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Abstract

De Mathan [B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France,
Suppl. Mém. 21 (1970)] proved that Khintchine’s theorem on homogeneous Diophantine approximation
has an analogue in the field of formal Laurent series. Kristensen [S. Kristensen, On the well-approximable
matrices over a field of formal series, Math. Proc. Cambridge Philos. Soc. 135 (2003) 255–268] extended
this metric theorem to systems of linear forms and gave the exact Hausdorff dimension of the corresponding
exceptional sets. In this paper, we study the inhomogeneous Diophantine approximation over a field of
formal Laurent series, the analogue Khintchine’s theorem and Jarnik–Besicovitch theorem are proved.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Finite field; Inhomogeneous Diophantine approximation; Metric theory; Exceptional sets; Hausdorff
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1. Introduction and main results

The field of formal power series are analogues of the field of real numbers. Many problems
in number theory which have been studied in the setting of the real numbers can be transposed
to the case of the formal power series. Recently, the metric theory of Diophantine approximation
attains considerable attentions, while most of them are concerned on homogeneous Diophantine
approximation (see [1,2,7,10–14]).
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A well-known result (see [3–6]) in Diophantine approximation over the reals says that the
Lebesgue measure of the pairs (x,α) ∈ R

2, such that ‖qx −α‖ < q−v for infinitely many q ∈ N,
is full for v � 1 and null otherwise. Furthermore, the Hausdorff dimension of the set of these
points is known to be 1 + 2

v+1 for v > 1. In this paper, we study the corresponding inhomoge-
neous Diophantine approximation over the field of formal Laurent series with coefficients in a
given finite field.

Let F be a finite field with k = pl elements, where p is a prime and l is a natural number. Let
X be an indeterminate and denote by F[X] and F(X) respectively the ring of polynomials with
coefficients from F and the field of fractions over this ring. Define the field of formal Laurent
series with coefficients from F to be

F
((

X−1)) =
{ ∞∑

i=−n

a−iX
−i : n ∈ Z, a−i ∈ F, an �= 0

}
.

The norm of x ∈ F((X−1)) is defined by

|x| =
{

0, whenever a−i = 0 for all i ∈ Z,

kn, whenever a−n �= 0, and a−i = 0 for all i > n.

It is easy to verify that the above norm is non-Archimedean, i.e., for any x, y ∈ F((X−1)):

(a) |x| � 0, and |x| = 0 if and only if x = 0;
(b) |xy| = |x||y|;
(c) |x + y| � max{|x|, |y|}.

Moreover, the equality in (c) holds whenever |x| �= |y|. An important consequence of (c) is the
“ball intersection” property: for any two balls C1 and C2 with the same radius, one has either
C1 ∩ C2 = φ, or C1 = C2.

The space (F((X−1)), d) is a complete metric space with the metric d induced by the norm | · |.
Here, comparing with the real case, F[X], F(X) and F((X−1)) play the roles of integers, rational
numbers and real numbers, respectively.

Define

�x	 =
⌊ ∞∑

i=−n

a−iX
−i

⌋
=

0∑
i=−n

a−iX
−i ∈ F[X], x ∈ F

((
X−1))

and call it the integer part of x. Put

I = {
x ∈ F

((
X−1)): [x] = 0

} = {
x ∈ F

((
X−1)): |x| < 1

} = B(0,1),

which plays the role of the unit interval [0,1) in R. The ideal I is compact because it can be iden-
tified with

∏∞
n=1 F. A natural measure on I is the unique normalized Haar measure on

∏∞
n=1 F,

which we denote by μ. For any b−1, b−2, . . . , b−m ∈ F, we call the set

[b−1, b−2, . . . , b−m] = {
x = a−1X

−1 + a−2X
−2 + · · · ∈ I :

a−1 = b−1, a−2 = b−2, . . . , a−m = b−m

}
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a mth order cylinder. For the Haar measure μ, Sprindžuk (see [15]) gave an accurate characteri-
zation, where he showed that

μ
([b−1, b−2, . . . , b−m]) = k−m.

