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To examine the accuracy of nuclear magnetic resonance
imaging in measuring left ventricular mass, measure
ments of left ventricular mass made using this technique
were compared with left ventricular weight in 10 mon
grel dogs. Left ventricular myocardial volume was mea
sured from five short-axis end-diastolic images that
spanned the left ventricle. Left ventricular mass was
calculated from left ventricular myocardial volume and
compared with the left ventricular weight determined
after formalin immersion-fixation.

Linear regression analysis yielded the following re-

The accurate measurement of myocardial mass is of im
portance in evaluating many forms of cardiac disease . Spe
cifically, the detection of hypertrophy , by the direct mea
surement of left ventricular mass , can potentially provide
important prognostic information in the patient with isch
emic heart disease, valvular heart disease, congenital heart
disease and hypertensive or hypertrophic heart disease (1-6).
Previous investigations have demonstrated that left ventric
ular mass can be determined in vivo using a variety of
imaging techniques , including contrast ventriculography (7),
M-mode and two-dimensional echocardiography (8- 11),
computed tomography ( 12), single photon emission com
puted tomography (13) and the dynamic spatial reconstruc
tor (14). However, many of these techniques involve the
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lation in grams: left ventricular mass determined using
nuclear magnetic resonance imaging = (0.94) (left ven
tricular weight) + 9.1 (r = 0.98, SEE = 6.1 g). The
small overestimation of left ventricular weight by nu
clear magnetic resonance imaging was judged to be sec
ondary to both difficulty with proper border definition
and partial volume effects. Hence, this imaging tech
nique can be used to obtain accurate measurements of
left ventricular mass in dogs in vivo.

(J Am Coil CardioI1986,'8:113-7)

use of ionizing radiation or require significant assumptions
regarding left ventricular geometry .

Nuclear magnetic resonance imaging is a relatively new
imaging technique that I) does not require ionizing radia
tion, 2) exhibits intrinsic contrast between chamber cavity
and wall, and 3) offers high spatial resolution for imaging.
In addition, left ventricular mass calculation by this tech
nique does not require assumptions to be made concerning
an analytic model of left ventricular shape . Recently. nu
clear magnetic resonance imaging was used to calculate left
ventricular mass in vitro (15) with encouraging results . This
study was undertaken to determine whether this imaging
technique can be used to accurately determine left ventric
ular mass in vivo .

Methods
Nuclear magnetic resonance imaging. Ten mongrel

dogs weighing 5 to 30 kg were studied . Each dog was
anesthetized before imaging with intravenous pentobarbital
(20 to 25 mglkg body weight). The dog was positioned in
the magnet lying with its left side down. A 20 to 30° an
gulation of the dog 's craniocaudal axis with respect to the
long axis of the magnet was then performed. Then, paper
shims were used to raise the anterior portion of the thorax
so that the base of the heart was in the sagittal plane of the
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imaging device. With the dog breathing spontaneously, mul
tiple imaging sequences were performed, followed by re
peated repositioning of the animal so that the base to apex
axis of the heart was as perpendicular as possible to both
the long axis of the magnet and the imaging plane. Figure

1A is a typical scout view obtained in this iterative process
of positioning the animal. With the dog in this position,
coronal images were obtained through the animal, with the
imaging slices perpendicular to the myocardial base to apex
axis (Fig. IB). Images obtained in this fashion are similar

Figure 1. A, Sagittal image through one dog at
the level of the left ventricle typical of the views
used to aid in positioning. B, Coronal images
obtained at five different levels of the ventricle at
end-diastole in the same dog. Note the signal pres
ent in the ventricular cavity in the apical images
(upper left).
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to short-axis two-dimensional echocardiographic images or
to images of a heart that has been sliced in a bread loaf
fashion from the apex to the base.

Imaging was performed using a Diasonics 0.35 tesla nu
clear magnetic resonance imaging device. A cardiac gated,
double spin echo, multislice imaging pulse sequence was
used without respiratory gating. Images were obtained at
echo times of 28 and 56 ms. The time to repetition was
between 500 and 1,000 ms with the actual value determined
by the animal's heart rate. Images were 256 x 256 volume
elements (voxels), and two signal acquisitions were aver
aged for each phase encoding step.

True voxel volume was determined with phantoms to be
1.6 x 1.6 x 9.0 mm with an interslice thickness of 13
mm. With this pulsing sequence five slices were obtained:
the first slice imaging pulse sequence began 10 ms after the
R wave; the second slice began lOOms later and so forth
so that the fifth slice was obtained 400 ms after the first
slice. To obtain each slice at the same time in the cardiac
cycle, the order of slice acquisition was repeatedly shifted
by one for five consecutive acquisitions (16). This yielded
five slices at five points during the cardiac cycle. Total
acquisition time for each set of five slices was 5 to 8 minutes,
making the total time for a full rotation (five sets of five
slices) 25 to 40 minutes. During acquisition, small amounts
of pentobarbital were administered to maintain adequate
sedation.

