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Multi-sensor Multi-target Tracking
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Abstract: 　 A novel data association algor ithm is developed based on fuzzy genetic alg orithms

( FGAs) . The static par t of data association uses one FGA to determine both t he lists o f composite

measurement s and the solutions o f m-best S-D assignment. In the dynamic part of data association,

the results o f the m-best S -D assignment ar e then used in turn, w ith a Kalman filter state estimator ,

in a multi-populat ion FGA-based dynamic 2D assignm ent algo rithm to estimate the stat es of the mov-

ing tar gets over time. Such an assignment-based data association algo rithm is demonstr ated on a sim-

ulat ed passive sensor tr ack formation and maint enance pr oblem. The simulation results show its feasi-

bility in multi-sensor multi-targ et tracking . M oreover , algo rithm development and real-time problems

are briefly discussed.
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一种基于模糊遗传算法的多传感器多目标跟踪数据关联算法. 朱力立, 张焕春, 经亚枝. 中国航

空学报(英文版) , 2003, 16( 3) : 177- 181.

摘　要: 基于模糊遗传算法发展了一种新的数据关联算法。数据关联的静态部分靠一个模糊遗传

算法来得出量测组合序列和 S -D 分配的 m 个最优解。在数据关联的动态部分, 将得到的 S -D 分配

的 m 个最优解在一个基于多种群模糊遗传算法的动态2D 分配算法中依靠一个卡尔曼滤波估计器

估计出移动目标各个时刻的状态。这一基于分配的数据关联算法的仿真试验内容为被动式传感器

的航迹形成和维持的问题。仿真试验的结果表明该算法在多传感器多目标跟踪中应用的可行性。

另外, 对算法发展和实时性问题进行了简单讨论。
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　　The mult i-targ et t racking problem can be di-

vided into tw o interrelated tasks of state estimat ion

and data associat ion. Association is the decision

process linking observation of a common orig in in

the presence of false alarms and missed detect ions.

For centralized fusion, stat ic ( quasi-state) associa-

tion ( measurements-to-measurements) is used for

track format ion and generat ion of the composite

measurements for t rack maintenance, and dynamic

association is used for t rack maintenance
[ 1]
.

In recent years, multidimensional ( i. e. S-D )

assignment algorithms[ 1-4] were show n to be ef fec-

tive in data associat ion for mult isensor multitarget

tracking in the presence of clutter. In assignment ,

the data associat ion is formulated as the con-

strained combinatorial opt im izat ion problem. How-

ever, the S-D assignment problem ( either a static

one or a dynam ic one ) is know n to be NP-

hard [ 2, 3] . T hen the successive Lagrangian relax-

at ion technique[ 2, 5] was developed to construct sub-

opt imal solutions with pseudo-polynomial complex-

ity. In addition, m-best assignment algorithms[ 6, 7]

obtain top m best assignment solut ions by repeat-

edly using the standard S-D assignment algorithm.

A standard genetic algorithm ( GA ) based static

data associat ion ( for standard S-D assignment )

w as proposed in the presence of missed detections

only
[ 8] .
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The focus of this paper is to present an FGAs-

based mult idimensional assignment algorithm that

the authors developed. One modif ied fuzzy GA

( FGA ) can obtain m-best S-D assignment solu-

tions in one run. One modif ied multi-populat ion

FGA has the potential of eff icient implementations

of a suboptimal M ultiple Hypothesis Tracking

( MHT) . M oreover, this algorithm is essentially a

combinat ion max imum likelihood ( M L) approach.

1　Problem Formulation

The problem formulation follow s the w ork
[ 1-7]

of Bar-Shalom and his co-w orkers. Now briefly

describe the problem formulat ion in this sect ion,

and om it detailed exposit ion. Furthermore, the

problem formation discussed here is applicable to

tracking problems w ith synchronized sensors and

low speed targets.

1. 1　Static assignment problem

The stat ic assignment problem considered in

this w ork is a modified version of the one
[ 1-5]

in the

literature. The major dif ference is that the lat ter

must be divided into tw o parts of the S -D assign-

ment and the m-best S -D assignment , w hile the

former is a w hole.