Definition 1.1. Fix n ∈ N. For any x = (x1, x2, . . . , xn) ∈ (F((X−1)))n, we define the height of x

as

|x|∞ = max
{|xj |: 1 � j � n

}
.

It is easy to verify that (a) and (c) in the definition of non-Archimedean norm hold for | · |∞.

Definition 1.2. For x ∈ F((X−1)), we define the distance from x to the polynomial lattice points
as

‖x‖ = min
{|x − p|: p ∈ F[X]}.

In fact, we have that

‖x‖ = ∣∣x − �x	∣∣,
and ‖x‖ = |x| for any x ∈ I ; ‖x‖ � |x| for any x ∈ F((X−1)).

For q ∈ F[X], let ψ : F[X] → R
+ be a function satisfying ψ(q) � 1

2 and

ψ(q1) = ψ(q2), if |q1| = |q2|.

Then we can write ψ(q) = ψ(|q|), i.e., ψ is radial. We consider the set of points (x,α) ∈
(F((X−1)))2 for which the Diophantine inequality

‖qx − α‖ < ψ(q)

has for infinitely many solutions q ∈ F[X].

Remark 1.3. Since the norm | · | defined above takes value only on {kr ; r ∈ Z}, then we can
restrict ψ : F[X] → R

+ to ψ : F[X] → {kr ; r ∈ Z}. When ψ assumes on other values such as
ψ(q) = k−λ(q), we replace the value of ψ(q) by k−�λ(q)	 and still denote it by ψ(q) without
causing any confusion.

Write Ω = I × I . Since (x,α) → ‖qx − α‖ is p-periodic for any p ∈ F[X], thus we only
concentrate our attention on Ω instead of F((X−1))2. Let

Φ(ψ) = {
(x,α) ∈ Ω: ‖qx − α‖ < ψ(q) for infinitely many q ∈ F[X]}.

For the special case that ψ(q) = |q|−v with v > 0, we write Φ(ψ) = Φv .
Now we give our main results.
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Theorem 1.4.

(μ × μ)
(
Φ(ψ)

) =
{

0, if
∑

q∈F[X] ψ(q) < ∞,

1, if
∑

q∈F[X] ψ(q) = ∞.

Theorem 1.5. For v > 1, dimH Φv = 1 + 2
v+1 .

2. Metric theory

In this section, we will establish Theorem 1.4. First we fix some notation.
For q ∈ F[X] and α ∈ I , denote

Aq,α = {
x ∈ I : ‖qx − α‖ < ψ(q)

}
.

For p,q ∈ F[X], α ∈ I , let

Aq,α(p) = {
x ∈ I : |qx − α − p| < ψ(q)

}
.

Clearly,

Aq,α =
⋃

deg(p)<deg(q)

Aq,α(p).

By the translate-invariant property of the Haar measure μ we have

μ
(
Aq,α(p)

) = μ

(
B

(
0,

ψ(q)

|q|
))

= ψ(q)

|q| .

Then it follows that

μ(Aq,α) =
∑

deg(p)<deg(q)

μ
(
Aq,α(p)

) = |q|ψ(q)

|q| = ψ(q). (1)

Lemma 2.1. Given α ∈ I . If the sum

∑
q∈F[X]

ψ(q)

converges, then for μ a.e. x ∈ I , the inequality ‖qx − α‖ < ψ(q) holds for at most finitely many
q ∈ F[X].

Proof. In the light of (1), this assertion is just a consequence of the Borel–Cantelli lem-
ma [16]. �

The following lemma is a standard inequality in probability theory (see [16]).
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Lemma 2.2. Assume f (x, y) :Ω → R
+ is a function such that f (x, y) = f (|x|, |y|) and is

square integrable on Ω . Denote

M1 =
∫ ∫
Ω

f (x, y)μ(dx)μ(dy), M2 =
(∫ ∫

Ω

f (x, y)2 μ(dx)μ(dy)

)1/2

.

