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1. Introduction

This paper is concerned with the modular representation theory of the symmetric
groups. Throughout, we fix a positive integerand a primep > 0 and we consider
representations of the symmetric gro&p of degreen over a field of characteristip.
We adopt the standard notation for the resgrgtation theory of the symmetric groups
from [8].

It is well known that ap-block of a symmetric groug,, is determined by itg-core
and its weight, and that the weight of a block is equal to the defect of the blogk if
exceeds the weight [8]. In this paper we shzdl concerned mainly with blocks of small
defect.

LetA andu be partitions of: with  beingp-regular. As usual, the symmetric gro@f
has a Specht modul&(1) and ap-modular irreducible modul®(u). The decomposition
number[S(x) : D(u)] is defined to be the composition multiplicity &f(x) in S(). The
following facts are known about blocks of weight

(a8) If w=0 or 1 then all the decomposition numbers of the block are 0 or 1.

(b) If w=2andp > 2 then all the decomposition numbers of the block are 0 or 1 [21].

(c) If w =4 then some decomposition numbers of a block can be greater than 1, even if
p>w.
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Moreover, if w = 0,1, or 2 then there is a known method for determining the
decomposition numbers [18]. The situation for the case= 3 is still not properly
understood. In particular, the decomposition number

[S@p—-2,2p—2,p—1,1): DBp—3,2p—1)]

is yet to be determined fgr > 5. This is just one of a collection of decomposition numbers
for weight 3 which we are unable to evaluate.

Our investigation of blocks of weight 3 grew out of an attempt to improve upon the
earlier results of Martin and Russell [17] by explicitly calculating the decomposition
numbers. This led us to discover various errors and omissions in [17] which place in doubt
the claim made there that when> w all the decomposition numbers are 0 or 1. Note,
incidentally, that if the decomposition numbers for a given block are known to be 0 or 1
then the decomposition numbers can, in principle, be determined by applying Schaper’s
theorem [9,19].

In this paper we concentrate on understanding bloclksrall defectBy definition, if
k is a field of characteristip then a blockB of k&, hassmall defecif p > w, wherew
is the p-weight of B. These terms will be introduced below.

2. Basic results

By using a result of Brundan and Kleshchev, we are able to improve upon the presen-
tation of several of the basic techniques used in [17,20,21] for estimating decomposition
numbers. In order to state these results recall thadigigramof a partitiona is the set of
nodes

= {G D I11< <)

We think of [1] as being an array of crosses in the plane and we will refer to the rows and
columns of{A] which should be interpreted in the obvious way.

A nodex € [A] isremovabldf [A]\ {x} is the diagram of a partition. Similarly, a node
y ¢ [A] is addableif [A] U {y} is the diagram of a partition. The node= (i, j) is called
anr-node ifr = j —i (mod p). A removabler-nodex € [1A] is normalif whenevery is
an addable-node in[A] which is in an earlier row tham then there are more removable
r-nodes betweemn andy than there are addabtenodes [11].

Finally, recall that a partitiop is p-regularif no p non-zero parts of. are equal. Then
D(w) # 0 ifand only if u is p-regular.

Proposition 2.1. Assume that and . are partitions ofn with . being p-regular, and that
k is a positive integer such that

(1) A has at mosk removable--nodes and
(2) u has aleask normalr-nodes.
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Then[S(}) : D(w)] is either zero or is equal to an explicit decomposition numbes of; .
More precisely, ifx has fewer thark removabler-nodes theriS(1) : D(u)] = 0; and if
X has exactlyk removabler-nodes theriS(A) : D(w)] = [SQA) : D()], wherex is the
partition obtained from by removing itsc r-nodes, andz is the partition obtained from
wu by removing its lowest normalr-nodes.

Proof. By r-restrictingD(w) k times, we obtain a,,_;-module which contain® (i) as
a submodule. Ik has fewer that removabler-nodes then by-restrictingS(1) k& times
we obtain the zero module, $§6(1) : D(u)] = 0. If A has exactlyk removabler-nodes
then[S(A) : D(w)] =[S(A) : D(w)] by [3, Lemma 2.13]. O

We now recall the notion of aabacusfrom [6]. A p-abacus hag runners, which we
label as runner 1 to runner, reading from left to right. The bead positions on the abacus
are labelled 12, 3, ..., reading from left to right and then top to bottom. Thus, the beads
on runner have labels + pk, for somek > 0.

Recall that ifA = (A1, A2, ...) with A; = 0, whenever > k, thenA has an abacus
configuration withk beads at positiong\; + k —i + 1|1 <i < k}. Note that ifA hask
non-zero parts theh can be represented on an abacus witheads whenever > k. For
example, the partitio15, 13, 6, 42, 22) can be represented as an abacus with 10 and 11
beads, respectively, as follows:

o 00 o 0o 00

[ N [} [ N

e
[} [} [}

An abacus representation withbeads can be converted into one with- 1 beads by
shifting all beads one position to the right and then adding a new bead at position 1.

Itis convenient to say that a bead on runnés anr-node. This changes the definition
of r-node above by a constant and causes no harm. With this convention, removing an
node from a partitio corresponds to moving a bead on runnene space to the left (with
an obvious modification if = 1), and adding an-node corresponds to moving a bead on
runnerr — 1 one space to the right (with an obvious modificationdf 1).

By definition, ap-coreis partition which has an abacus configuration in which all of
the beads are positioned as high as possible on each runner. A partitipavweight w
if its abacus configuration can be obtained by starting with the abacus configuration of a
p-core and slidingv (not necessarily distinct) beads down one position on their runner. In
this way, we attach @-core to each partition of weight.

Finally, recall that all of the irreduble constituents of a Specht moduié.) belong to
the same block and, further, th&t\) andS(u) belong to the same block if and onlyJif
andu have the same-core [8]. Consequently§ (i) and S(u) belong to the same block
if and only if they are of the same weight and they have abacus configurations which have



G. James, A. Mathas / Journal of Algebra 279 (2004) 566—612 569

the same number of beads on each runner. We will say that two partitiand . belong
to a blockB if S(1) andS(u) are both contained iB.
We can now present some corollaries of Proposition 2.1.

Corollary 2.2. Suppose that #partition A of n has exactlyt removabler-nodes and no
addabler-nodes. Leju be ap-regular partition ofn. Then[S(1) : D(w)] is equal to an
explicit decomposition number &f,_; which is in a block of the same weight as

Proof. We may assume that is in the same block as. Henceu has exactlyk more
removabler-nodes than addable-nodes and so has at leastnormal r-nodes. The
corollary now follows immediately from Bposition 2.1. (The remark that the block of
S,—x has the same weight agollows from the fact that the abacus configuration.afan
be obtained from that of by swapping runners— 1 andr.) O

Coroallary 2.3. Suppose thaB is a block ofS,, with the property that for every partition
in B there exists am such that the partition has a removablenode but no addable-
node. Then we can equate each decomposition numtiewith an explicit decomposition
number for a smaller symmetric group.

