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Abstract 

Often experts are incapable of providing “exact” probabilities; likewise, samples on which 
the probabilities in networks are based must often be small and preliminary. In such cases the 
probabilities in the networks are imprecise. The imprecision can be handled by second order 
probability distributions. It is convenient to use beta or Dirichlet distributions to express the 
uncertainty about probabilities. The problem of how to propagate point probabilities in a Bayesian 
network now is transformed into the problem of how to propagate Dirichlet distributions in 
Bayesian networks. 

It is shown that the propagation of Dirichlet distributions in Bayesian networks with incomplete 
data results in a system of probability mixtures of beta-binomial and Dirichlet distributions. Ap- 
proximate first order probabilities and their second order probability density functions are obtained 
by stochastic simulation. A number of properties of the propagation of imprecise probabilities are 
discussed by the use of examples. An important property is that the imprecision of inferences 
increases rapidly as new premises are added to an argument. The imprecision can be used as a 
pruning criterion in a network to keep the number of variables involved in an inferential argument 
small. Thus, imprecision may be used as an Ockam’s razor in Bayesian networks. 

1. Introduction 

Bayesian belief networks represent and process probabilistic knowledge. Their rep- 
resentational components belong to one of two domains, a qualitative or a quantitative 
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Fig. I. Bayestan network: Cooper’< medical diagnosis example 

Table I 
Weight tables associated with Cooper’s example in Rg. I. the numbers were choosen so that two conditions 

are fullfilled: (i) the ratios of the weights preserve the probabilities of the original version of Cooper’s example 

and (ii) the total sum of all elementary weights is 120 

(A) (B. A) -0 ii !C. A! 70 <I (E, C) yc (’ 

ytl 96 -h 77 5 Y( ‘)I 19 7r 44 2 

t, 24 h I9 I9 c 5 5 Y 66 8 

one. The basic qualitative relationships of (conditional) dependence and independence 
between variables are expressed in the visual language of graph theory. The quantitative 
specifications of the involved (conditional) probability distributions are organized in 
tables and attached to the nodes of the graph. The tables are not “visible” in the graph- 
ical representation. Consider the example shown in Fig. I and Table 1 [7,34,37]. The 
network in Fig. 1 represents the dependencies in a graphical model. The nodes A-E 

represent clinical absent/present variables like diseases, test results, or symptoms. Table 
I contains the associated quantitative specifications. Assume we have investigated 120 

patients suspected of suffering from a specific metastatic form of cancer. It turns out that 
24 actually have developed the metastatic form and 96 have not. Of those having the 
metastatic form, 19 show increased total serum calcium and 5 do not. Of those patients 
in which the metastatic form was not observed, 19 show increased total serum calcium 

and 77 do not, etc. These and the remaining frequencies are contained in Table 1. The 
main purpose of a Bayesian belief network is to perform probabilistic inference. If for a 
patient one or more of the variables are observed and are known for certain, this affects 
the probabilities of the neighboring states in the graph. Evidence and updated probabili- 
ties propagate through the network. Various kinds of probabilistic inference like medical 
diagnosis, prediction, or explanation are special cases of propagating probabilities in a 
Bayesian network. Bayesian belief networks belong to the class of graphical probabilis- 
tic models ( [ 6, 1 1, 15,30,43]; for tutorials and related work on uncertainty in artificial 
intelligence see the http: //www . auai . org page and the references given there). 
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Fig. 2. The beta distribution Be(4.41.40.56) together with a 99% highest density interval for Cooper’s 
example. 

Usually, the probabilities in Bayesian networks are treated as though they were known 

precisely. In the present paper we analyse Bayesian networks in which the probabilities 
are not known precisely. Experts often cannot provide exact point probabilities, providing 
intervals instead. Probability estimates derived from empirical data are often based on 

small sample sizes. In such cases the probabilities in a Bayesian network cannot be 
considered to be precise point values. In the literature, several proposals have been 

made how to handle imprecision in dependency structures, such as lower and upper 
bounds [ 9,12,42], propagation of variances [ 8,3 1,381, and second order distributions 
[ 17,21,25,26,33,39,40]. A tutorial is provided in [ 161. 

We treat probabilities that are not known precisely in the same way they are treated 
in Bayesian statistics [ 31, as uncertain quantities to which a (second order) probability 
density function is attached. The distributions express the imprecision. If little is known 

about the uncertain quantity, the distribution is flat and its variance large. If much 
is known, the distribution is tight and its variance small. The use of a second order 
probability distribution is a standard procedure in Bayesian statistics and there is nothing 
especially exciting about it. The procedure actually goes back to Thomas Bayes. He was 
one of the first who plotted a continuous probability density function, a beta distribution 
(upside-down) over the unit interval. 