If M1 � aM2,0 < b � a, and A = {(x, y) ∈ Ω: f (x, y) � bM2}, then (μ × μ)(A) � (b − a)2.

For q ∈ F[X], define δq(x) : I → R
+ as

δq(x) =
{

1, if ‖x‖ < ψ(q),

0, otherwise.

It is evident that δq(x) is defined in I with one variable, but we can look δq(qx − α) as a com-
position of δq and fq , where fq : I × I → R

+, fq(x,α) = qx − α for any x,α ∈ I , when we
encounter the function δq(qx − α).

By the definition of δq(x), we have

Lemma 2.3. The function δq(x) shares the following properties:

(1) δq(−x) = δq(x);
(2) δq(x) is a periodic function, and any p in F[X] is a period of δq(x);
(3) δ2

q(x) = δq(x).

Furthermore, we have

Lemma 2.4.

(1)
∫
I
δq(x)μ(dx) = ψ(q);

(2)
∫∫

Ω
δq(qx − α)μ(dx)μ(dα) = ψ(q);

(3)
∫∫

Ω
δq(qx − α)δq ′(q ′x − α)μ(dx)μ(dα) =

{
ψ(q), if q = q ′,
ψ(q)ψ(q ′), if q �= q ′.

Proof. We show (3) only for the case when q �= q ′.
Let r = q − q ′ and α′(≡ Tα) = α − qx −[α − qx]. By Lemma 2.3 and the translate-invariant

property of the Haar measure μ, we have

∫ ∫
Ω

δq(qx − α)δq ′(q ′x − α)μ(dx)μ(dα)

=
∫
I

(∫
I

δq(−α′)δq ′
(−(rx + α′)μ ◦ T

−1(dα′)
)
μ(dx)

)

=
∫
I

δq(α′)
(∫

I

δq ′(rx + α′)μ(dx)

)
μ(dα′)

= ψ(q)ψ(q ′). �
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Proof of Theorem 1.4. (I) Convergence part. Lemma 2.1 says that for fixed α ∈ I ,

μ
{
x ∈ I : ‖qx − α‖ < ψ(q) for infinitely many q ∈ F[X]} = 0.

Then the application of Fubini theorem yields that

(μ × μ)
(
Φ(ψ)

) = 0.

(II) Divergence part. For any N ∈ N, write

ΔN(x,α) = #
{
q ∈ F[X]: ‖qx − α‖ < ψ(q), 0 < |q| � kN

}
,

M1(N) =
∫ ∫
Ω

ΔN(x,α)μ(dx)μ(dα), M2(N) =
(∫ ∫

Ω

Δ2
N(x,α)μ(dx)μ(dα)

)1/2

and ψ(N) = ∑
|q|�kN ψ(q).

We claim that, for any ε > 0,

ψ(N) = M1(N) � (1 − ε)M2(N) (∗)

holds for all N large enough.
Notice that

ΔN(x,α) =
∑

|q|�kN

δq(qx − α).

Then by Lemma 2.4, we have

M1(N) =
∑

|q|�kN

∫ ∫
Ω

δq(qx − α)μ(dx)μ(dα) =
∑

|q|�kN

ψ(q) = ψ(N),

M2(N)2 =
∑

|q|�kN , |q ′|�kN

∫ ∫
Ω

δq(qx − α)δq ′(q ′x − α)μ(dx)μ(dα)

=
∑

|q|�kN , |q ′|�kN ,q �=q ′
ψ(q)ψ(q ′) +

∑
|q|�kN

ψ(q)

� ψ(N)2 + ψ(N).

Since limN→∞ ψ(N)

ψ(N)2 = 0, then for any ε > 0, when N is large enough, we have

M2(N)2 � (1 − ε)−2ψ(N)2.