In a multisensor-multitarget scenario[ 1, 2, 6, 7] ,

there are S list s of measurements from S sensors

w hich are synchronized and provide lists at discrete

time samples t = 1, ⋯, T . For the stat ic assign-

ment problem , the goal is to associate the S list s of

ns measurements obtained at time instant t , s= 1,

⋯, S, w hich is S dimensions. During the course of

implementat ion, the m-best assignments are deter-

mined and ranked in order of increasing cost . The

generalized S -D assignment problem is
[ 2, 6, 7]

min∑
n
1

i
1
= 0
⋯∑

n
s

i
s
= 0
ci1⋯is ( 1)

w here ci
1
⋯i

S
is the cost of associating the S-tuple of

measurements ( i1 ,⋯, is ) , is= 1, ⋯, ns . is a bina-

ry indicator variable indicating the association of

this S-tuple. Note that , in Eq. ( 1) , is = 0 is a

dummy measurement f rom a list w ith the consider-

at ion of missed detect ion. T he cost ( negat ive log a-

rithm of the generalized likelihood ratio) is
[ 2, 6, 7]

ci
1
⋯i

s
= ∑

S

s= 1
( u( is ) - 1) ln( 1 - PD

s
) -

u( is) ln
PD

s
s

2 Rs

1
2

+
u( is)
2

{ [ Zsis - X
 
p ]

T
R

- 1
s [ Z si

s - X
 
p ] } ( 2)

w here s is the volume of the f ield of view of sen-

sor s and u( is ) is a binary indicator funct ion. Xp is

the M L state estimation of t rue target p ( here, the

conversion of coordinates
[ 1, 2, 6, 7]

is omitted for

simplif icat ion) . Zsis is one measurement originated

from p , and is modeled as X p plus addit iv e w hite

Gaussian noise N ( 0, Rs ) . Moreover, PD
s is the

non-unity detect ion probability of sensor s.

To determine the m-best assignments, one

only need to rank the S-D assignment solutions in

order of increasing cost ( dif ferent f rom the w ay in

the literature[ 1, 3, 6, 7] ) . Define the m-best assign-

ments in the feasible solution space w ith the m

least costs as: a1 ,⋯, am, w ith their costs of the as-

signment ( or hypothesis) c( a1) , ⋯, c( am) , respec-

tively.

1. 2　Dynamic 2D assignment problem

The dynamic problem is solved
[ 1, 6, 7]

after

each scan to update the t racks, start ing w ith the

second scan. The goal is to associate the t-th list of

composite measurements w ith the list of t racks

formed at time instant t - 1. According to a sec-

ond-order kinemat ic model, the target state
[ 1, 7]

is

X ( t) = ! ( t, t - 1) X( t - 1) +

G( t - 1)W( t - 1) ( 3)

w here ! ( ) is the state t ransit ion matrix , and G

( ) is the disturbance matrix . The process noise

vector W ( ) is modeled as a w hite, zero-mean

Gaussian random variable with known covariance

matrix Q( ) . T he composite measurements are as-

sumed to be a linear funct ion of the target state

corrupted by measurement noise[ 1, 7] ,

Z( t) = H( t) X ( t) + V( t) ( 4)

w hereH( ) is the measurement matrix , and V( )

is zero-mean white measurement noise w ith known

covariance matrix R( ) .

Denote the number of composite measure-

ments corresponding to a1 ,⋯, am by ∀1, ⋯, ∀m, re-
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spectively. Let k= 1, ⋯, m. Def ine the true mea-

surement probability
[ 7]

by

P{ z } =
∑

m

k= 1d zkexp( c( a1 ) - c( ak ) )

∑
m

k= 1exp( c( a1 ) - c ( ak ) )
( 5)

w here d zk is 1, if z∈ak . Otherw ise, d z k is zero.

Let y i, i= 0, ⋯, N , denote one track from

the t rack list with the time stamp t- 1. T he solu-

tion of the 2D assignment problem can be divided

into tw o phases:

Phase 1: m minimization costs and their mea-

surement-track pairs,

{ cy
i
z
j
} =

m in∑
N

i= 0
∑
∀
1

j = 0
cy

i
z
j
#y

i
z
j

! 　　! 　　!

min∑
N

i= 0
∑
∀
m

j = 0
cyiz j #yiz j

( 6)

w here #y
i
z
j
is a binary assignment variable.

