

rc � l
2+n
3+n
F l

1
3+n , m � 1

rc
.

From these relations one easily finds that Eq. (19) holds for the
length scale

l � L3+nl−(2+n)
F ,

which after using relation (17) (with lF � 10−17 cm) takes the form

l � l
3(2+n)

n
F l

− 2(3+n)
n

P � 10
96+15n

n cm. (20)

8. Constraints on the braneworld scenarios

Let us start with a simple example. Imprecision in length
measurement sets the limitation on the precision of energy–
momentum measurement

λ = 2π p−1 	⇒ δp = 2πλ−2δλ, δE = pE−1δp.

The brane localized particle with momentum grater than L−1,
probes the length scale beneath L the gravitational law for which
is higher-dimensional. So, in this case one can directly use the
Eq. (19) that gives

δp ∼ p1+α

Eα
F

, δE ∼ (E2 − m2)
2+α

2

E Eα
F

, (21)

where α = (2 + n)/(3 + n). Using this expression one can simply
estimate that for ultra high energy cosmic rays with

E ∼ 108 TeV,

the uncertainty in energy becomes greater than

δE � 1013 TeV.

The experimental measurement of the energy of high-energy cos-
mic rays is almost comparable to the energy itself, that is on the
experimental side we know

δE � 108 TeV.

One simply finds that the ultra high energy cosmic rays put the
restriction on the fundamental scale

E F � 108 TeV.

From the GZK cutoff we know that the energy of high energy cos-
mic proton drops below 108 TeV (through the successive collisions
on the typical CMBR photons accompanied by the production of
pions) almost independently upon initial energy after it travels the
distance of the order of ∼100 Mpc [28]. That is, protons detected
with energies >108 TeV should be originated within the GZK dis-
tance RGZK � 100 Mpc. But this mechanism is of little use against
the amplification of energy of the protons (coming usually from
distances greater than the GZK distance) through the background
metric fluctuations, Eq. (21), as this amplification takes place with
equal probability within and outside of the GZK distance. (In itself,
as long as the energy scale of high energy cosmic rays is much
greater than the fundamental scale of gravity their presence in the-
ory needs a separate consideration [29].)

Actually the situation is more dramatic. From Eq. (21) one sees
that for the particle with the mass m � E F and energy E ∼ E F ,
the uncertainty in energy becomes comparable to the energy itself.
So that the quantum fluctuations of space–time become apprecia-
ble even for the TeV scale physics.

Let us now estimate the effect on stellar interferometry obser-
vations. Eq. (19) is valid beneath the length scale given by Eq. (20).
With increasing the number of extra dimensions this length scale
decreases as: n = 2, ∼1063 cm; n = 3, ∼1047 cm; n = 4, ∼1039 cm;
n = 5, ∼1034 cm; n = 6, ∼1031 cm; n = 7, ∼1029 cm; n = 8,
∼1027 cm; n = 9, ∼1026 cm; n = 10, ∼1025 cm. For the increment
of the wave packet width one finds

δω

ω̄
� 10−13α.

By taking into account that in most applications r � ρ from
Eq. (13) one finds

δD � 0.16λ̄rδρ

ρ2
� lαF D1+α

(0.16λ̄r)α
.

For the set of parameters r ∼ 1 kpc, D ∼ 103 cm, λ̄ ∼ 10−4 cm [19,
20,22] one gets

δD � 103−29α cm.

In the case n = 2 one gets δω/ω̄ � 10−10 and δD � 10−20 cm,
that is, in comparison with Eq. (15) the effect is amplified by 8
orders of magnitude but still it is not so large to affect the obser-
vations. So that stellar interferometry observations considered in
[19,20,22] are less sensitive to the lowering of fundamental scale
in the framework of large extra dimensions.

From Eq. (21) one sees that light speed is given with the preci-
sion

δvgroup = d(δE)

dp
�

(
E

E F

)α

. (22)

Thus for photons emitted simultaneously from a distant source
coming towards our detector, we expect an energy dependent
spread in their arrival times. To maximize the spread in arrival
times, it is desirable to look for energetic photons from distant
sources. This proposal was first made in another context in [30].
The analyses of the TeV flares observed from active galaxy Markar-
ian 421 [31] puts the limit on the variation of light speed with
energy. This limit applied to the Eq. (22) gives the following limi-
tation on E F [32,33]

E F � 1016 GeV.