Therefore, (∗) holds.
Set

AN(ε) = {
(x,α) ∈ Ω: ΔN(x,α) � εM2(N)

}
.
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Then applying Lemma 2.2 to f (x,α) = ΔN(x,α), a = 1 − ε, b = ε, we have

(μ × μ)
(
AN(ε)

)
� (1 − 2ε)2 � 1 − 4ε. (2)

Fix ε > 0. Choose a subsequence Nk of N large enough such that (2) holds with respect to
ANk

( ε

2k+2 ), for all k � 1. Set

A(ε) =
⋂
k�1

ANk

(
ε

2k+2

)
.

Then we have μ(A(ε)) � 1 − ε. It is evident that A(ε) is a subset of Ψ (ψ). As a consequence,
by the arbitrariness of ε, we have μ(Ψ (ψ)) = 1. �

As a special case of Theorem 1.4, we have

Corollary 2.5.

(μ × μ)(Φv) =
{

0, v > 1,

1, v � 1.

3. Hausdorff dimension of some exceptional sets

We now consider the Hausdorff dimensions of some exceptional sets. First we cite the defini-
tion of Hausdorff dimension in this setting. More detailed accounts can be found in [8,9].

Let E be a subset of Ω . For any δ > 0, we call Cδ with countable many balls Bi = B(ci, ρi)

is a δ cover of E if E ⊂ ⋃
B∈Cδ

B and ρi < δ. Then for any s � 0, the s-dimensional Hausdorff
dimension of E is defined as

Hs(E) = lim
δ→0

inf
Cδ

{ ∑
B(xi ,ρi )∈Cδ

ρs
i

}
.

The Hausdorff dimension of E is defined as

dimH(E) = inf
{
s � 0: Hs(E) = 0

}
.

Now we fix some notation before a lemma. For q ∈ F[X] and δ > 0, consider the “resonant”
sets

Rq = {
(x,α) ∈ Ω: qx − α ∈ F[X]},

and their δ neighborhood

Bδ(Rq) = {
(x,α) ∈ Ω: ‖qx − α‖ < δ

}
.

We also define the set

B(Rq; δ) = {
(x,α) ∈ Ω: dist∞

(
(x,α),Rq

)
< δ

}
,
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where dist∞ denotes the distance in the height-norm, i.e.,

dist∞
(
(x,α),Rq

) = inf
(x′,α′)∈Rq

max
{|x − x′|, |α − α′|}.

Lemma 3.1.

(1) Rq = ⋃
deg(p)<deg(q){(x,α) ∈ Ω: qx − α = p}.

(2) B(Rq; δ) = ⋃
(x0,α0)∈Rq

{(x,α) ∈ Ω: max{|x − x0|, |α − α0|} < δ}.
(3) Bδ(Rq) = B(Rq; δ/|q|).
Proof. The assertion in (2) is the fact since Rq is compact. We prove (3) in two steps.

For any (x,α) ∈ B(Rq; δ
|q| ), by assertion (2), there exists (x0, α0) such that

|x − x0| < δ

|q| and |α − α0| < δ

|q| .

As a consequence,

‖qx − α‖ = ∥∥qx − α − (qx0 − α0)
∥∥ � max

{|q||x − x0|, |α − α0|
}

< δ.

This means that (x,α) ∈ Bδ(Rq), which follows B(Rq; δ
|q| ) ⊂ Bδ(Rq).

On the other hand, for any (x,α) ∈ Bδ(Rq), let

‖qx − α‖ = k−t−1 < δ,

with t ∈ N. By Definition 1.2, there exists p ∈ F[X] such that

|qx − α − p| = k−t−1 < δ.