Phase 2: minimizat ion costs for each track

from all the corresponding measurement-track

pairs, follow ing the results of step 1.

arg min
yi

{ cyiz j } ( 7)

　　The cost of assigning measurement z i to t rack

y i is
[ 7]

cyizj =

0　　　　　 　　　 if i = 0 or j = 0

- ln
∃ ( y i, z j ) P{ z j }
∃ ( y 0, z j ) if - ln( ) < 0

∞　　　 　　　　　 other

( 8)

w here the likelihood function calculat ion ∃ ( yi , z j )
from a Kalman filter state estimator is

∃ ( y i, z j ) = ∏
t

k= 1
2 S( k) -

1
2

exp -
1
2∑

t

k= 1

d
T( k) S- 1( k) d( k) ( 9)

w here d( k ) is the measurement residual and S( k)

is the residual covariance. In addit ion, the likeli-

hood of false alarms ∃ ( y 0, z j ) is assumed uniformly

probable over each sensor's field of view
[ 2, 7] , i. e .

∃ ( y 0, z j ) = ∏
S

s= 1

1
s

u( i
s
)

( 10)

2　Algorithm Description

The solut ion approaches adopt FGAs as the

fundamental association alg orithms. Since the GA

is a w ell-known algorithm, just brief ly describe the

FGAs here. After that , discuss the assignment al-

gorithm.

2. 1　Description of the FGAs

In the literature
[ 9, 10] , fuzzy tools or Fuzzy

Log ic-based techniques are used for modeling dif-

ferent GA components or adapting GA control pa-

rameters, respectively, w ith the goal of improving

performance. Generally , GAs result ing f rom such

a w ay are called Fuzzy GAs ( FGAs) . Moreover,

many research results
[ 9]

exhibited the bet ter per-

formance of FGAs, than the standard GAs. An

FGA is more eff icient than a standard GA in solv-

ing the t raveling salesman and other combinatorial

opt imization problems
[ 10] . In preliminary studies,

the authors developed an FGA, which adopts 6

fuzzy log ic controllers for adapt ing control parame-

ters ( i. e. selective pressure, crossover probability

and mutation probability ) of a modified GA.

2. 2　FGA-based static assignment solution

Based on the prelim inary studies, the compo-

nents of the FGA were modified according to the

stat ic assignment problem . T he main contents w ill

be provided in this subsect ion.

The chromosome representat ion is decoded as

a symbol string . The alleles are the serial number

of measurements corresponding to the targets de-

tected by a sensor. Each chromosome is one list of

measurement f rom one sensor . S chromosomes

make an individual. T hus, the genotypes are u-

niquely mapped onto the S list s of measurements

from S sensors. The virtue of such a representa-

tion is that it is fit for any measurement data type.

The leng th of each chromosome is equal to the

maximum leng th of the measurement lists. For a

short list, one can use dummy measurements to fill

it . Generally , the S lists of raw measurements in-

clude many eff icient associat ion modes. Hence, the

initial populat ion is achieved by copying the indi-

vidual, w hich denotes the raw measurements ( S

list s) . M oreover, a generation gap is adopted as

the Elit ist M odel for the same reason.

The goal of the assignment algorithm is to
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globally m inimize the cost ( see Eq. ( 1) ) . To en-

sure that the result ing f itness values are non-nega-

tive, individuals are assigned fitness according to

their rank in the populat ion rather than their raw

performance. Thus, a selective pressure is used to

limit the reproduct ive range. The select ion method

is Stochast ic U niversal Sampling w ith m inimum

spread and zero bias. The crossover operation is

Partly M apping Crossover for symbolic code series.

The mutation operation is Random ly T wo-Point

Interchange M utat ion for transposition representa-

tion of combinatorial optimizat ion problems. The

stop criterion of the FGA is a maximum generat ion

number.

The FGA-based static assignment algorithm i-

dent if ies the targets and est imates their states by

ML est imation. It searches a population in parallel

by probabilist ic t ransition rules. Only the cost

function and corresponding fitness levels directly

influence the direct ions of search. It is important

to note that such an algorithm provides a number

of potent ial solut ions to the given problem. Hence,

one can choose the f inal solution by ranking the ob-

ject ive associat ion cost . Furthermore, one can se-

lect m best association solutions simultaneously for

the m-best assignment without repeat ing run.