Calculation of left ventricular mass. The images were
analyzed using region of interest software available on the
imager. A trackball was used to outline the left ventricular
epicardium and endocardium on the five first echo (echo
time = 28 ms) images obtained at end-diastole. The second
echo image was used, when necessary, to help define the
intracavitary signal and discriminate it from the myocardial
signal. If a voxel demonstrated even echo rephasing (17)
consistent with slowly flowing blood in the ventricular cav
ity, it was not included in the myocardium. When the epi
cardial border was drawn near the base or apex, epicardial
fat and nonmyocardial structures were carefully excluded.
The number of voxels between the epicardial and endocar
dial borders was then calculated. The borders were drawn
three times and the mean number of voxels within the bor
ders was determined.

Because of the presence of a gap between slices, the
voxel volume was extrapolated to the total interslice dis
tance. Hence, the voxel volume for the three interior slices
was 1.6 x 1.6 x 13 mm. In the case of the two end slices,
the slice was not extrapolated beyond the imaging volume,
so that for these slices the voxel volume was 1.6 X 1.6 x
11 mm. The volume of myocardium in each slice was com
puted from the known voxel dimension using the average
voxel count for each slice. The total volume of the left
ventricular wall was obtained from these slice volumes using
Simpson's rule. The mass of the left ventricle could then

be directly calculated by multiplying the total myocardial
volume by the density of myocardial tissue (1.05 g/cc). One
observer (A.M.K) determined myocardial mass using this
technique and repeated his measurements 1 month later to
determine intraobserver variability. The average of these
determinations was compared with those of a second ob
server (R.M.P.) to determine interobserver variability.

Postmortem determination of left ventricular weight.
After imaging, the animals were killed with a lethal dose
of pentobarbital and the hearts were excised and rinsed in
saline solution. After dissecting off the free wall of the right
ventricle, atrioventricular valves, great vessels, epicardial
fat and atria, the heart was immersion-fixed in 10% neutral
buffered formalin and weighed after fixation. In seven an
imals, left ventricular weight was obtained both before and
after fixation. Values are reported as the weight of the left
ventricle after fixation.

Statistical analysis. All correlations were made using
standard linear regressions.

Results
Relation between left ventricular mass by nuclear

magnetic resonance imaging and left ventricular weight.
The left ventricular mass as determined with nuclear mag
netic resonance imaging and the left ventricular weight for
each animal are shown in Table 1. Linear regression analysis
(Fig. 2) yielded the following relation: left ventricular mass
determined using magnetic resonance imaging = (0.94)
(left ventricular weight) + 9.1 (n = 10, r = 0.98, SEE
= 6.1 g). The left ventricular weight ranged from 25 to
113 g (65.2 ± 30.9 g, mean ± SO). The left ventricular
mass determined by magnetic resonance imaging ranged

Table l. Comparisons of Left Ventricular Mass as Estimated
by Nuclear Magnetic Resonance Imaging and True Left
Ventricular Weight in 10 Dogs

LV Weight

Case LV Mass by NMR After Fixation Before Fixation

1 107.1 113.0
2 105.3 102.0
3 91.2 84.3 86.7
4 60.7 64.3 66.1
5 60.3 55.7 57.6
6 31.8 27.4 28.7
7 41.2 30.7 32.4
8 79.6 68.4
9 29.8 25.0 27.0

10 94.5 81.3 84.6

LV Mass by NMR = left ventricular mass as determined using nuclear

magnetic resonance imaging (the average value of the two mass deter
minations by one observer); LV weight after fixation = measured weight
of the left ventricle after fixation in formalin; LV weight before fixation
= left ventricular weight obtained before fixation in formalin.
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Figure 3. Plot of the left ventricularmass as determined by Ob
server 2 (Obs 2) (R.M.P.) versus that determined by Observer I
(Obs I) (A.M.K.) for each heart. The dashed line again indicates
the line of identity, whereas the solid line indicates the linear fit
obtained by least squares regression analysis.

Discussion

This study demonstrates that nuclear magnetic resonance
imaging can be used to obtain accurate estimates of left
ventricular mass in vivo in the dog. In addition, it appears
to offer several advantages over methods presently used to
determine left ventricular mass. In particular, it overcomes
two important problems: 1) the need for an analytic model
of ventricular shape, and 2) the need for the use of contrast
material or ionizing radiation.