Thus α and qx − p belong to the same t th order cylinder. Without loss of generality, we assume

α ∈ [a−1, a−2, . . . , a−t ], qx − p ∈ [a−1, a−2, . . . , a−t ].
Hence x must lie in a well-determined (t + deg(q))th order cylinder denoted by

[b−1, b−2, . . . , b−t−deg(q)].
Moreover,

q[b−1, b−2, . . . , b−t−deg(q)] − p = [a−1, a−2, . . . , a−t ].
Take x0 ∈ [b−1, b−2, . . . , b−t−deg(q)], such that qx0 − p = α, and take α0 = α. Clearly, qx0 −
α0 ∈ F[X], i.e., (x0, α0) ∈ Rq . It is easy to see that

|x − x0| < 1

|q|k
−t <

δ

|q| , |α − α0| = 0.

This means (x,α) ∈ B(Rq; δ ), which gives Bδ(Rq) ⊂ B(Rq; δ ). �
|q| |q|
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Now, we begin with the upper bound estimation on the Hausdorff dimension of Φv .

Lemma 3.2. Let v > 1. Then

dimH Φv � 1 + 2

v + 1
.

Proof. By definition

Φv = {
(x,α) ∈ Ω: (x,α) ∈ B|q|−v (Rq) for infinitely many q ∈ F[X]}.

Furthermore, Φv can be expressed as a lim sup set

Φv =
⋂
r�1

⋃
|q|�kr

B|q|−v (Rq).

Clearly,
⋃

|q|�kr B|q|−v (Rq) is a natural cover of Φv , denote this cover by C, i.e., C =
{⋃q∈F[X] B|q|−v (Rq): |q| � kr}.

Fix t ∈ N and t � r . Fix a q ∈ F[X] of degree t , we will construct a natural covering of
B|q|−v (Rq).

It is evident that I can be expressed as the union of all �tv	th order cylinders, that is to say

I =
⋃

c−1,c−2,...,c−�tv	
[c−1, c−2, . . . , c−�tv	],

where c−1, c−2, . . . , c−�tv	 ∈ F. Then we refine B|q|−v (Rq) to a sequence of “regular” sets:

B|q|−v (Rq)

=
⋃

c−1,...,
c−�tv	

{
(x,α) ∈ Ω: ‖qx − α‖ < k−�tv	, α ∈ [c−1, . . . , c−�tv	]

}

=
⋃

c−1,...,
c−�tv	

t−1⋃
i=0

⋃
|p|=ki

{
(x,α) ∈ Ω: qx − p ∈ [c−1, . . . , c−�tv	], |q| = kt , α ∈ [c−1, . . . , c−�tv	]

}

⊂
⋃

c−1,...,
c−�tv	−t

t−1⋃
i=0

⋃
|p|=ki

{
(x,α) ∈ Ω: x ∈ [b−1, . . . , b−�tv	−t ], α ∈ [c−1, . . . , c−�tv	−t ]

}
.

Thus

∞⋃
t=r

⋃
deg(q)=t

⋃
c−1,...,
c−�tv	−t

t−1⋃
i=0

⋃
|p|=ki

{
(x,α) ∈ Ω: (x,α) ∈ [b−1, . . . , b−�tv	−t ] × [c−1, . . . , c−�tv	−t ]

}
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forms a cover of Φv . Then by the definition of Hausdorff dime measure, we have

Hs(Φv) � lim inf
r→∞

∞∑
t=r

k−(�tv	+t)sk�tv	+t

t−1∑
i=0

(k − 1)ki(k − 1)kt

� lim inf
r→∞

∞∑
t=r

k[(v+1)(1−s)+2]t < ∞

for any s > 1 + 2
v+1 . Thus

dimH Φv � 1 + 2

v + 1
. �

Now we turn to the estimation of the lower bound of dimH Φv . In fact, we will give the lower
bound of the Hausdorff dimension of a more general set Λ(ψ).