2. 3　FGA-based dynamic assignment solution

The FGA in the dynamic assignment algo-

rithm is a symbolic coded mult i-populat ion FGA.

The genet ic operat ion of this FGA is sim ilar to the

one discussed in the previous subsect ion. M ore-

over, the stop criterion is the same. The dif ference

is the populat ion number and the individual mean-

ing.

Before implementing the dynam ic 2D assign-

ment algorithm, Eq. ( 5) is used to select the com-

posite measurements and calculate their probabili-

ties. The selection discards those composite mea-

surements w ith their probabilities less than a cer-

tain threshold. Denote the number of selected

composite measurements corresponding to a1 , ⋯,

am by ∀′1 ,⋯, ∀′m, respect ively. Let k= k
′= 1,⋯, m.

The same technique is applied to form all m

subpopulat ions corresponding to a1, ⋯, am. T he al-

leles of a part icular chromosome k are the serial

number of ∀′k composite measurements in ak. The

alleles of a part icular chromosome k
′
are the serial

number of tracks to be associated ( i. e . N tracks) .

The leng th of chromosomes k and k
′
is the big one

betw een ∀′k and N . Dummy measurements or dum-

my tracks are used to keep ∀′k= N . Chromosome k

and k
′
make an indiv idual. T hus, the genotypes

are uniquely mapped onto measurement-track

pairs. T he init ial population is achieved by copy ing

the individual.

Once the m subpopulat ions have been built ,

one can then be ready to t rack maintenance. Each

subpopulat ion assigns ∀′k composite measurements

( from the latest scan) to the N most likely previ-

ous tracks using its global cost minim izat ion func-

tion in Eq. ( 6) . Specially, ∀′1 ,⋯, ∀′m should replace

∀1,⋯, ∀m. After the preset g enerat ion number, all

subpopulat ions y ield their measurement-track pairs

w ith the best fitness level. A decision rule Eq. ( 7)

is then used to yield the updated t racks.

Specially, in this approach, the t rack init ia-

tion rule and the track maintenance rule are de-

fined as follows. A new track can be born after

two successive scans w ith measurements assigned

to the track. An old track can be eliminated after

three successive scans w ith no measurement assign-

ment to the t rack.

3　Present ation of Simulation

In this sect ion, a simulated passive mult i-sen-

sor mult i-target t racking problem is solved with

this FGAs-based data associat ion alg orithm . The

goal is to est imate the feasibility of this algorithm.

The problem is a 7 sensors 5 targ ets scenario.

The simulated measurement data set includes 10

t ime samples of measurements f rom 7 sensors. For

more details on this scenario, e. g. targets simula-

tion and passive sensor specification, see Ref . [ 7,

9] . This scenario results in very complex candidate

associations, in the presence of false alarms and

missed detections
[ 3 , 7 , 9] .

The preset parameters of the alg orithm are

the follow ing .
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For the FGA-based stat ic assignment phase,

the populat ion size is 80, the generat ion gap is

0. 6, and the stop generation is 150. 20 best solu-

tions are selected f rom the S -D assignment results.

The select ive pressure and the probability of muta-

tion and crossover are adapt ive controlled by the

FGA.

For the FGA-based dynamic 2-D assignment

phase, the number of subpopulations is 20. For

each subpopulat ion, the populat ion size is 40, the

generat ion gap is 0. 9, and the stop generation is

50. Each subpopulat ion has its select ive pressure,

the probability of mutation and crossover.

Fig. 1 show s the experiment results. T hese

results are similar to those results in Ref . [ 7] . T his

denotes the feasibility of this alg orithm in such a

simulated scenario, although this scenario is simple

for state estimation ( for the target mot ion models

w ere constant velocity
[ 7]
) .

Fig . 1　Tracking r esults

4　Conclusions

An FGAs-based data association algorithm for

mult i-sensor multi-target t racking is developed in

this paper, and either the FGAs or the m-best S-D

assignment technique is modified. The feasibility

of the alg orithm w as demonst rated using a passive

mult i-sensor mult i-target tracking problem . Due to

the limited test ing in the present w ork, the algo-

rithm requires further analy sis and testing , using

both simulated and real multi-sensor multi-target

data.