Prior methods. Estimates of left ventricular mass have
been made using a variety of imaging techniques that can
generally be divided into those that define an analytic for
mula for left ventricular mass based on assumptions re
garding left ventricular shape and those that do not. Contrast
angiography using the prolate ellipsoid model has been used
to estimate myocardial mass and this method can yield useful
results (7). However, it is inherently limited by the model,
particularly in patients with ischemic heart disease and
asymmetric cardiomyopathy. Similarly, echocardiography,
as it is applied clinically, also utilizes assumptions regarding
left ventricular geometry (8-11). In addition, with echo
cardiography, reliable measurements are dependent on the
quality of the study which may vary considerably from one
patient to another.

Mass estimation using thallium-201 single photon emis
sion computed tomography requires no assumptions re
garding left ventricular geometry, but does require normal
myocardial perfusion for thallium-201 distribution, which
limits its usefulness in patients with ischemic heart disease
(13). Measurements of left ventricular mass using computed
tomography also do not rely on an analytic model of left
ventricular shape and have been shown to correlate well
with measurements of left ventricular weight (12). The dy
namic spatial reconstructor allows image acquisition similar
to that of computed tomography in simultaneous multiple
slices and is the most accurate method for estimating left
ventricular mass (14). However, both of these techniques
require the use of significant doses of ionizing radiation and
the administration of intravenous contrast agents. In addi
tion, the dynamic spatial reconstructor is not widely avail
able.

Advantages. The overall correlation of r = 0.98 be
tween left ventricular weight and left ventricular mass de
termined with nuclear magnetic resonance imaging is better
than that obtained in a similar model with either a count
based method using thallium-201 single photon emission
computed tomography or a Simpson's rule method using
two-dimensional echocardiography (10,13). Schiller et al.
(II) reported a correlation similar to that obtained in this
study using echocardiography. However, that study utilized
a complex analytic model of left ventricular geometry that
required a number of assumptions and was validated only
in litter-matched beagle pups. The correlation using nuclear
magnetic resonance imaging compares favorably with that
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from 29.7 to 107.0 g (mean 70.1 ± 29.5). The relation
between prefixation and postfixation left ventricular weights
for seven hearts was: prefixation left ventricular weight =
(postfixation left ventricular weight) (1.02) + 1.1 (n = 7,
r = 1.00, SEE = 0.5).

Reproducibility. Finally, mass measurements deter
mined by nuclear magnetic resonance imaging were repro
ducible with an intraobserver correlation of r = 0.99 (n =
10, SEE = 3.8) and an interobserver correlation of r
0.99 (n = 10, SEE = 3.7) (Fig. 3).

LV Weight (gmsl

Figure 2. Relationbetween left ventricular massdetermined from
gated nuclear magnetic resonance imaging (MRI LV Mass) (ver
tical axis) and left ventricularweight (LV Weight) after formalin
fixation (horizontal axis) for all 10 animals. The dashed line
indicates the line of identity, whereas the solid line is the linear
fit observed by least squares regression analysis.
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of computed tomography and approaches the accuracy ob
tained only with the dynamic spatial reconstructor (12,14).
In addition, magnetic resonance imaging offers advantages
over all of these techniques in that 1) it does not require the
use of ionizing radiation or contrast material, 2) it does not
require an analytic model of left ventricular shape, and 3)
it is not dependent on tissue perfusion. It is also rapidly
becoming widely available.

Limitations. Over the range of myocardial weights ex
amined, nuclear magnetic resonance imaging overestimated
myocardial mass. The most likely reasons for this overes
timation are partial volume effects and improper border
definition. Hand-drawn regions of interest can potentially
include voxels that are not totally composed of myocardium.
This is especially likely to occur in areas of significant
curvature involving the epicardium or endocardium, espe
cially near the apex of the heart. Partial volume effects
would also be greater if the heart was not carefully posi
tioned and oblique sections were obtained. Because these
voxels would be counted as being filled with myocardium,
the mass would be overestimated. Partial volume effects
have been suggested as a major cause of magnetic resonance
imaging overestimation of myocardial mass in excised hearts
(15). One could potentially correct for this by including
voxels at the border in the region of interest only if their
intensity were similar to that of voxels from the center of
the myocardium. Imaging with thinner slices would also
reduce partial volume effects, but this could significantly
increase the acquisition time because more slices would be
required to scan over the same volume. A second reason
for overestimation is improper border definition, especially
where signal intensity is similar to that of myocardium from
surrounding structures either outside the heart or within the
cavity. Border definition can be improved, particularly at
the apex, with the use of the second echo image to help
differentiate the signal in the ventricular cavity from en
docardium.

In the largest hearts, multiple steps of careful positioning
were required to ensure that the heart was completely spanned
by the five imaging planes. To apply this method to even
larger hearts, more planes or thicker slices would be nec
essary.