Λ(ψ) = {
(x,α) ∈ Ω: dist∞

(
(x,α),Rq

)
< ψ(q) for infinitely many q ∈ F[X]},

where ψ : F[X] → {kr : r ∈ Z} be a decreasing function such that ψ(q) = ψ(|q|), ψ(kN) �
k−ρN , and ρN = �2N − logN	.

For N ∈ N, put

Ω(N) =
⋃

|q|�kN

B
(
Rq; k−ρN

)
.

Lemma 3.3. limN→∞(μ × μ)(Ω \ Ω(N)) = 0.

Proof. For N ∈ N, set

νN(x,α) =
∑

|q|�kN

χB|q|k−ρN (Rq)(x,α).

It is natural that

ν−1
N (0) = Ω \ ΩN = Ω \

⋃
|q|�kN

B|q|k−ρN (Rq).

Denote by μN the mean of νN(x,α). Then we have

μN =
∫ ∫
Ω

νN(x,α)μ(dx)μ(dα) =
∑

|q|�kN

(μ × μ)
(
B|q|k−ρN (Rq)

) =
∑

|q|�kN

|q|k−ρN

=
∑

1�r�N

∑
|q|=kr

krk−ρN = (k − 1)
k2

k2 − 1

k2N − 1

kρN
→ ∞.

Moreover, we can calculate the variance σ 2 of νN(x,α). By Lemma 2.4, we get
N
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σ 2
N =

∫ ∫
Ω

νN(x,α)2 μ(dx)μ(dα) − μ2
N

=
∑

|q|�kN

∑
|q ′|�kN

∫ ∫
Ω

χB|q|k−ρN (Rq)(x,α)χB|q′ |k−ρN (Rq′ )(x,α)μ(dx)μ(dα) − μ2
N

=
∑

|q|�kN

|q|k−ρN +
∑

|q|, |q ′|�kN ,q �=q ′
|q|k−ρN |q ′|k−ρN − μ2

N

� μN.

On the other hand, by the definition of ν−1
N (0), we have

σ 2
N �

∫ ∫
ν−1
N (0)

(
νN(x,α) − μN

)2
μ(dx)μ(dα) = μ2

N · (μ × μ)
(
ν−1
N (0)

)
.

Therefore,

lim
N→∞(μ × μ)

(
Ω \ Ω(N)

) = lim
N→∞(μ × μ)

(
ν−1
N (0)

)
� lim

N→∞
σ 2

N

μ2
N

� lim
N→∞

1

μN

= 0. �
For the above ρN and ψ , let

γ = lim sup
N→∞

−ρN logk

logψ(kN)
.

Then 0 � γ � 1.

Lemma 3.4. dimH Λ(ψ) � 1 + γ.

Proof. For N ∈ N, let

Γ (ρN) =
{(

ρN∑
i=1

a−iX
−i ,

ρN∑
i=1

b−iX
−i

)
: a−i , b−i ∈ F, 1 � i � ρN

}
.

For any x, y ∈ Γ (ρN) and x �= y, it is noticed that |x − y|∞ � k−ρN . Then we can define a
partition P(N) of Ω as

P(N) = {
B

(
c, k−ρN

) ⊂ Ω: c ∈ Γ (ρN)
}
.

Now we define the family of bad balls and good balls in P(N), respectively.

B(N) = {
B ∈P(N): B ∩ Ω(N) = ∅}

, G(N) = P(N) \B(N).

We see that B ⊂ Ω \ Ω(N) for all B ∈ B(N). By Lemma 3.3, we have

1 = lim μ
(
G(N)

) = lim �G(N)k−2ρN .

N→∞ N→∞
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Then for N large enough,

1

2
k2ρN � �G(N) � 2k2ρN .

Fix a | · |∞-ball B ∈ G(N), and let q ∈ F[X] with |q| � kN be the polynomial such that
B ∩ B(Rq; k−ρN ) �= ∅. We construct a family D(B) of B as follows:

(1) choose points ci in B ∩ B(Rq; k−ρN ) such that for i �= j ,

|ci − cj |∞ � ψ
(
kN

);
(2) take balls Bi with centers ci and radii ψ(kN);
(3) remove all points belonging to Rq from the above balls. Denote

D(B) = {D: D is the “ball” obtained in the above fashion}.