From now on, we assume that we are dealing with a block of weight

Corollary 2.4. Suppose thaiv < 3. Then every decomposition number for the principal
block of &, is either zero or can be equated with arplicit decomposition number of
6u;pfl-

Proof. The p-core of the principal block 06, is empty, and so it can be represented on

an abacus withw beads on each runner, with all the beads pushed as far up as possible.
Suppose tha$ (1) belongs to the principal block @&, so that the abacus configuration

for 1 is obtained from the-core configuration by moving beads, not necessarily distinct,
down one position on their runners. Sinve< 3, we see that in the abacus configuration
for i, for eachr, we can move at most one bead from runnéo runnerr — 1. In other
words,A has at most one removabienode. Now suppose thatis p-regular and choose a
normalr-node ofu, for somer. Proposition 2.1 now allows us to deduce th&t.) : D(u)]

is either zero or equal to a decomposition numbeBgf,_1. O

Note that the weight of a partition of,,-1 must be less thamw, and all the
decomposition numbers for blocks of weight1Q or 2 are known [8,18]. Therefore,
Corollary 2.4 determines the decomposition number&gf. Note, too, that the proof
fails whenw = 4 because. may have more than one removabtaode in this case. For
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example, suppose that= 3 and consider the partition= (6, 4, 12), which has the abacus
configuration:

Corollary 2.5 (Scopes [20]).Suppose thaB is a block of G, such that the abacus
configuration of gery patrtition in B has the property that runner contains at leasiw
more beads than runnér— 1, for somei. Then each decomposition number fican be
equated with an explicit decomposition number for some smaller symmetric group.

Proof. Makingw slides from thep-core, no position which we reach allows us to move a
bead on runnetr — 1 one space to the right. Therefore, we may apply Corollary 2.3, with
r =i, to obtain the desired result.c

We remark that Scopes proved the stronger result that the Blasiorita equivalent
to the block whose abacus configuration is obtained by interchanging rurereals — 1.

3. Methodsfor estimating decomposition numbers

We now present a collection of techniques for gathering information about decompo-
sition numbers. These ideas determine the decomposition numbers for blocks of weight
0,1, or 2, and go some way in dealing with blocks of higher weight. Many examples will
appear later in this paper.

Suppose we are ggn a partition. and that we are trying to fings(1) : D(w)], for all
w. We may assume thatand u are in the same block and that>> A, since otherwise
[S(A) : D()] = 0. (Recall thatu = A if Y5, i > Y%, &y, for all k > 1. We say that
u dominatesh.) In particular, the number of (non-zero) parts ofcannot exceed the
number of parts ok. Hence, whatever abacus we use to represemé can also use to
represenfu. This follows because the number of parts of a partition can be read off its
abacus configuration by counting the number of beads after the first gap.

Also, recalling the definition of normal node from the last section, observe that the
normalr-nodes foru can also be read off an abacus configurationfdy considering the
beads on runners— 1 andr in the abacus.

Ouir first rule is the abacus version of Corollary 2.2.

Rule 1. Suppose that has an abacus configuration such that exactheads on runner
r can be moved one space to the left and that none of the beads on runariecan be
moved one space to the right, for somérhen[S(A) : D(u)] = [S(X) : D(jz)], where the
abacus configuration for is obtained from that fok by moving to the left thék possible
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beads on runner, and the abacus configuration f@ris obtained by moving to the left the
k beads on runner corresponding to the lowektnormal nodes in.

Notes.

(a) In practiceu frequently has no addabtenodes, so to obtaip one simply moves to
the left thek possible beads on runner

(b) If kK > 1 then Rule 1 equatds()) : D(u)] with a decomposition number of the same
weight in a smaller symmetric group.

Example. If A andu correspond to

and

andr =4, thenx andjz correspond to

cee

(Here, we could also apply Rule 1 with= 2, but not withr =5.)

Rule 2. Given a partitionk, Schaper’s theorem [9,19]wgs us a linear combination of
Specht modules(v), wherev > A andv belongs to the same block as If we know
(for example, by induction) all of the deegosition numbers for the Specht modut&s)
appearing in this sum then, in the Grothendieck grou@®gf we can rewrite this sum as
a linear combination of irreducible modul&g 1) with non-negative integer coefficients.
Schaper’s theorem then tells us that:

(a) if D(n) appears in this linear combination with multiplicity > 1, thenm > [S()) :
D(w)] > 1; and

(b) if D(u) appears in this linear combination with multiplicity < 1, then[S(}) :
D(w)] =m.

Note that Rule 2 gives us both upper and lower boundsS¢h) : D(w)]. Our next rule
will provide another upper bound.



572 G. James, A. Mathas / Journal of Algebra 279 (2004) 566—612

Suppose thatt has exactik normalr-nodes and left be the partition obtained from
w by removing these nodes. Also, &t denote the set of partitions af— k& which are
obtained fromk by removingk r-nodes. Then Kleshchev’s Branching Theorem shows that

[SO): D] < Y [S(): D(m)].

wes2

(Here, we interpret the right-hand side to be zero wireis empty.)

Rule 3. We may iterate the process just defined, first removing all ofktheormalr;-

nodes fromu, then taking all th&o normalrz-nodes fromle partitioni, and so on, until

we reach a stage where we can evaluate the decomposition numbers on the right-hand side
of the inequality.

Note. We do not increase the weight of the partitions involved when we apply Rule 3. By

this we mean that the weight @fis at most the weight gf. To see this, first observe that,

in general, if the number of beads on runner1 isa and the number of beads on runner

is b, then moving a bead left from runneto runner — 1 decreases the weightby-b+1

(of course, a negative decrease corresponds to an increase). Hence, by inductionkmoving

beads left from runnerto runner — 1 decreases the weight byu — b + k). Now suppose

thatu has exactlyt normalr-nodes. Then the definition of normal implies that b — a;

thus,k(a — b + k) > 0, so removing thé normalr-nodes does not increase the weight.
Observe that we can always apply Rule 3 to get an upper boufsi(@in: D(u)] be-

cause at some point we will be able to evaluate the right-hand side of the inequality, if need

be by persevering until we reach the empty partition. If in applying Rule 3 we reinove

normalri-nodesk; normalrz-nodes, and so on, then we refelrfé)ré‘2 ... as aKleshchev

sequence fop.

The next rule is due to the first author [5].
Rule 4. Assume that. andu are partitions of: with ¢ being p-regular, andv; = u1. Let
=02 13,..) and = (u2, us,...).
Then[S(+) : D(w)]=[S() : D()].
This rule says that we can remove the first rowsioéind o without changing the
decomposition multiplicitf S(1) : D(u)]. Analogously, we have the following rule (see

[2,5]).