Clinical application. The application of this technique
to the measurement of left ventricular mass in humans is
straightforward. One group (18) has described orienting pa
tients in the imager to obtain short-axis views of the heart.
Recently, it has become possible to perform these variations
of the imaging plane electronically (19), obviating the need
for patient rotation.

Conclusions. We have demonstrated that nuclear mag
netic resonance imaging can accurately assess the myo
cardial mass in vivo in a canine model. Magnetic resonance
imaging tended to overestimate myocardial mass and this
is thought to be due primarily to partial volume effects and
difficulty with border definition. The high accuracy, safety

and availability of this imaging technique suggest that it
may become an important tool in the assessment of myo
cardial mass in patients with cardiac disease.

We acknowledge the technical assistance of Dorothy Gutekunst, Judy
Behrens, Cindy Miller, Suzanne Newkirk and Frank Gorishek. We also
acknowledge the efforts of Jan Wright and Pamela de Roxtra in the prep
aration of this manuscript.

References
I. Sasayama S, Ross J Jr., Franklin D, Bloor CM, Bishop S, Dilley RB.

Adaptations of the left ventricle to chronic pressure overload. Circ
Res 1976;38:172-8.

2. Linzbach AJ. Heart failure from the point of view of quantitative
anatomy. Am J Cardiol 1960;5:370-82.

3. Trenouth RS, Phelps NC, Neill WA. Determinants of left ventricular
hypertrophy and oxygen supply in chronic aortic valve disease. Cir
culation 1976;53:644-50.

4. Alonso DR, Scheidt S, Post M, Killip T. Pathophysiology of cardio
genic shock. Quantifications of myocardial necrosis, clinical, patho
logic and electrocardiographic correlations. Circulation 1973;48:588-96.

5. Sokolow M, Perloff D. The prognosis of essential hypertension treated
conservatively. Circulation 1961;23:697-713.

6. Perloff JK. Development and regression of increased ventricular mass.
Am J Cardiol 1982;50:605-11.

7. Rackley CE, Dodge HT, Coble YD, Hay RE. A method for deter
mining left ventricular mass in man. Circulation 1964;24:666-71.

8. Devereux RB, Reichek N. Echocardiographic determination of left
ventricular mass in man. Circulation 1977;55:613-8.

9. Reichek N, Helak J, Plappert T, St. John Sutton M, Weber KT.
Anatomic validation of left ventricular mass estimates from clinical
two-dimensional echocardiography: initial results. Circulation 1983;
67:348-52.

10. Wyatt HL, Heng MK, Meerbaum S, et at. Cross-sectional echocardi
ography. I. Analysis of mathematic models for quantifying mass of
the left ventricle in dogs. Circulation 1979;69:1104-13.

II. Schiller NB, Skioldebrand CD, Schiller EJ, et at. Canine left ven
tricular mass estimation by two-dimensional echocardiography. Cir
culation 1983;68:210-6.

12. Peck WW, Mancini GBJ, Slutsky RA, Mattrey RF, Higgins CB. In
vivo assessment by computed tomography of the natural progression
of infarct size, left ventricular muscle mass and function after myo
cardial infarction in the dog. Am J Cardiol 1984;53:929-35.

13. Wolfe CL, Corbett JR, Lewis SE, Buja LM, Willerson JT. Deter
mination of left ventricular mass by single-photon emission computed
tomography with thallium-201. Am J Cardiol 1984;53:1365-8.

14. Iwasaki T, Sinak U, Hoffman EA, et at. Mass of the left ventricle
myocardium estimated with dynamic spatial reconstructor. Am J Phys
iol 1984;246:HI38-42.

15. Lanzer P, Botvinick E, Finkbeiner W, Byrd B, Schiller N, Higgins
CB. Left ventricular (LV) mass assessment by magnetic resonance
imaging (MRI) of ex vivo human hearts (abstr). Third Annual Society
of Magnetic Resonance in Medicine Abstract Book. Berkeley, Cali
fornia: Society of Magnetic Resonance in Medicine, 1984:445.

16. Crooks LE, Barber B, Chang H, et at. Magnetic resonance imaging
strategies for heart studies. Radiology 1984;153:459-65.

17. Bradley WG, Waluch V. Blood flow: magnetic resonance imaging.
Radiology 1985;154:443-50.

18. Murphy WA, Gutierrez FR, Levitt RG, Glazer HS, Lee JKT. Oblique
views of the heart by magnetic resonance imaging. Radiology
1985;154:225-6.

19. Feiglin DH, George CR, MacIntyre WJ, et at. Gated cardiac magnetic
resonance structural imaging: optimization by electronic axial rotation.
Radiology 1985;154:129-32.