All of the above restrictions are intimately related to the modifi-
cation of gravity Eq. (16) beneath the length scale L � lP . Therefore
one can remove the above experimental bounds in the case when
gravity modification scale on the brane is close to the length scale
∼ 10−30 cm. But at the same time we are interested to keep the
fundamental scale of gravity, E F , close to the EEW.

9. Shape modulus of extra space

What can be a possible protecting mechanism from these un-
acceptably amplified fluctuations for low lying fundamental scale
of gravity? Following the paper [34] let us take note of the role
of shape modulus of extra space. A flat, two-dimensional toroidal
compactification can be analyzed in much details from this point
of view [34]. Such a torus is specified by three real parameters
(the two radii L1, L2 of the torus as well as the shift angle θ ), and
corresponds to identifying points which are related under the two
coordinate transformations

y1 → y1 + 2π L1 cos θ,

y2 → y2 + 2π L2 sin θ. (23)
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Note that tori with different angles θ are topologically distinct up
to the modular transformations. While most previous discussions
of large extra dimensions have focused on the volume of such
tori essentially fixing θ = π/2. Given the torus identifications in
Eq. (23), it is straightforward to determine the corresponding KK
spectrum. The KK eigenfunctions for such a torus are given by

exp

[
i
n1

L1

(
y1 − y2

tan θ

)
+ i

n2

L2

y2

sin θ

]
, (24)

where ni ∈ Z . Applying the (mass)2 operator −(∂2/∂ y2
1 + ∂2/∂ y2

2),
we thus obtain the corresponding KK masses

M2
n1,n2

= 1

sin2 θ

(
n2

1

L2
1

+ n2
2

L2
2

− 2
n1n2

L1L2
cos θ

)
. (25)

We see that while the KK spectrum maintains its invariance under
(n1,n2) → −(n1,n2), it is no longer invariant under n1 → −n1 or
n2 → −n2 individually. The spectrum is, however, invariant under
either of these shifts and the simultaneous shift θ → π −θ . We can
therefore restrict our attention to tori with angles in the range 0 <

θ � π/2 without loss of generality. It is clear from Eq. (25) that the
KK masses depend on θ in a non-trivial, level-dependent way. We
are interested in the behavior of the KK masses when the volume
of the compactification manifold is held fixed. For this purpose it
is useful to reparameterize the three torus moduli (L1, L2, θ) in
terms of a single real volume modulus V and a complex shape
modulus τ :

V ≡ 4π2L1L2 sin θ, τ ≡ L2

L1
eiθ . (26)

We shall also define τ1 ≡ Reτ and τ2 ≡ Imτ . Using these defini-
tions, we can express (L1, L2, θ) in terms of (V , τ ) via

cos θ = τ1/|τ |, sin θ = τ2/|τ |,
L2

1 = 1

4π2τ2
V , L2

2 = |τ |2
4π2τ2

V , (27)

that yields the KK masses

M2
n1,n2

= 4π2

V

1

τ2
|n1τ − n2|2

= 4π2

V

1

τ2

[
(n1τ1 − n2)

2 + n2
1τ

2
2

]
. (28)

Note that although Eq. (28) is merely a rewriting of Eq. (25), we
have now explicitly separated the effects of the volume modulus V
from those of the shape modulus τ . At the expense of θ one can
try to increase the mass gap between KK modes with the fixed
volume of extra space. One is therefore led to study the limit θ ∼
ε � 1

V

4π2
M2

n1,n2
= (n2 − n1|τ |)2

|τ |ε + n2
2 + 4n1n2|τ | + n2

1|τ |2
6|τ | ε

+O
(
ε3). (29)