The method proposed in this paper allows the derivation of the following inferences: If 
a patient does not intermittently fall into comas (-d) but suffers from severe headaches 
(e), then the probability of a metastatic cancer (a) is 0.098. However, there is an 
appreciable imprecision associated with this estimate. We can be 99% sure that the true 
probability lies in the interval 0.0134 and 0.227. The standard deviation of the estimate 
is 0.0436. The imprecision may be expressed by the beta distribution [al+, e] = 
Be( 4.41,40.56), where the brackets are used as a shorthand notation for “the probability 
density function of the parameter corresponding to the probability of a given -d and 
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e”. While the full example is hascd on a total sample size of 120 cases the precision 
of the present inference corresponds to a sample size of 45 cases only. Fig. 2 shows 
the beta distribution together with a 99% highest density interval (the shortest interval 
with probability content 0.99). Further analysis shows that the severe headaches are 

not really essential for inferences about the metastatic cancer. Conditioning on -d 
alone leads to the distribution [n]ld] = Be(4.50.47.44) with mean 0.087 and standard 
deviation 0.0387. The precision even slightly increases when D is instantiated only as 

compared when both D and E are instantiated. We will come back to this at first sight 

counterintuitive property. 

2. Basic model 

We consider a set of vertices (nodes, variables) V and a set of directed edges E 

(arcs, probabilistic dependencies between variables) defined on V x V. The vertices and 

the edges are represented by a graph G = l VE). If the arcs do not contain cycles, the 
graph is a directed acyclic graph (DAG). With each node X E V and the set of its 

parents pa(X) = {U,, , U,,,} we associate a weight table (X, 1/t,. , U,,!). If (X, I/) is 
a two-dimensional weight table. then we denote the marginal of X along U by (X, (i)~‘. 
More generally, if W = (Xi, X2.. , X,,) is an ,I-dimensional weight table, we denote the 

marginal along the subset { ZI , . . Z,,,} C {X,, , X,l} by (X, ,X2,. . . , X,,)‘{z~....~znf~. 

We follow [ 141 and denote a probability density function (pdf) by brackets. Joint, 
conditional, and marginal distributions are written as [X, Y], [ XjY], and [Xl, respec- 

tively. The product of densities is denoted by +, e.g., [X, Y] = [X/Y] * [Y] etc. The 
weight tables define (second order) pdfs [ Xlpa( _u) ] for each variable X. We conceive 
the weights in a table as the shape parameters of Dirichlet distributions. Dirichlet dis- 

tributions and their special versions for binary cases, the beta distributions, are defined 
as follows: 

Definition 1 (Dirichlet distribution). Let ( Yl, , XI ) be a random vector on the sim- 
plex S’= {(yt...., y,~): K, < 0, i= I ,.... d;Cf!,y, 6 I) and (v,,.... vg) a vector 
of reals with (VI > 0,. , Y!) > O), where d = D - I. If the density of the random 
vector is given by 

I’,> - I 

P(.YI,...,.vd) = 
f(Vl t~.+vf)) ,,I” - 1 

T(Vll . ..I’(?/“). ’ 
, “,‘_I 

,I 

i i 

] _ -& & , (1) 
,=I 

we say that (U, , . , Yd) follows a d-variate Dirichlet distribution. We use the shorthand 
[Y, . . . . . Yd] =Di(v ,,.... v~). 

Definition 2 (Beta distribution). Let Y be a random variable on the unit interval. If its 
density is given by 

(2) 
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Y is beta distributed with shape parameters VI and ~2. We write for short [Y] = 
Be( vt,v2). Its mean and variance are given by 

E(Y) = -?-- 
VI + v2’ 

var(Y) = 
VIP2 

(VI + v2>2(v, + v2 + 1). 
(4) 

In a beta distribution we interpret the sum vt + v2 as the total amount of evidence 

available about the point probability VI /( vt + ~9). VI is the weight in favor of an event, 
a proposition, or a hypothesis, and v2 the weight against it. Weights of evidence were 
extensively discussed by Keynes [20]. 

The beta or Dirichlet distributions implement a system of second order pdfs on the 

probability parameters underlying the network. If a node X has no parents, then the 
pdf is a marginal distribution. If the node has n parents the weight table has it + 1 

dimensions. If the number of possible values of the node under consideration is me and 

the number of possible values of its parents is ml, . . . , m, then the weight table is of 
order mc x ml x . . . x m,. 

The probability parameters underlying the network are not directly observable but 
hidden random variables. Of course, in the graph of a Bayesian network also the hid- 

den variables should be represented by nodes. To each discrete propositional random 

variable with D possible values we should attach a parent that represents the (D - l)- 
dimensional continuous probability vector (~1, . . . , %-D-l ) (one dimension is lost be- 

cause the probabilities add up to one). The (second order) probability distribution of 
the vector is a Dirichlet distribution. It is specified by the numbers contained in the 

weight table of the node. The relationship between the hidden nodes and their children, 
though, is redundant: the conditional probabilities of the discrete states of the child nodes 
(propositional variables) are equal to the values of the hidden variables: P( xi]rri) = r;. 
Because every propositional variable has a twin hidden variable and because the re- 
lationship between the hidden variable and the propositional variable is redundant the 
hidden variables are not drawn in the graph of a weighted Bayesian network. Drawing 
the twin nodes would unneccessarily complicate graph. 

The space defined by the hidden probability variables is a subspace of all possible 
Bayesian belief networks for the domain of propositional variables under consideration. 