Rule 5. Assume thak andu are partitions of: with u being p-regular, and that and
have the same first column. Let

MW =0n—1a2-1..), uP=(ui-Lup—1..)

Then[S(A) : D(w)]1 = [SGAD) : D(uD)].
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Notes.

(a) Removing the first column from a partiticorresponds to putting a bead in the first

gap.
(b) Removing the first row from a partiticcorresponds to removing the last bead.

Rule 6. Assume that is p-regular and we know the decomposition numbers for every
S(v) with v = 1. Then we can expred3(i) as a linear combination of the Specht modules

S(v) with v & A. For all r, ther-restriction of this linear combination of Specht modules

is a module fors,,_1.

We can apply Rule 6 to give an upper bound on a decomposition nyiiter: D(u)]
whenever we know the decomposition numbers for eény with v > 1; see the example
at the end of Section 5. Moreover, we can iterate this process and perform a sequence
r’l‘lrlz<2 ... of restrictions, rather than just a singteestriction.

Rule 6, which involves restricting an irreducible module, again gives us an upper bound
on decomposition numbers. We do not list the corresponding result involving inducing
an irreducible module, which would give us a lower bound, for the following reason. If
[S(A) : D()] > 1, then inducing simple modules wouérhapggive this information, but
Rule 1 wouldcertainlygive it.

Rule 7. Assume that. and u are partitions ofr with u being p-regular. Then[S(}) :
D()] =[S : D(u*)], where) is the conjugate of andu* is the image ofx under
the Mullineux map [1,4].

We reiterate that the rules we have stated deal very well with many decomposition
numbers of blocks of small defect. Moreover, as we shall see, Rules 1-6 add credibility to
the conjecture which we discuss next.

Our conjecture relates certain decomposition numbers for different primes.

Let A andu be partitionsu being p-regular, and suppose thatandu have the same
p-core and the same weight. Represenh some abacus with runners. We shall discuss
the decomposition numbés (1) : D(u)] so we may assume that> A; henceu andi
can be represented on abacuses which have the same number of beads. Suppoiseathat
prime greater thap. Our conjecture equates certgiftmodular decomposition numbers
with p-modular decomposition numbers. Let denote the partition obtained fromby
addingp’ — p empty runners to the abacus (in any places) and fetlenote the partition
obtained fromu by addingp’ — p empty runners to the abacus configurationgdin the
same places). We now put forward the following conjecture.

Conjecture3.1. Suppose thap > w. Then[S(AT) : D(u™)]1 =[S : D(w)].

Let B be a block of5,, of weightw. ThenB is ablock of small defedf p > w.

Note that by Rule 1 the decomposition numitpgcrt) : D(u™)] is independent of
where thep’ — p empty runners are inserted into the abacuses ahd i (the empty
runners do, however, need to be in the same places). Unless stated otherwise we will
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assume that the abacusesfdrandu™ are obtained from those farand ., respectively,
by addingp’ — p empty runners at the end.

Rather than working with the symmetric group in characterigtit; instead, we work
with the Hecke algebra of typé at a complexpth root of unity then our conjecture is true,
without any restriction omp. This is part of the main result of our paper [10].

We remark that the assumption that- w in Conjecture 3.1 is necessary. To see this
let 2 = (3, 1%) andu = (5) and takep = 2. Thenx andy are partitions of 2-weight 2 and
[S(3,12) : D(5)] = 2. These partitions have the following abacus configurations:

So we may take.™ = (5,2,1) and u = (8) with p’ = 3 by adding an empty right
hand runner. HowevefS(5,2, 1) : D(8)] =1 whenp’ = 3. So[S(A) : D(u)] # [S(AT) :
D(uT)]in this case.

We give further evidence in support of our conjecture after the examples below.

Example. Suppose thap =5 andi = (8, 8,4, 1) andu = (12, 9). Then we can represent
A andu on an abacus as follows:

Now let p’ = 7. Then Rule 1 (applied 3 times) ensures {i$g&. ™) : D(u™)] is the same if

)\,+:-.-.--- and’u+:.

or if
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Conjecture 3.1 says tha§(A™) : D(u™)] = [S(A) : D(w)]. Thus, in this example, our
conjecture says that the decomposition multiplicity

[S(2p—2, 2p—2,p—1,1):D@Bp -3, 2p—1)]

is the same fop = 7 as forp = 5. We know of no way to compute this multiplicity in
general; however, using extensive computer calculations Lubeck and Muller [13,14] have
shown that ifp =5then[S2p—-2,2p—2,p—1,1): D(3p—3,2p — 1] =1.

If our conjecture is correct then it follows, as in the example above, that

[S(Zp—2,2p—2,p—1,1):D(3p—3,2p—1)]=1, forall p > 3.

Onthe other hand, fS2p—-2,2p—-2,p—1,1): D(3p—3,2p—1)] #1,foranyp > 3,
then this provides a counterexample to tipe > n conjecture” of [7, Section 4].

We find it remarkable that if Conjecture 3.1 is correct then we can produce a computer-
free proof of Libeck and Miiller’s result above. That is, we can deduce $iig, 4, 1) :
D(12,9)] = 1 whenp = 5. Here is how this comes about. First, using Rules 1-7,

1=[5(8,5,4,2: D(19], whenp=5.

Indeed, the decomposition matrices®f andp = 5 can be calculated by hand fox 20.
Next,
[5(8,5.4,2): D(19)]
=[5(4%,3%,2,1% : D(5°,. 4)]. whenp =5, by Rule 7,
=[5(8%,5%4,1%) : D(9%,6)], whenp =7, if Conjecture 3.1 is correct,
=[5(8,5%4,2% : D(17%)], whenp=7,byRule7.
Now, we are unable to evaluate the last decomposition number when7 using
Rules 1-7; however, using Rule 2, we can show f§&8, 5%, 4, 2%) : D(11%)] is either 1
or 2. By investigating these two possibilities, we can showthiég, 52, 4, 2%) : D(11%)] =
[S(10%, 6,5, 12) : D(113)], whenp = 7, irrespective of the actual value[sf(8, 5%, 4, 23) :
D(113)]. In turn,
[S(10?,6,5,1%) : D(113)]
=[5(6%4,3,1%): D(7°)], whenp =5, if Conjecture 3.1 is correct,
=[5(6.4%,3,2%): D(12.9)]. whenp =5, by Rule 7.

Again, using Rules 1-7, we are only able tow that this last decomposition number is
either 1 or 2; however, by pursuing these two possibilities in turn it can be shown that

[5(6,4%,3,2%): D(12,9)] = [S(8% 4,1) : D(12,9)], whenp =5.
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Thus, by a very circuitous route, we have shown that if our conjecture is true then one can
deduce by hand th&s (82,4, 1) : D(12,9)] = 1 whenp = 5.