(Note that in order to keep the volume fixed as θ → 0, the radii
are now forced to grow increasingly large.) The first term on the
right side of Eq. (29) generally diverges when |τ | ≡ L2/L1 is ir-
rational because in this case n2 − n1|τ | never vanishes exactly.
Thus, the general KK state becomes infinitely heavy as θ → 0.
However, for any fixed chosen value of ε , we can always find
special states (n1,n2) for which this first term comes arbitrarily
close to cancelling; this simply requires choosing sufficiently large
values of (n1,n2). These special states with large (n1,n2) are po-
tentially massless. On the other hand, choosing such large values
of (n1,n2) drives the second term in Eq. (29) to larger and larger
values. The third and higher terms are always suppressed rela-
tive to the second term in the ε → 0 limit, even as (n1,n2) grow
large. We will not go into more analysis of Eq. (29) as reader can
find it in paper [34], but simply indicate that in certain cases (for
small values of θ ) it is possible to maintain the ratio between the
higher-dimensional and four-dimensional Planck scales while si-
multaneously increasing the KK graviton mass gap by an arbitrarily
large factor. This mechanism can therefore be used to eliminate the
above experimental bounds on theories with large compact extra
dimensions.

10. Concluding remarks

The way of reasoning presented in this Letter is completely in
the spirit of quantum mechanics, that is to regard reality as that
which can be observed. First, following the discussions [2,3,9,10,12,
13], we analyzed in a comparative manner principal limitations on
space–time measurement in light of quantum mechanics and gen-
eral relativity. Presented approaches lead uniquely to the Károly-
házy uncertainty relation (5) but the second approach taking into
account the gravitational time delay reveals important disagree-
ment compared with the first approach in estimating the optimal
parameters of the clock. Namely it tells us that optimal parameters
of the clock for measuring the space–time distance l is given by

rc � δlmin(l), m � 1

rc
,

where δlmin(l) denotes the uncertainty in length measurement
given by Eqs. (5), (19) in four- and higher-dimensional scenarios
respectively. Thus, from Eq. (5) one finds that for measuring the
present Hubble horizon ∼1028 cm the optimal parameters of the
clock are estimated as rc � 10−13 cm, m � 1 GeV. Hitherto, say in
the framework of Approach 1, it was understood mistakenly that
the size of an optimal clock had to be close to its gravitational ra-
dius, that is, the mass of such a clock was defined as m = rc/l2P .
The reason of this misconception was the disregard of gravita-
tional time delay. Thus, what comes new from this point is just
the validity region for using the higher-dimensional expression of
space–time uncertainty relation on the brane, Eq. (21), and the un-
numbered equation above this.

Operational definition of space–time in light of quantum me-
chanics and general relativity indicates an expected imprecision in
space–time structure. The resultant intrinsic imprecision in space–
time structure is quantified by the Károlyházy uncertainty relation.
This relation sheds new light on the relation between IR and UV
scales in effective quantum field theory satisfying black hole en-
tropy bound [14]. In spite of the fact that minimal uncertainty in
distance measurement given by the Károlyházy uncertainty rela-
tion is much greater than the Planck length (provided l � lP ), the
rate of quantum-gravitational fluctuations is still controlled by the
Planck scale and is therefore discouragingly small to be detectable
by the present experiments and observations. Nevertheless, the
rate of fluctuations can become unacceptably amplified when the
fundamental scale of gravity is lowered in the framework of large
extra dimensions. It is important to notice that this amplification
of fluctuations is not directly related to the low quantum gravity
scale (that is, it is not merely a problem of UV completion of the
theory) but rather to the higher-dimensional modification of New-
ton’s law at relatively large distances. Therefore the models with
compact extra dimensions can be protected from these fluctuations
at the expense of shape modulus of extra space. That is, we can
keep the volume of extra space fixed in order to have the low fun-
damental scale of gravity (see relations (17) and (26)) but at the
same time using the shape modulus of extra space we can enlarge
the mass gap between KK modes to reduce the length scale at
which the modification of Newton’s inverse square law takes place
[34]. This procedure can remove the above experimental bounds
on the fundamental scale of gravity as they arise because of rel-
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atively large length scale at which Newton’s inverse square law
of gravity changes to the higher-dimensional one. Presented con-
siderations demonstrate dramatic difference between braneworld
models with compact and open extra dimensions respectively. The
models with low fundamental scale of gravity having open extra
dimensions may be in a serious trouble as there seems almost
no natural way to protect them from the unacceptably amplified
quantum-gravitational fluctuations.
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