It is a subspace, and not the full space, because it respects the conditional independencies 
in the network. The Dirichlet distributions are treated as Bayesian posterior distributions. 
The qualitative independence/dependence structure (that is visually represented in the 
graph), is taken for sure. The numerical specifications of the underlying (conditional) 
probabilities are taken as uncertain quantities that are not known for sure. We investigate 

the propagation of posterior densities in Bayesian networks with given structure but 
uncertain parameters. Methods how to learn such structures from prior knowledge and 
data were described by Heckerman, Geiger and Chickering [ 171. 

If all the weight tables are obtained from frequency counts in one big complete 
database with no missing cases, then the joint distribution over the domain of all vari- 
ables and all conditional distributions are Dirichlet [ 441. The propagation of probabilities 
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can be performed by one of the usual methods of propagating point probabilities; the 
weights of the Dirichlet distributions are obtained by simply multiplying the resulting 

probabilities by the total sample size, i.e.. by taking expected frequencies. Completeness, 
though, is a strong assumption. It is often violated in practical applications. A database 

may have been combined from several sources, it may contain objective data and sub- 
jective expertize etc. We next introduce concepts that are helpful to find an approximate 
solution for incomplete data. 

3. Natural children and natural neighbors 

In a complete contingency table the marginals along any of its dimensions are equal 
to the sums of the corresponding cell counts. A similar relationship may or may not 

hold for the weights in a weighted network. The case of a perfectly additive rela- 
tionship between the cells and the marginals allows an easy mathematical treatment 
of the member distribution. With additive weights the member distribution is also a 

beta or Dirichlet distribution and we thus stay within the same family of probability 
distributions. What shall we do when the cell counts and the marginals do not add 
up? In inferential statistics this case occurs when some of the data are missing [29]. 
The treatment of the missing data can be related to the complete case by calculating 

the weighted averages of complete solutions. where averaging is performed over the 
space of the missing data. This results in probability mixtures [ 261. For computational 

purposes the solutions are too complicated. Incomplete data are usually analyzed by 
expectation maximization (EM) algorithms [ IO]. EM is an iterative procedure pro- 

viding maximum likelihood estimates in the presence of missing data. The precision 
(variance) of the estimates can be approximated [ 291. EM has several disadvantages. 
In large networks the iterative algorithm is slow. Furthermore, in large networks there 
are multiple local maxima and it is difficult to find out that a global maximum has been 
found [II]. 

We combine local noniterative estimation with Gibbs sampling. The probabilities at 

each node in the network depend only upon the states of the neighbor nodes (Markov 
blanket). The estimation of conditional probabilities in a Markov blanket with missing 

data can be done without iteration. We use the 6 method to estimate means and variances 
of the conditional probabilities. We next give a definition of the additive relationships 
between cell weights and marginals. We introduce the concepts of a natural child, natural 
parents, and natural neighbors. 

Definition 3 (Natural child). Let Y have the parents pa(Y) = {Xi,. . , X,!,} and let 
XX E pa(Y) have the parents pa( Xk) = {1/r,, , U,,,}. Y is a natural child of X, if the 
marginal weights of Xk in the table (I: pa( Y)) along {Ypa( Y) \ Xk} and in the table 
(Xk,pa(Xk)) along pa(Xk) are identical: 

#pa(Y)) ltZPaY)\XkJ = (Xk,pa(Xk))lPa(XkI, 
(5) 

If X has no parents, then Y is a natural child of X if (xX)1’ = (X). 
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Fig. 3. The plates drawn around A and C indicating that A is a natural child of C (left), more is known 

about C (middle), and more is known about A. 

Visually, we represent a parent together with its natural child in a plate. A plate is a 

rectangle drawn around a set of nodes with a repetition number N written in its left lower 
corner. Plates were introduced by Buntine [ 51 (who gives credit to Spiegelhalter). Plates 
indicate a data set of the same kind. The set of nodes is instantiated simultaneously or 
repeatedly by N observations. A plate shows a complete set of N data. Often N is a 
sample size, or it is the total sum of weights in a weight table. In the left panel of Fig. 
3 a plate with the repetition number NAC is drawn around the nodes A and C. A node 
Y is a nonnatural child of the parent & if the marginal weights of & within the table 
containing & and the parents of & are (i) larger or (ii) smaller than those within the 

table containing Y and the parents of Y. We say that in the first case, we have more 
information about the parents, and that in the second case, we have more information 

about the child. This is the case if, for example, in a sample of observations some cases 
are missing or if additional cases are available. In the middle panel of Fig. 3 an extra 

plate is drawn around node C to indicate NC additional observed cases on C only. More 
is known about C than about A. In the right panel an extra plate is drawn around A. 
More is known about A than about C. 

If a parent has two or more natural children, then their repetition numbers must be 
identical. It follows that the parent and the natural children can be put into a single plate. 

We call a parent natural if all its children- taking also the parents of these children into 
account-are natural. If a parent has two or more children that are natural in respect 

to all their parents, then their repetition numbers must be identical. It follows that the 

parent and the children can be put into a single plate. In the left panel of Fig. 4 node E 
has the natural children A, B, and C. The three children are also natural in respect to 
their parents D and F. A, B, C, D, E, and F can thus be put into a single plate. The 
parents of a node, its children and the parents of these children are called the neighbors 
or the Markov blanket of the node. The probability distribution of the states of the node 
depends on the state of nodes in the Markov blanket and on these only. The condition 

in which the Markov blanket builds a plate is important: 

Definition 4 (Natural neighbors). A node has natural neighbors (Markov blanket) if 
all its children are natural in respect to all their parents. 