The argument for showing th&s (82,4, 1) : D(12,9)] = 1 whenp = 5, consists of
alternating applications of Conjecture 3.1 and Rule 7 (conjugation). In the absence of a
proof of our conjecture, similar arguments suggest that there are aplea8tprojective
indecomposable modules in blocks of weight 3 which cannot, as yet, be determined. These
are the blocks corresponding to thecores

(273), (3773), (4774, (5"7°),....(p — 22

Notice that these cores occur in conjugate pairs, so there at(leasB)/2 independent
decomposition numbers of weight 3 in characterigtizhich current theory is unable to
determine.

As evidence in support of our conjectures we present the following propositions which
show that our conjectures are compatible with Rules 1-5. We remark that in the proofs of
Propositions 3.2-3.6, the hypothesis tpat w has immediate effect only in the proof of
Proposition 3.3.

Proposition 3.2. Assume thap > w and thati and . are partitions ofn of weightw
and with the same-core and thafu is p-regular. Assume thdtS(e™) : D(B)] = [S(a) :
D(B)] whenever and 8 are partitions of an integer less than with weightw.

Suppose that has an abacus configuration such that, for somexactlyk > 0 beads
on runnerr can be moved one space to the left and that none of the beads on runrier
can be moved one space to the right, as in RulBhen[S(A ™) : D(u™)]1=[S(L) : D(w)].

Proof. Adopt the notation of Rule 1. Note thatandjz have weightw. We may assume
that the abacuses far” andu™ are obtained by inserting’ — p empty runners between
runnersr andr + 1 of the abacuses for and ., respectively; consequentlgh)t = A+
and(z)*t = ut. Therefore,

[SG:F):D(uh)]=[S(AT): D(ut)], byRulel,

S(AF):p(@7)]
S(»):D(w)]. by our induction hypothesis,
S :D(w)], byRulel. O

=
=
=
=

Proposition 3.3. Assume thap > w and thati and i are partitions ofn of weightw
and with the same-core and that is p-regular. Assume thgtS(v+) : S(uH)]1=[SW) :
D(u)] whenevep > A and that by applying Rul2 we can deduce th&S (1) : D(u)] < m.
Then[S(A1) : D(uH)] < m.

Proof. Applying Schaper’s theorem t8(1) gives a linear combinatio}_, a, S(v) of
Specht module$(v), wherea, # 0 only if A andv belong to the same block and> A.
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Therefore, ifa, # 0 theni andv can both be represented on an abacus with the same
number of beads and the partitionghat arise are determined by sliding beads up and
down the runners of an abacus forin a specific way. Moreover, the coefficiemf of

a S(v) in this linear combination depends on tpeadic evaluation of the hook lengths
involved. Sincep > w, no hook length in either of the partitionsor A is divisible by p?.
Hence, Schaper’s theorem appliedstd.™) produces the linear combination,, a, S(v")

of Specht modules. By assumption, the decomposition nunis¢rs’) : D(u*)] have
already been proved to be equal&1v) : D(u)]. Therefore, the information provided for
[S(V) : D(w)] by Rule 2 gives the same information figf(A ) : D(u™)]. O

Proposition 3.4. Assume thap > w and thath and u are partitions ofn of weightw and
with the samep-core and thatu is p-regular. Suppose thdiS(a™) : D(B1)] = [S(«) :
D(B)] whenever and g are partitions of an integer less than with weight at most. If
Rule3gives[S(1) : D(u)] < Y cq[S(w) : D()] then[S(AH) : D(uH)] < Y pep[S(w) :
D()].

Proof. Once again, we assume that the abacusesfandu™ are obtained by inserting
p’ — p empty runners between runnerandr 4 1 of the abacuses farandp, respectively.
Thenut = ()™ and hence

[S(T): D(u™)] < D [S(@®): D((W*)]. byRule3,

weS2

= Z [S(w): D(@D], by our induction hypothesis.

weS2

Note that we are justified in applying our induction hypothesis, in the light of the note to
Rule 3. O

Proposition 3.5. Assume thap > w and thati and u are partitions ofn with the same
p-core and of weightv, with 1 p-regular. Assume, too, thatand i have the same first
row, as in Rule4. Suppose thatS(a™) : D(B1)] =[S(x) : D(B)] whenever and g are
partitions of an integer less than with weight at most. Then[S(AT) : D(uH)]=[S() :

D(w)].

Proof. Sincei andu have the same-core, we can represent them on abacuses with the
same number of beads. As these partitions also have the same first row, the last bead on the
abacus for. is in the same position as the last bead forRemoving this bead does not
increase the weight.

Adopt the notation of Rule 4. Note that™)* = A H)D and (uM)+ = (D,
Therefore,

[S(6:)®): D((*) ™)), by Rule 4,
= [S(:®)"): (V)]

[S(+): D()]
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=[s(x®): D(uP)], by ourinduction hypothesis,
=[S :Dw)], byRuled. O

There is a more general version of row removal [2] which says that 4 - -- + A; =
w1+ -+ ug, for somes, then

[SG): D] =[SO, ko)t D(a, -y )]
X [S()»s+1, As+2, -+ )t D(Usy1, st2, .. .)].

However, this result is not obviously compatible with Conjecture 3.1 wherl because
it is easy to find examples whek§ + - - + A # uf +-- 4+ u.

The previous remark also applies for the general version of column removal (Rule 5).
Even so, we do have the following result.

Proposition 3.6. Assume thap > w and thati and . are partitions ofn with the same
p-core and of weightv, with i p-regular. Assume, too, thatand u have the same first
column, as in Rul&. Suppose thatS(a™) : D(87)] = [S(«) : D(8)] whenevek and 3
are partitions of an integer less than with weight at mostv. Then[S(A1) : D(u™)] =
[S(A) : D(w)].

Proof. Sincer andu have the same first column, the first gap in the abacus fisrin

the same position as the first gap in the abacugfaay this is positiori. Suppose that
positioni on thep-abacus is positioit™ on the p’-abacus. Then, by repeated applications
of Rule 5,[S(AT) : D(u*)] = [S(@) : D(B)], wherea is obtained fromi™ by filling the
gaps up to and including the gap at positighand 8 is obtained fromu™* in the same
way. Similarly,[S(A™) 1) : D((u™P)T)] = [S(«) : D(B)], where we adopt the notation of
Rule 5. Therefore,

[S(+7): D()]

[S((:®)7): D((u®) )]
=[s(x®): D(u®)], by ourinduction hypothesis,
[SW):D(w)]. byRule5. O

Roughly speaking, Propositions 3.2—3.6 shat if all decomposition numbers were
determined by Rules 1-5, then Conjecture 3.1 would be true by induction.

Finally, we remark that Conjecture 3.1 is rudiviously compatible with Rule 6 because
the restriction of a block of weight can have arbitrarily large weight (in particular, the
weight can be larger tham).