Although the algorithm has show n its feasibil-

ity, it s practicality seems to be hampered because

of the real-t ime problem. Generally, there are tw o

w ay s to solve the real-t ime problem, i. e. parallel

algorithm and hardw are-type algorithm. The lat-

ter w ay is adopted. Design of hardw are-type FGA

is presently underw ay , and design of the hard-

w are-type state est imator is planned for future

w orks.

References

[ 1]　 Kirbarajan T , Wan g H, Bar-Sh alom Y, et al. E ff icient

mult isensor fusion using multidimensional data association

[ J] . IEEE Transact ions on Aerospace and E lect ron ic Sys-

tems, 2001, 37 ( 2) : 386- 398.

[ 2]　 Deb S , Yeddan apudi M , Pat t ipat i K R. A generalized S-D

assignment algorithm for mult isensor-mult it arget state est i-

mat ion [ J] . IEEE T ransactions on Aerospace and Elect ronic

Systems, 1997, 33 ( 2) : 523- 536.

[ 3]　 Chunmun M R, Kirubarajan T , Pat tipati K R, et al. Fast

data associat ion using multidimensional assignment w ith

clustering [ J ] . IEEE T ran sact ion s on Aerospace and E lec-

tronic Systems, 2001, 37 ( 3) : 898- 911.

[ 4]　 Kirubarajan T , Bar-Shalom Y, Patt ipat i K R. Mult iassign-

ment for t racking a large number of overlapping object s[ J] .

IEEE Transact ions on Aerospace and Elect ronic Systems,

2001, 37 ( 1) : 2- 19.

[ 5]　 Pat tipati K R, Deb S, Bar-Sh alom Y, et al. A new relax-

at ion algorithm and passive sensor data associat ion[ J] . IEEE

Transact ions on Automat ic Con trol, 1992, 37 ( 2 ) : 198-

213.

[ 6]　 Popp R L, Pat t ipat i K R, Bar-Sh alom Y. Dynamically

adaptable m-best 2-D assignment algorithm and mult ilevel

parallelizat ion [ J ] . IEEE Transact ions on Aerospace and

Elect ronic Systems, 1999, 35 ( 4) : 1145- 1159.

[ 7]　 Popp R L, Pat t ipat i K R, Bar-Sholm Y. m-best S-D as-

signment algorithm w ith applicat ion to multit arget tracking

[ J] . IEEE Transact ions on Aerospace and E lect ron ic Sys-

tems, 2001, 37 ( 1) : 22- 37.

[ 8]　 王宁, 郭立, 金大胜, 等. 遗传算法在多传感器多目标静

态数据关联中的应用[ J] . 数据采集与处理, 1999, 14

( 1) : 18- 21.

Wang N, Guo L, J in D S , et al. Application of genet ic algo-

rithm in mult isensor mult it arget stat ic data associat ion[ J] .

Journal of Data Acquisit ion & Processing, 1999, 14 ( 1) : 18

- 21. ( in Ch in ese)

[ 9]　 Herrera F, Loz ano M . Fuzzy genetic algorithms: issues and

models[ Z] . URL: citeseer. nj. nec. com /16799. html.

[ 10]　Herrera F, Loz ano M . Adaptation of genet ic algorithm pa-

rameters based on fuzzy logic cont rollers [ A ] . In: Herrera

F, Verdegay J L ed. Genet ic Algorithms and Soft Comput-

ing[C ] . Heidelberg: Physica-Verlag, 1996. 95- 125.

Biographies:
ZHU Li-l i　Born in 1972, he is cur-

rently a gr aduate student for Ph. D. de-

gree in Autom ation Eng ineer ing at the

Nanjing Univ ersity o f Aer onautics and

Astronautics. His current resear ch in-

ter ests are applications invo lving data

fusion, multitarg et tr acking , fuzzy con-

trol and genetic alg orit hm . E-mail: ali zhu@ 163. com

·181·August 2003
FGAs-Based Data Associat ion Algorithm for

Mult i-sensor M ulti-target Tracking

 © 1994-2010 China Academic Journal Electronic Publishing House. Open access under CC BY-NC-ND license. http://www.cnki.net

http://creativecommons.org/licenses/by-nc-nd/4.0/