G.D. Kle~ter/Art$ficinl /ntellip!twr X8 (1996) 143-161 

Fig. 4. The plates drawn around E and its natural children A, .!I. and C can be represented by a single plate 

drawn around A, R, C. D, E. and F. 

4. Member distribution 

To propagate the second order pdf in a weighted graph we use stochastic simulation. 
It turns out that in stochastic simulation Bayes’ theorem, or what is called “generalized 

Bayes’ theorem” [34], plays a central role. We have investigated second order pdfs 
for a Bayes’ parameter in [21,24,261. We will make use of the previous results ob- 
tained for this Bayes’ parameter and extend them to the slightly more general situation 
corresponding to the generalized Bayes’ theorem. 

4.1. Member parameter 

Consider a disease A that can be present or absent, and a symptom B that also can be 
present or absent. Assume the marginal or base rate probability of A being present is (Y, 

and the conditional symptom probability of the symptom B given the disease is present 
is /?I, and the conditional symptom probability of the symptom given the disease is 
not present is p2. If we observe a patient showing symptom B the probability that the 

patient suffers from disease A is given by Bayes’ theorem 

(6) 

We call ,U the member parameter. It is just Bayes’ theorem in a parametric form. If the 
probabilities LY, pt. and p2 are imprecise and the imprecision is expressed by the three 

beta distributions 

LY - Be(al,a2), PI -Be(h1,012). PZ - Be(b21.1322), (7) 

we want to infer the distribution of the member parameter ,LL given B and the weights of 
evidence al, ~2, 611, 012, b21, and b2~. We call this distribution the member distribution. 

The member distribution is a second order pdf defined for Bayes’ formula. It tells us 
how precise our posterior probability is. 
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4.2. Beta and mixed beta member distributions 

Let A and B be two binary random variables. We have shown the following theorem 

[23,26]: 

Theorem 5 (Natural child). 

( 1) If CX, pt, &, and ,LL are the probability parameters underlying the propositional 
variables A, B( A, B 17 A, and A) b, respectively, and if the second order pdfs 

of the first three parameters are (Y - Be( al, a2), /?I N Be( bl I, b12), and p2 N 

Be(b21,b22), and 
(2) if the three parameters a, /I,, and p2 are independent, and 

(3) if B is a natural child of A, i.e., a] = bl] + b12 and a2 = b21 + b22, 
then the pdf of the Bayes’ parameter t_~ is given by ,u - Be( b, 1, b21). 

That is if B is a natural child of A then the member distribution is a beta distribution 
and its parameters can directly be read off from B’s weight table. Note that the weight 

table of A is not needed. 
The theorem directly generalizes to natural parents, the notation, however, becomes 

more cumbersom. We assume that the nodes are binary and use upper case characters 
“A”, “B”, “_A,,, S‘7B99, etc. to denote node variables. We use lower case characters 
“a” “-a”, “b”, “+P, etc. to denote instantiated nodes. We use conjunctions like “AB”, 

“AiB”, etc. to locate cells in the weight tables. We finally denote the corresponding cell 

weights by “(A)“, “(TA)“, “(a)“, “(la)“. Using this notation Theorem 5 reads: If [A] = 

Be( (A), (TA)), [BIA] = Be( (AB), (A-B)), and [BI-A] = Be( (TAB), (TA-B)), then 
[ Alb] = Be( (Ab), (TAb)). In the following theorem (Abl f (6, )) denotes the weight in 
the cell indexed by the variable node value A, the instantiated node value bl and the 
node values of the parents of bl, etc. 

Theorem 6 (Natural neighbors). If A has natural neighbors, if its children are 

Bl,... , B,, , and if the underlying probability parameters are independent and Dirichlet 

distributed, then 

[A(b,,...,b,,l 

=Be((Ablf(b,).. .Ab,,f(b,,)),(-Ablf(bl) . ..-Ab.,f(bn,))). (8) 

In the case in which the weights of evidence are not additive, the member distribution 

is a mixture of beta distributions [ 261. The mixing weights follow a Polya-Eggenberger 
probability distribution. Two cases must be distinguished: (i) the case in which more 
is known about the marginals than about the conditional probabilities, and (ii) the case 
in which less is known about the marginals than about the conditional probabilities. 
In the first case we may know more about the presence (for example) of the disease 

than about the conditional symptom probabilities, that is al > bll + b,2. The difference 
D = al - (bl I + b,2) is positive. D may be conceived as the number of missing data, i.e., 
as the number of cases for which we know the disease to be present but do not know the 
symptom. In the second case we may know less about the presence (for example) of 
the disease than about the conditional symptom probabilities, that is al < bll + b12. In 
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inferential statistics this situation may arise if in a contingency table the sampling of the 
marginals is random for CII cases but fixed by the experimenter for the remaining D = 

blI + b12 - al cases. For inferences about the marginal probabilities only the al cases 
can be used in the statistical analysis. For inferences about the conditional symptom 

probabilities all 01 I + 0 12 cases can be used. In the first and in the second case the 

missing data can be predicted probabilistically. In statistics the probability distribution 
of a future sample given an observed one is called a predictive distribution [ I, 21. It 

may be shown that the predictive distribution in both our cases is a Polya-Eggenberger 

distribution [ 191. The member distribution turns out to be a probability mixture of beta 

distributions where the mixing weights are Polya-Eggenberger probabilities [ 261: 

Theorem 7 (Nonnatural neighbors). 