4. Blocks of weight 3

Now let w = 3 and assume that > 3. By repeatedly applying Corollary 2.3 we can
reduce the calculation cdll decomposition numbers for blocks of weight 3 down to
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considering only certain blocks or, equivalentp/cores. We now describe the abacuses
for this minimal collection ofp-cores. We assume, without loss of generality, that each of
our abacuses has exactly 3 beads on runner 1 and at least 3 beads on every other runner.

Case 1. All of the runners contain exactly 3 beads:

Note that in this case thg-core is empty. In the light of Corollary 2.4 and the remark
which follows it, we do not need to pursue Case 1 further. (Case 1 is the only case which
has to be consideredif = 1.)

Case 2. The firsti — 1 runners contain exactly 3 beads; runnetg to j — 1 contain 4
beads; and runnersto p contain 3 beads. Here,4i < j < p + 1, so there arég) such
p-cores:

® 06060606060 0 0 0 00
® 00006060606 0 0 0 00
00006060606 0 0 0 0 0.
o000 60 - - - - -
i

Note that in this case the-core is(i — 1)/, a partition ofij —i2+i — j. (Cases 1 and 2
are the only cases which have to be considered=f 2.)

Case 3. The firsti — 1 runners contain exactly 3 beads; runheontains 4 beads; runners
i +1toj—1 contain 5 beads; runnejgo k — 1 contain 4 beads; and runnér p contain

3 beads. Here, we allow2i +1 < j <k < p+1, so there ar€’; ) + (7, %) = (4) such
p-cores:

00000000000
EEEEEEEEXEXX)
EEEEEEEEEXX)
EEEEEKEERE ’

eo0e00 - - - - . .
i j k

Note that in this case the-core is((p — k + 2i)7 =1, (i — 1)),
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Case4. The firsti — 1 runners contain exactly 3 beads; runnetis j — 1 contain 5 beads;
runners; to k — 1 contain 4 beads; and runnédrgo p contain 3 beads. Here, we allow
1<i<j<k<p+1,sotherear€)) + (5) = ("3%) suchp-cores:

AR

AR

AR
-e0000000 ’
000608 - - - - - .
i j k

Note that in this case the-core is((p — k + 2i — 1)/~%, (i — 1)¥~%). (The reader should
have no difficulty working out the additional cases which arisefoe 4, and for higher
weights.)

Thus, in general there at€}?) + (§) + (5) + 1=2("}1) + 1 differentp-cores which
need to be considered. In each case, the decomposition numbers for the different cores are
often very similar (depending on the parameiels k); however, the explosion of delicate
subcases makes it very difficult to write down a convincing argument for geperal

Of the four cases that need to be considered when3, Case 3 was overlooked in [17],
thereby further jeopardizing their claim that the decomposition numbets o3 can be
determined and that they all have value 0 or 1. We now apply our methods to obtain certain
decomposition numbers far = 3 in Cases 2—4. Some of these results already appear in
[17].

Suppose that we have fixedpacore p and an abacus configuration far as above.
Then, as in [17,21], we use the following notation for the partitions of weight 3 wvith
corep:

(1) Let(r) be the partition whose abagis obtained by moving the last bead on runner
(of the abacus fop), down 3 places.

(2) Let (r2) be the partition whose abagis obtained by moving the last bead on runner
r down 2 places and the second last bead on runrdmwn one place.

(3) Let(r3) be the partition whose abagis obtained by moving the last 3 beads on runner
r, down one place each.

(4) Forr #£s, let (r, s) be the partition whose abacus is obtained by moving the last bead
on runner down 2 places and the last bead on runnéown one place.

(5) Forr # s, let (r2, s) be the partition whose abacus is obtained by moving the last 2
beads on runnerdown one place each, and the last bead on rundewn one place.

(6) Forr,s,t distinct, let(r, s, ) be the partition whose abacus is obtained by moving the
last bead on runners s ands down one place each.

4.1. Some decomposition numbers in Case 2

Assume that the-core belongs to Case 2. That is, runners up to runret contain
3 beads; runner contains 4 beads; after this, there are some or no runners with 4 beads;
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any remaining runners contain 3 beads. Let runniee the first runner after runnémvith
3 beads.

By Rule 1, we can equate the decomposition nunil§éx) : D(u)] with a decompo-
sition number of weight 3 in a smaller symmetric group for all partitiarend . in this
block except for when is one of the partitions™, g*, y*, o, g%, y, «®, g, ory®™
where

o = (i), B*=1(i,i — 1), y¥=(i—1)

and

of =(i%),  pI=(G-D%i) yI=(0-D?
and

o =(i%u), forl<u<pandu#i—i,i

(Rule 1 deals with the case=i — 1, andu =i givesa?),

BW =(i—1,i,u), forl<u<panduz#i—1,i
(Rule 1 deals with the case=i — 1, andu =i givesg™*), and

yW=(G—1u), fori<u<pandu#i—1,i.
(Rule 1 deals with the case=i, andu =i — 1 givesy ™).

We calla*, g*, y*, af, g%, y8, ™, g 1 theexceptional partitionor Case 2. The
abacuses for the exceptional partitions in Case 2 are as follows:

® 0600 00
® 0600 00
% [} o 0o 00
a_ ..... .....
o
soa* = (2p — j+2i,i/7, 1P7);
o 0 00
o 0 00
x oo 0o
ﬂ_ ...... .....
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SOB* = (2p — j+2i, i/ 7L i — 1,177 1FL);

EEEEREEREREX
EEEEREEREREX
x_®0:- 00000
v= e 0o 000
[
soy*=Qp—j+2i—1,i/71 1p~i+dy;
®© 006 0 00
L4 o o 00
f e0oo0o0o0 o0
o =
o 0o 0 00
soa? = (p — j +2i,i/7, 12070,
o o o 00
e 0o 00
h_ R X)
ﬂ_ o 0o 00
L]
S0 = (p— j+2i, i/~ i — 1,120+,
EEEEREEX)
LN o 0o 0 00
h EEEEEREEX)
v= . o 0o 0 00
.-
soyl=(p—j+2i—1,i/7% 12r~i+]y:
® ®© 0 060606060600 0 00
® ®© 0060606060600 0 00
uy__®®®:- 0600000000
* o o 0o 00

-+ 0one move on runner,
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SO

(p—Jj+2iu—j+i+1 i+1)J 2r7u 1u7i-0), if j<u<p,
G N (p—ititup—j+2+1L G+ )i i< <,
(p—j+2ii7 u+12r7" 2t
fl<u<i-—1;

o000 00o0oceoe
-+ one move on runne,

SO

(p—j+2iu—j+i+1G+1i~L 20w 10,
if j <u<p,

(p—j+i+tup—j+2i+1 G+t u=i=1i 1 10+,
ifi <u<j,

(p—j+2i,i71=1 i — 1,u+ 1,207+ 1i-1-2),
fl<u<i-—1;

,B(u) —

) o0 - 0000000000
= -+ One move on runnet,

S0
(p—j+2i-Lu—j+i+l G+D/7 277 17), if j<u<p,
yW=1(p—j+u+ip—j+2i G+ 1) if i<y < j,
(p—j+2i—1i7 u+1,2071H 1i-u=2) ifl<u<i—1.
Note. The three partitions’, 87, y* are p-singular and, moreoveg* > g* > y* and
ol > > y?anda® > B > @ forall w with 1 <u < p andu #i — 1,i. Also, if
A €{a, B,y} then
A > )L(jfl) > )\(]?2) D e[ )\(iJrl) > )\(P) > )\(P*l) > > )»(j) > )L(i72) > )L(i*3) .