( I ) If a, PI , &, and ,U are the probability parameters underlying the propositional 
variables A, BJA, BITA, and A/b, respectively, and if the second order pdfs 

of thefirst three parameters are a N Be(nl,uz), /31 N Be(bll,blz), and /32 N 

Be(b21,h), and 
(2) if a, /?I, and & are independent. then the pdf of the Bayes’ parameter J.L is 

given bl 

lxlX( 11, 1 mnx( <I> 1 

p=c c PE(DI,bil +s1dl,b12 + DI - sldl) 
dj=min(df ) d2=min(d?) 

x PE( Dz, b21 f s2d2,bzz -k D2 - s2d2) 

xBe(bl, +.sld,,b21 +s2d2). (9) 

Let Bi = b;l + b,:! and Di = lai - B, /. Then the range of dl and d2 is constrained by 

min(di) = 
0, il u, > 8. 
max(O,b,, + D, ---B,), $a1 < B,, 

max(di) = 
Di, [f a, > B;. 

min(b;l,D,), $a, < Bj, 

i 

1, if a, > B, . 
.s, = 0, if a; = B;. 

-1. if a, < B;. 

The Polya-Eggenberger distribution is defined as follows: 

Definition 8 (Polyu-Eggenberger distribution ). Let Y be a discrete random variable. If 
its distribution is given by 

g(g+ Is)(g+2s) ,..(g+ (Y - 1)s) 
(g+h)(g+h+Is)...(g+h+(n- 1)s) 

x h(h+ Is)(h+2s)..,(h+(n-y- I)s), (10) 

it is a Polya-Eggenberger distribution and we write Y - PE( n, g, h). 
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For s = 1 the Polya-Eggenberger distribution is equivalent to a beta-binomial distri- 

bution (see, e.g., [2] >, for s = 0 to a binomial, and for s = - 1 to a hypergeometric 
distribution. For more details we refer to [ 261. In a more general structure the constaints 
may be obtained by linear programming. In a large network containing many missing 
observations, though, the calculation of the exact beta mixtures becomes cumbersom. 

Below, we employ an approximation based on the S method. 

5. Stochastic simulation 

The use of stochastic simulation in Bayesian networks was proposed by Pearl [34]. 
Hrycej [ 181 has shown that the stochastic simulation in a Bayesian network is a special 

case of Gibbs sampling. It has extensively been employed to Bayesian networks [ 13, 

36,39,41]. 
At the start each instantiated node is clamped to its constant value and each non- 

instantiated node is set to an arbitrary value. Then, iteratively, the following steps are 
performed: 

(1) 
(2) 

(3) 

(4) 

Select a nonclamped node, e.g., in the alphabetical order of the node names. 

Compute the means m(p) and the variances var( p) of the member distributions 
for each of the values of this node, given the current values of the neighbor nodes. 

In a Bayesian network containing point probabilities, the local probabilities are 
obtained by the generalized Bayes’ theorem 

P(Xlrest(x)) = KP(XlPa(n))~P(Y;lf,(x)). 
.j=l 

( 11.) 

The upper case letters refer to random nodes, the lower case letters to instantiated 
nodes. K is a normalizing factor, pa(x) represents the parents of X, y,i the 
children of X, fi(x) the parents of yj, and rest(x) represents all variables 
except X. For the second order pdfs we use a completely analogous formula 
to determine the means of the distributions at each node. The variances are 
calculated by the 6 method that is described below. 

Determine a new value for the node by selecting a random number. The prob- 
ability for each value is equal to the mean of the member distribution of this 
value. 

Build the sum of the means and variances of the member distribution for each 
value of the current node. 

The sums are averaged, and finally beta distributions Be(p, q) are fitted to the means 
m( ,u) and variances var( ,u) ; p and q are obtained from: 

N= m(p)(l -m(p)) 
VMF) 

-1 and p=m(,x)N, q=N-p. (12) 

It is interesting to note the central role Bayes’ theorem plays in stochastic simulation. 
We turn to the determination of the variances in step (2). 



5.1. The 6 method 

Gibbs sampling allows the propagation of first order probabilities in Bayesian networks 

with incomplete data. Principally, it is possible to employ a Gibbs sampler also to 
obtain second order densities. At the hidden nodes we would have to generate random 

probabilities according to a distribution law, a beta distribution, for example. The random 
probabilities, in turn, would determine the state probabilities at the associated child 

nodes. This would lead to a computationally very expensive two-level sampling process. 
We will use a shortcut instead. We directly employ variance estimates obtained at each 

node to calculate the precision of the second order distributions. In this section we 

describe the method of how to obtain the variances of the second order distribution at 
each node given its natural or nonnatural neighbors. Nonnatural neighbors correspond 

to incomplete data. 
The member parameter ,U as introduced in Eq. (6) is a nonlinear function g of the 

variables LY, /3t, and /?2. For each of these parameters the pdf is known. Can we derive 

the mean and the variance of the member parameter” For linear functions g of a random 
variable X we have E[g(X) ] = ,q( ElX] 1. This is not true if g is not linear. In many 
cases, though, the mean and the variance ofg( X) can be approximated by the S method 

14,321: 

Definition 9 (6 rule). Let (XI.. . X,, ) bc independent random variables with means 
(El. , E,,) and variances (V, , . v,). If f’( Xi, . , X,,) is a function of the variables 
that can be partially differentiated at ,f(E). . E,,) with respect to El,. . , E,, then 
,f( X1,. , X,,) is asymptotically normal with mean 

E,,x I..., x,,, = .f‘(El,. .E,,,) 

and variance 

I, 

var.f(x ,,..., x,,) = CC df(E I,..., E,,) 2 
c: 

;=I 
J-5 i 

The mean of each variable X in a Bayesian network conditioned on the state of all 
other variables can be approximated by applying the formula for the expectation (13) 

upon the generalized Bayes’ theorem ( 1 I ). We only need to rewrite the generalized 
Bayes’ theorem in the form of expectations: 

(13) 

(14) 

E[Xlrest(x)l = KE[Xlpa(x)l ~Ely,/.i’,(x) 1. 
,=I 

(15) 

The expectations are estimates of the underlying probability parameters. The variance 
of the member distribution is obtained from Eq. ( 14) as a sum of variance components: 

var[X/rest(x)l = var[Xlpa(x) 1 f Cvar_[.,.;l,fjCa)], (16) 
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i.e., from the sum of the variance components of the jointly instantiated parents and the 
sums of the variance components of each of the children under proper consideration of 
the instantiated values of their parents. The variance component due to the parents is 

obtained by applying the 6 rule to one variable only 

var[Xlpa(x) 1 

~f(E[Xlpa(~)l,E[~~lf~(~)l,...,E[~,,lf,,~~)l) 

> 

2 

= V[Xlpa(x) 1 
WXlpa(x) 1 

(17) 

and similarily the variance components due to the children are obtained from 

= Vryjlfj(4 1 
~f(E[X(pa(x)l,E[y~lfl(x)l,...,E[y,,lf,(x)l) 2 

~E[~.ilfiWl 
) . (18) 

Building partial derivatives and collecting terms finally leads to the following expressions 

var[Xlrest(x) I 

= 1 (19) 

where n is the number of children and m the number of possible values of X, and 

A=E[Xlpa(x)l(l -E[Xlpa(x)l), 

B.i =E[~.iIfi(x>l(l -E[y,jIfi(x)l), 

D = E[Xlpa(x)l fiELY,i(fi(l)l 
.j= I 

(20) 

(21) 

+ (~-E~Xlp4n)l)fi~~ -E[.Yjjfj(X)l). 
.j= I 

(22) 

The E[ .I.] terms are easily obtained by dividing cell weights by marginals, e.g., 

bii/(bii + b12). The V.I.1 are variances of beta distributions, e.g., bl1 b12/[ (611 + 

b12)2 (bl1 + b12 + 1) 1. The square bracket notation is used to avoid too many greek 
symbols and to stay as close as possible to the symbols used in the literature for point 
probabilities. E[ X]rest(x)] stands for the member parameter ,u at node X given all 
other nodes except X. 

5.2. Program 

The propagation is performed by a program written in C. The navigation through 
the graph is supported by the Raima Database Manager [ 351. This database is network 
oriented and supports the definition and processing of directed graphs by pointers. In that 
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140 96.42 81 2, 34.6 74.5, 31.9 71.6. 30.6 

60 18.42 252.58 8 261.655 29.2, 68.2 

Fig, 5. Simple chain with base rate weights ((ij = 140. (~1) = 60, and conditional weights (bin) = 98, 
(7hlcl) = 42, (~J-YJ) = 18. and (-nl-U) = 42. etc. 

respect it is different from relational databases. For the numerical examples stochastic 

simulation was performed with 1000 iterations. 
Stochastic simulation may not work well when the estimated probabilities in the 

network are close to zero or one [ 71. We intend to replace the 6 method by a method 
that is closer to beta mixtures. Especially, the mean and the variances at each node given 
all its neigbhors may be obtained directly from the mixtures. But even the calculation 
of the means and variances of the mixtures requires the determination of many r-terms 
in the Polya-Eggenberger weights and the direct programming of the formulas does not 

look promising. 