> A Al
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Proposition 4.1. Assume that <v < pandv #£i —1,i.

(1) For x arbitrary and i € {o*, «”)} we can computgS(x) : D(u)].
(2) For x an exceptionapartition andu € {8*, 8} we can computgS() : D(u)].
(3) For 1 an exceptionapartition andu € {y*, )} we can computgS(r) : D(u)].

Proof. Recall that the decomposition numbers are known for blocks of weight O
and 2. We prove that we can reduce the calculation of the decomposition numbers in the
proposition to one of these cases:

(1) Suppose that € {o*, «”}. Thenu has 2 normal-nodes and every in the same
block asu has at most 2 removabienodes. Therefore, we can apply Proposition 2.1 to
computelS(x) : D(w)].

(2) Suppose that € {8*, pV}.

If i 2 andu # B¢~ thenu has exactly one normél — 1)-node, and. has at most 1
removablgi — 1)-node, so we can apply Proposition 2.1 again.

Assume thap, = 8%~2 andi # 2, 3. Thenu has exactly one norma& — 2)-node, and
A has at most 1 removablé — 2)-node, so we can apply Proposition 2.1 again. Note that
if ©=pY"2 andi =3, thenu is p-singular.

Assume that = 2 andpu is p-regular. Thenu = 8™ for somev with j < v < p.
We need only consider those partitiohgor which the first part ofu is larger than the
first part of 1 (since, otherwise, eithgr &2 A or we can apply row removal). Therefore,
re{ythyW, . .. ¥y} Butthe first columns o™ andy ™ have the same length and
we can apply Rule 5. Also, unless= j, we see thag™ has a normab-node whiley®
has no removable-node; so[S(%) : D(u)] = 0 by Proposition 2.1.

We are now left with one final case, namely= 2, u = g (with j < p, since
otherwiseu is p-singular) and. = y".

®© 0006060606 00 00 ®© 006060606000 0 00

® 006006060600 00 00 ® 0 06060606000 0 00

) _ ® 00606000 - 0000 u_.............
'3 e - 0606 060000 - - . Y= oo 06006060 - - - - -
C @ e e e e e e e e e e @ ¢+ ¢+ e e e e e e e e

It is possible to prove thats(y?) : D(8))] = 1 by applying Rules 2 and 3, but it
is tricky to apply Schaper’s theorem without making a mistake. We therefore prove that
[S(y" : D(BY)] =1 as follows (recall that = 2).

Let ¢ be the abacus
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Using the Littlewood—Richardson rule, we now add a skedwook to¢ in all possible
ways to see, in the Grothendieck group, that:

=S((1%) +S((L ) = S((L.j + 1)) +--- £ S((1, p)) + (=D’ (S((1.2))
- S((1.3)+---£S5((Lj—1))+S((1) =0.

Now, ' = (12). Therefore[S(y?) : D(8))] is equal to the multiplicity o> (8¢)) in

S((L, ) = S((L, j+ 1)+ £5((L p)) + (=D’ (S((L.2)) = S((L.3)) + -
+S((1, - 1))+ S((1).

This is equal to the multiplicity oD (8Y) in S((1, j)) — S({1, j + 1)) +--- + S((1, p)
becauses/) does not dominate the other terms (consider the first two parts). In turn, this
multiplicity is equal to[S((1, j)) : D(8Y)] sincep)) does not dominate the other terms
(8 and all the other terms have the same first colup%fl,ends inj — 2 ones, while1, k)

ends ink — 2 ones, forj <k < p). Finally, [S((1, j)) : D(8")] = 1 by two applications

of Rule 5 followed by the defect 1 result.

(3) Supposethat € {y*, y}. Note thatu has exactly one norm&l — 1)-node (except

ifi =2, j = p+1andu =y ™), but every exceptional partitionhas at most 1 removable
(i — 1)-node, so we can apply Propiien 2.1 again. Suppose that=2, j = p+ 1 and
w=y® (herej < v < p). We need only consider thosavhere the first part of. exceeds
the first part ofs, andx has a removable-node. It is easy to check that there are no such
partitions, so we have finished O

We remark that a more detailed analysis shows that the part of the decomposition matrix
with the rows and columns indexed by the exceptional partitions has the following block
diagonal form:

*
*
o
o

where the blocks are certainx33 matrices (with singular columns omitted) which are
labelled by triples{a?, 87, ¥7}. The ordering of 3x 3 blocks is compatible with the
ordering of the partitions given before te&atement of Proposition 4.1. See Appendix A
for the casep = 5.



586 G. James, A. Mathas / Journal of Algebra 279 (2004) 566—612

4.2. Some decomposition numbers in Case 3

Assume that the-core belongs to Case 3. That is, runners up to runret contain
3 beads; runner contains 4 beads; runnér+ 1 contains 5 beads; after this, there are
some or no runners with 5 beads; after this, there are some or no runners with 4 beads;
any remaining runners contain 3 beads. Let runhbe the first runner with 4 beads; let
runnerk be the first runner after runnemwith 3 beads.

By Rule 1, we can equate the decomposition nunil§éx) : D(u)] with a decompo-
sition number of weight 3 in a smaller symmetric group for all partitiarend . in the
block, except for when is one of the partitiona, 8, y, or§ where

a=(i%i+1), B=1(i—1ii+1), y=(i?, and §=(ii—1).

We calla, 8, y, § theexceptional partitiongor Case 3. The abacus configurations for the
exceptional partitions in Case 3 are as follows:

® 0060606060600 00 00
® 0060 0606 00000 00
0o - 0006060000 00
“= - 00 0000 0 0 -
® - 00 @+ - + <+ -

A= eeeeeee]

® 0060606060000 0 00
® 0 0606060606000 0 00
e o ®© 00606000 0 00
V= ® 00000 06 0 -
o0 00 - - - - - -
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SOy =(@2p—k—j+3i+1 (p—k+2i+ 1)/~ ik 1070,

® 0060606060600 0 0 00

® 0060606006000 0 00

8_.'...........
® - © 0606060 0 0 -

o0 00 - - - - - -

S08=02p—k—j+3i+1 (p—k+2i+1)/~-1 ki1 1 1r-i+1),

Proposition 4.2. The part of the decomposition matrix whose rows and columns are
labelled bya, 8, y, § is

all -
Bll 1
y|1
5|1

-1
11

(omitted entries are zejo

Proof. Note thate > 8 > § anda > y > § but 8 ¢ y andy ¥ 8. Let

()[(1):,3(1)=(2p—k—j+3i+2,(p—k+2i+1)j7i72,p—k+2i),

v =8y =2p—k—j+3i+1(p—k+2i+1)771
anda(2) = y(2) = (i*~1, 1P~y andBp) = 8(2) = (i*~71,i — 1, 1P~I*1). Note that
[Sva) : D] =[S(p—j+i+1, Y7 ) :D(p—j+i+2177?)]=1,
by Rule 5 (column removal), and that
[S(B2) : D(e2)] =[S(i — 1.277*1): D(i,177)] =1,
by Rule 4 (row removal). Next,
[S) : D)] =[S*@) : D) ][SA@) : D()]

forall &, u € {e, B, y, 8} by Rule 4, again. From this the proposition followsz



588 G. James, A. Mathas / Journal of Algebra 279 (2004) 566—612
4.3. Some decomposition numbers in Case 4

Assume that thep-core belongs to Case 4. That is, runners up to ruhret contain 3
beads; runnercontains 5 beads; after this, there are some or no runners with 5 beads; after
this, there are some or no runners with 4 beads; any remaining runners contain 3 beads.
Let runner;j be the first runner with 4 beads; let runiteloe the first runner after runnéer
with 3 beads.

By Rule 1, we can equate the decomposition nuni§ér) : D(u)] with a decomposi-
tion number of weight 3 in a smaller symmetric group for’alind . in the block except
for whena is one of the partitiona, 8, y or§ where

a=(i%), p=(i%i-1), y=1(i—11i), §=(i —1).

We callg, 8, y, § theexceptional partitiongor Case 4. The abacus configurations for the
exceptional partitions in Case 4 are as follows:

® 00006060 0 00
® 00606 06000 00
e - 06060600 00
o=
® 0 06000 00
o000 6@ - - - - - -
@ + o+ s e e e e e s

® 000 0 0
® 060060600 0 00
® 00600 00
'Bz ® - 606 0600 00
cecee . - . . ..
.
SOB=@2p—k—j+3i,(p—k+2)/~ k=11 1=+,
® 0000600 0 0 00
® 0006060600 0 0 0
_ ® 000606060 0 0 00
V— ® 060 0600 0 0
[} e 0 00 - - - - - .
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S0y =Qp—k—j+3i,(p—k+2i)7 "1 p—k+2i —1, ik 1p-it];

® 0000060600 0 0 00
® 0000060600 0 0 00
L] ® 000606000000
8 - ® 00000 0 0 -
o0 000 - - - - - -

S08=(2p—k—j+3i—1,(p—k+2i)/7 ik 1p7i+l),

Proposition 4.3. The part of the decomposition matrix whose rows and columns are
labelled bya, 8, v, 8 is

o
1. .
11 -
111
111

SR ™R

(omitted entries are zejo

Proof. Note thate > 8 > y > §. First, each ofy, 8, y ands has exactly 3 removable
nodes. Also, the 3 removablenodes ina are normal. Therefore, fox € {«, 8, y, §} we
have[S(1) : D(a)] = [S(X) : D(@)] as in Proposition 2.1. However, hefe= g =y =4,
so[S(1): D(w)] =1.

Next, remove the first column from, y, §; see Note (a) which follows Rule 5. We can
now apply a similar argument to the above, using 2 removainledes, to deduce that
[S(A\) :D(B)l=1forae{B,y,3).

Finally, remove the first columns fromy, §, using Rule 5, and use the one remaining
removablei-node to deduce thdtS(1) : D(y)] = 1, for A € {y, 8}. The proof of the
proposition is now complete. O

Of course, Propositions 4.1-4.3 hardly scratuhsurface of the problem of calculating
the decomposition numbers, since they evaliisitg) : D ()] only wheni andu are both
exceptional. It is still necessary to calcul&s&i) : D(u)] whena is exceptional angk is
arbitrary. In Case 4, for example, these answers depend upon the valugsafdk, and
there are a very large number of separedses that have to be considered.

5. Thecase p=5

We have written a computer program, using ¢wP package S8ECHT[15], to apply
Rules 1-7 to find all the decomposition numbers whee= 5 and w = 3. All the
decomposition numbers were determined once we had assumed Libeck and Miller's
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result that[S(82,4,1) : D(12,9)] = 1. Consequently, at least in principle, all of the
decomposition numbers of the symmetric grofgrblocks of weight 3 in characteristic 5
are now known. The decomposition matrices for Cases 2—-4 wherb are given in the
appendix.

In outline, the program first finds all the partitionswhich dominate the last of the
exceptional partitions and then uses Rules 1 and 2 to find the decomposition numbers
[S(v): D(w)] whenevew is not exceptional. For the exceptional partitionshe program
applies Schaper’s theorem (Rule 2); this often determines the decomposition numbers
[S(A) : D(w)]. If this decomposition number is not determined then Rule 2 gives us an
integerm > 1 such thain > [S(}) : D(w)] > 1. The program next checks to see whether
the answer is given by one of Rules 3-6. Finally, as a last resort, the program tries to
apply Rule 7 in order to show th@s(A) : D(w)] = 1. The program also does parallel
computations with two different primes which it uses, along with Rule 1, to check the
consistency of its calculations (compare Conjecture 3.1).

Finally, in order to check our calculations wempared the mates that we computed
with the decomposition matrices of thercesponding Hecke algebra of type[16] at
a complexpth root of unity—which are known by the LLT algorithm [12]. Since we
were able to compute these decomposition humbers using only Rules 1-7 (and Lubeck
and Miiller's result), these two sets obabmposition matrices should agree because
p > w (this affects only Rule 2). In all caseke symmetric group and Hecke algebra
decomposition multiplicities were the same.

Here is a small example of the technique in action.

Example. Suppose that we are in Case 4, with p, j =k = p + 1. Thus thep-core has
the following abacus:

Then the exceptional partitions for this core arex (p3), 8 = (p%, p—1),y = (p—1, p),
and§ = (p — 1). We will show that the non-zero decomposition numbers for these
exceptional partitions are as follows:

(p) (p

(p) 1

(r?) 1

(p,p—1) 1 1 1
a= (p3 1
B= (P2 p-1) 1 11
y= (p—1p) 1 1 1 1 1
= (p—1) 1 1 1 1
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First, one readily checks that the partitions which index the rows of this matrix are
precisely the partitions such that has the same-core ass andv = §.