6. Examples 

6.1. A simple chair1 

Consider the chain in Fig. 5. Denote the full graph consisting of all five nodes by 

Gs. Denote any subgraph consisting of I. 2, 3, or 4 nodes by Cl, G2, Gj, and G4, 
respectively. Assume 200 cases were observed under natural sampling conditions, 140 
A = a cases, 60 A = -a cases etc. At each node the conditional probabilities are 

0.7/0.3 and 0.3/0.7, respectively. Without any nodes instantiated the probability of a is 
distributed as [a[Gs] = Be(79,32) with mean 0.71. Note that the distribution is much 
flatter than the marginal distribution of u without B, C. D, and E being included in the 
system, which of course is [alG[] = Be( 140,60). When B = b is clamped we obtain 

[ajh, Gs] = Be(98,18) and the distribution remains the same when, additionally, C, D, 

and E are clamped. If we let the reference system grow in which inferences are made 
we obtain [alb, Gz] = Be(98,18) which due to the Markov property is identical to 

[alb, ($1. 
There is very slow learning at the beginning as we instantiated bottom-up: [ale, Gs] = 

Be(81,31), [a(d,Gj] = Be(84,30), [a(c,Gsl = Be(89,27), and finally [alb,Gsl = 
Be( 98, 18) again. The situation of the top-down inferences is different: The marginal of e 
in GS is [e[Gs] =Be(61,58), and then we obtain [eln,Gs] =Be(61,58), [elb,Gsl = 

Be(64,55), [e(c,Gs] = Be(68,48), [eld,Gg] = Be(72,31). Of course, [eld,Gsl is 
equivalent to the distribution directly provided to the system. 

The “long distance” forward inference from A to E is noninformative in respect to 
the first order probability which is 6 I /( 61 + 58) = 0.5 1, a value that is practically equal 
to 0.5. The value is equal to the base rate of e. The “long distance” backward inference 
from E to A is also noninformative; it results in the probability 8 I /( 81 + 31) = 0.72 
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which is practically identical to the base rate of a. Prediction (forward inference) and 
diagnosis (backward inference) at worst results in the base rate probabilities. However, 

in both cases the precision in the 5-node system containing the nodes A, B, C, D, and 
E, is much worse than in the l-node system containing only A or E, respectively. 

We recognize the Markov property in the Bayesian network: The distributions at 

any node of the chain depends only upon its parent and its child-the grandparent, 
or any other predecessors, and grandchild, or any other decendent, do not provide 
additional information. The distributions [ a]b, Gs] , [ ajb, G4], [al b, G3], [ alb, Gz] are 
equal because of the independence structure in the chain. 

The weight tables of the chain have natural children only. The local member distri- 
butions in the stochastic simulation process may be determined approximately by the S 

method or exactly by Theorem 5 or 6 for natural sampling. There were practically no 
differences between both methods. 

If we change the marginal weights of a from 140/60 to 35/15 the distribution of a 
given b changes from Be(98,18) to Be(47,9). That is, if we in the present example 

divide the marginal weights by 4 we have to divide the conditional ones by about 2. 

6.2. A simple triangle 

Consider the network in Fig. 6. Denote the subgraph consisting of A and its marginal 

weights only by Gt, denote the subgraph consisting of A and B by Gz and the graph 

consisting of all three nodes by Gs. The marginal distribution of A is different in all 
three structures: [u]GI] = Be( 140,60), [u(G2] =Be(77, 13), and [alGs] = Be(37,16). 
Accordingly, the conditional distributions of A given B in the two graphs G:! and G3 

are [ulb,G2] =Be(98,16) and [ujb,Gx] =Be(49,9). The distributionof [ulb,c,G3] 
is Be(69, 13). It is important to note that the distributions are not invariant with respect 
to the reference system in which they are determined. Generally we observe that the 
larger the system the smaller the resulting weights of evidence. The limiting condition 
occurs when the inferences are independent of the structural extension. Then their first 
and second order distributions just remain the same. This happened in the chain but not 

in the triangle structure. In highly connected structures, such as large cliques, e.g., the 
loss in imprecision by system extensions will be larger than in systems in which many 

variables are independent. 
If we reduce the marginal weights of A from 140/60 to 35/ 15 the marginal distribution 

of A in G3 becomes Be(22,lO). The distribution of [u\b,Gg] is Be(31.5,6), and the 
distribution of [al b, c, Gs] is Be( 39,7). The precision of the inferences about A-or LY, 
to be more precise-has decreased appreciably. 

We have stated [22] that the imprecision of probabilistic inferences-under other- 
wise comparable circumstances-increases as the systems in which they are embedded 
get more complex. We should therefore strive to keep the inferential systems simple. 
The trade-off between complexity and accuracy has recently been studied in Bayesian 
networks by the minimum description length criterion [ 271. From our viewpoint the 
trade-off may be illustrated by an example that at first looks terribly counterintuitive. 
Can more data make us more uncertain about our inferences? Consider the following 
problem: 



66.6, 29.4, 29.4, 12.6 

12.6, 5 4, 29.2, 12.6 

Fig. 6. Simple triangle with base rare weights ((I) = 140, (70) = 60 an conditional weights (bla) = 98, d 

(hlv) = 18. etc. and (Y/>/W) = 42. and weights ((,itr. h) = 68.6, (COO, +) = 29.4, (c17cl, /J) = 29.4, 

(cl-tr, +) = 12.6. etc. 

7. Bad news 

Imagine that you are a doctor on a remote island. One of the residents is brought in 
to see you. After a careful investigation you suspect the patient is suffering from disease 

A. However, a definite diagnosis can only be made after laboratory blood tests and you 
do not have the expensive technical equipment. 