Suppose that, 1 € {(p), (p?), (p, p — 1)}. Thenp — 1 applications of Rule 1 allow us
to equatd S(v) : D(u)] with a decomposition numberin Case 2 witk p, j =k=p+1.

In practice, though, it is much easier to apply Rule 2 (Schaper's theorem) to evaluate
[S(v) : D(w)].

Now consider the exceptional partitionsg, y, §.

Rule 2 immediately implies thaf(«) is irreducible.

Next, applying Schaper’s theorem @ gives the following linear combination of
Specht modulesS((p?)) + S(o). From what we have already deduced, this is equal to
D({p?)) + D(a). Rule 2 now gives us the row of the matrix which is labelledsby

Similarly, applying Schaper’s theorem fogives

=S((p) +S((p. p— 1)) + S(@) + S(B) = 2D((p2>) + D((p, p — 1)) + 2D() + D(B).
By Rule 2,[S(y) : D({p, p — )] =[S(y) : D(B)] = 1 and we also know that
2>[S():D((p?)] =1 and 2=[S(y): D(@)]>1.

Now, y and(p?) have the same first part $6(y) : D((p?))]1 = [S(v2) : D({p?)(2))] by
Rule 4. Butyp and(pz)(z) belong to a block of weight 2, S (y(2)) : D((pz)(z))] <1
HencelS(y) : D((p?))] = 1.

If [S(y): D(a)] =2, then

D(y)=S((p—1,p) = S((p*, p = 1)) = S((p. p = 1) + 5((p)).

If we p2(p — 1)2...2212 restrict this, as in Rule 6, we do not obtain a module (an
irreducible module occurs with negative muligity). This contradiction implies that
[S(y): D(x)] =1, and all the decomposition numbers () are now known.

Finally, we apply Schaper’s theoremdoThis gives

S(p)) = S((p?) = S((p, p — 1)) + S(@) + S(B) + S(y) = 3D(ar) + 2D(B) + D(y).

Thus, the only decomposition numbers &16) which are still in doubt ar¢S(8) : D(«)]
and[S(8) : D(B)].

We apply Rule 3, with the Kleshchev sequenégwhich leads to a block of weight 0)
to conclude thatS(8) : D(«)] < 1. Hence[S(S): D(x)] =1.

Now, § andB have the same first column, so by Rule 5,

[S@®): D] =[5(EP): D(BP)].
But sV and B belong to a block of weight 2, ses(™) : D(BD)] < 1. Hence

[S): D(y)]=1.
We have now completed the example.
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Notes.

(a) Some of the decomposition numbers in the last example were computed in different
ways in Proposition 4.3. The method in the example uses only Rules 1-7 (in fact we
used all the rules except Rule 7).

(b) The arguments used in the example apply equally well for any 3. As a
consequence of many other instances of this phenomenon, we were led to formulate
Conjecture 3.1.
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Appendix A. Decomposition numbers of weight 3in characteristic5

In this appendix we list the non-zero entries in the rows indexed by exceptional
partitions for all of the decomposition matrices in Cases 2—4 wherb. These matrices,
combined with the results of this paper (specifically Rule 1), determine the decomposition
matrices for all blocks of weight 3 for all symmetric groups wheg 5.

We remark that we have also used our program to calculate the decomposition numbers
in Cases 1-4 whem = 7. This calculation took over one month to complete, on a
reasonably fast computer. We were unable to determine whether the following two
decomposition numbers are equal 1 or 2:

Case?2: (i,j)=(p—-1,p+1), Case2: (i,j)=(p—2,p+1),
[S((p = D?:p): D((p — 1. p)]. [S((p—D% p—1)
:D((p.p—1.p=2)],
Core:  (5%)=((p —2?), Core: (43 =((p—3)3).

Conjecture 3.1 and our calculations fpr= 5 imply that these decomposition numbers
should both be equal to Assuming thiswe were able to compute all of the remaining
decomposition numbers for Cases 2—4 whpesa 7. We again found thaS(1) : D(u)] <1

in all cases.
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A.l. Case 2(i, j))=(p,p+1)
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A3. Case2(i,j)=(p—-2,p—1)
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A4. Case2(i,j)=(p—-3,p—2)
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A5. Case2(i,j)=(p—1,p+1
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A.6. Case 2(i, j))=(p—2,p)
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A7. Case2(i,j)=(p—-3,p—1)
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A8. Case2(i,j)=(p—2,p+1)
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A.9. Case 2(i, j))=(p—3,p)
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A.10. Case 2(i, j)=(p—3,p+1)
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A.15. Case 3(, j,k)=(p—3,p—1,p)
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A.20. Case 3(i, j,k)=(p—3,p+1p+1)
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A.23. Cased(, j,k)=(p—-2,p—1,p—1)
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A.26. Case 4(, j,k)=(p—2,p—1,p)
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A.29. Case 4, j,k)=(p—3,p—2,p)
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A.32. Case 4(i, j,k)=(p—2,p,p)
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(g—dz—dT—d)
(€ —dT—d*d)
(T—d)
(T—d ;)
g—d,a—d)
(d*5(1T—d))
(d'1—-d)

A.35. Case 4(, j,k)=(p—3,p—1,p)
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(r—33
(p—32%p—4
p—4,p—3
p—4)
(r-33
(P—32p—4)
p—4,p—3
p—4

(
(
(
(

A.37. Cased(i,jk)=(p—-2,p+1,p+1)

A.36. Case 4(i, j, k)

1111 11.
1111

1

111 11.
1

1

(r-273
(P—22%p-3
p—3p-2
p—3

(
(
(
{
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v —

d)

e—dy—d)
(gle— )
c—dy—d
(ge—aD)

(d (€ —ad))
(e—dd)

(d* @@ —ad)
(¢—dd)
(e—dg—d:d)
(¢—dT—dd)
g—d',e—a)
g—dy@—d)
)

e—dg—dT—d

1

1 1 1111.

11111111 1.
1

1

r—d)

(g€ —d))

(e —d)
e—d*,d)
¢—d*,d)

(d (e —d))
(d5(e—d))
g—d';e—a)
€ —dg—d*d)
g—dT—d*d)
)

e—dg—dT—d

1 1 1 1

1111111 1.

1 1
(p—-3,p+1p+12

1

1

—d))

(ge—D)
g—d;e—d)
e—d‘;(c—d))
—d))
g—d1—d*d)

A.38. Case 4, j,k)=(p—3,p,p)

(P—32%p-4
p—4p-3

p—4

(r-33
A.39. Case4(, j,k)=(p—3,p,p+1)

(r-33
(P—32p—4)
p—4,p—3
p—4

(
(
(
(

A.40. Case 4(i, j, k)

1

1

(r-3°
(p—32%p—4
p—4p—3
p—4
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