Since you have arrived on the island, you have investigated 40 similar cases. Later 

(after careful laboratory checking) you found out that 30 cases actually had A, and IO 
did not. 

( I ) What is the probability that your patient is suffering from A‘? 
The probability is 

(2) As your experience is limited to 40 cases only, your estimate cannot be absolutely 
precise. Give a confidence interval for your estimate! 

I am 90% sure that the true value of the probability lies between . and . . 
For some time you thought that the diagnostic sign B might be relevant for the 

diagnosis of A. You found out that in the 30 cases suffering from A, only 9 showed the 
symptom and 2 I did not. Of the IO cases not suffering from A, 3 showed symptom B 

and 7 did not. 
You realize that your patient is showing the diagnostic sign B. 

( I ) What is the probability that your patient is suffering from A given that the patient 
shows B? 

The probability is ._ 
(2) Give a confidence interval for your estimate! 

I am 90% sure that the true value lies between . . . and . . . 
Of course, both the first and the second point probability estimates should be 0.75. 

Your second estimate, though, should be be less precise than your first one, and the 
second interval should therefore be wider than the first one. Assuming the uncertainty 
is expressed by beta distributions the first distribution is Be(30,lO). The mean of the 
distribution is 0.75 and the 90% confidence interval is (0.64,0.86). The posterior is 
Be(9,3) with the same mean of course and the confidence interval (0.56,0.94). The 
second distribution is flatter than the first one. Its variance is larger. 

In the example the observed data is nondiagnostic. The probabilistic conditioning 
on the nondiagnostic data seems to make things worse-which is counterintuitive. We 
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assume that additional new information can never be bad for the quality of our inferences. 
We need a principle that protects us from considering irrelevant data. Nondiagnostic data 
is not necessarily neutral to our arguments. It increases the imprecision of an argument. 

Inferences become more noisy. 

7.1. The resolution of the paradox 

In the first part the cover story describes a reference system Gr consisting of only one 

node and its associated frequencies, i.e., the disease A together with the counts al = 30 

and a2 = 10. If we assume the improper prior Be(O,O), then [alGIl is distributed as 

[alGIl = [+,a21 =Be(al,a~) =Be(30,10). 

In the second part the cover story introduces a second node, the symptom B, together 

with the associated counts bl I = 9, b12 = 21, b21 = 3, and b22 = 7. The resulting reference 
system G2 now has two nodes. Let us investigate the distribution of (Y in G2 prior to 

the information that our case shows symptom B 

[alG21 = [alal,a2;bll,bl:!,b21.b221. 

The first order marginal probability of B may be estimated by the compound probability 

estimates 

P(B) =P(A)P(BIA) +P(lA)P(BI-A) =0.3. 

Let’s assume for a moment that this value would be known exactly. If with probability 
0.3 we observe B then with this probability we will observe the member distribution 
Be(9,3) which has the mean 9/12 and the variance 0.01442. Similarily, with the 

probability P( -B) = 0.7 we will observe the member distribution Be(21,7) which 
has the mean 21/28 and the variance 0.00647. The expected variance is therefore 
0.3 x 0.01442 + 0.7 x 0.00647 = 0.00885. If we fit a beta distribution we obtain 

[alG2] = Be( 14.13,6.06). 

This is the expected posterior distribution in G:! resulting from a preposterior analysis. 
As P(B) is not known exactly there will actually be some more variability in the 

distribution. Note that the mean of this distribution is again 0.7, i.e., it is the mean of the 
marginal distribution of A in Gt . Its precision though corresponds to only 14.13 +6.06 = 

20.19 cases. This is only half of 40, the total number of cases effective in GI . Observing 
symptom B or 1B in G2 leads to the member distributions 

[alb,Gz] = Be(9,3) and [al-b,G2] = Be(2,7), 

respectively. These distributions are the posterior distributions in the system G2 after 
having clamped symptom b and lb, respectively. The distribution of [ alGil and [ a\Gz] 

should not be interpreted as prior and posterior distributions because they do not belong 
to the same reference system. 

What makes this problem counterintuitive? Intuitively we discard the additional in- 
formation as soon as we have realized that it does not change the probability estimate. 
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Thus, the situation reduces to Gt and the accuracy does not change, of course. We do 
not conditionalize on irrelevant information. We perform an elementary pruning process. 

When we discuss the problem we tend to compare distributions in GI and G2. We 
compare the information about [aiGlJ in CI with the information about [a[Gz] in Cz. 

This may be misleading. The conditioning is not based on the same information. The 
prior and the posterior do not belong to the same system. Intuitively additional infor- 
mation is associated with an improved state of knowledge. We believe in the principle 

of “monotone information” in the sense that more information is equivalent to better 
knowledge and less uncertainty. The example shows that additional data can decrease 

the precision. 
We have to protect inferential systems from variables with low diagnosticity. Such 

variables have low positive impact upon the first order probabilities but may have 

considerable negative impact upon the precision of the system’s inferences. There is a 
trade-off between the improvement in first order probabilities and the loss in second 

order precision. 
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