Without confusion, any D ∈ D(B) is still called a “ball.” Clearly, the “balls” in D(B) are disjoint,
and

(μ × μ)(D) = (μ × μ)(Bi) = ψ2(kN
)
,

for (μ×μ)(Rq) = 0. Furthermore, since ψ is decreasing, we have for each point u ∈ D ∈ D(B),

0 < dist∞(u,Rq) < ψ
(
kN

)
� ψ(q).

Since B ∩ B(Rq; k−ρN ) �= ∅ and ψ(kN) � k−ρN , then D(B) is nonempty.

Lemma 3.5 (Estimate the number of “balls”).

�D(B) = k−ρN

ψ(kN)
.

Proof. It suffices to consider the number of pairs (x,α) in B ∩ Rq with the properties

dist∞
(
(x1, α1), (x2, α2)

)
� ψ

(
kN

)
.

Write B = [a−1, . . . , aρN
] × [b−1, . . . , b−ρN

]. Since the integer part of qx is wholly deter-
mined by the first deg(q) terms of the digits of x, thus, for some p0,

�qx	 = p0 (3)

for all (x,α) in B .
This can make us claim that, for any pair (x1, α1), (x2, α2) ∈ B ∩ Rq

dist∞
(
(x1, α1), (x2, α2)

) = |α1 − α2|.
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Since qxi − αi ∈ F [X], i = 1,2, and by (3), we know

xi = αi + p0

q
. (4)

Moreover, xi ∈ [a−1, . . . , aρN
], i = 0,1,2, since it holds for i = 0. Equation (4) implies that for

(x,α) ∈ B ∩ Rq , once α is given, x has been already determined.
As a consequence, we only need consider the number of α ∈ [b−1, . . . , bρN

] such that |α1 −
α2| � ψ(kN). It is quite straightforward that this number is just equal to k−ρN

ψ(kN )
.

Thus

�D(B) = k−ρN

ψ(kN)
. �

For N ∈ N, set

TN =
⋃

B∈G(N)

⋃
D∈D(B)

D, tN =
∑

B∈G(N)

∑
D∈D(B)

1.

Then

1

2

kρN

ψ(kN)
� tN � 2

kρN

ψ(kN)
,

and

(μ × μ)(TN) = �G(N) �D(B)(μ × μ)(D),

for any D ∈D(B).

Lemma 3.6. Let Y ⊂ Ω be a | · |∞-ball. Then

1

4
(μ × μ)(TN)(μ × μ)(Y ) � (μ × μ)(TN ∩ Y) � 4(μ × μ)(TN)(μ × μ)(Y )

holds for N large enough.

Proof. For Y ⊂ Ω , let GY (N) = {B ∈ G(N): B ⊂ Y } and Y(N) = ⋃
B∈GY (N) B. By Lemma 3.3,

we have

lim
N→∞(μ × μ)

(
Y \ Y(N)

)
� lim

N→∞(μ × μ)
(
Ω \ Ω(N)

) = 0.

Thus, for N large enough

1

4
�G(N) � 1

2
k2ρN � �GY (N)

(μ × μ)(Y )
� 2k2ρN � 4 �G(N).
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By the definition of GY (N) and the construction of D(B), we have

(μ × μ)(TN ∩ Y) = (μ × μ)

( ⋃
B∈G(N)

⋃
D∈D(B)

(D ∩ Y)

)

=
∑

B∈GY (N)

∑
D∈D(B)

(μ × μ)(D)

= �GY (N) �D(B)(μ × μ)(D).

Therefore Lemma 3.6 follows. �
Now we are ready to construct a Cantor set in Λ(ψ).
First, recalling that γ = lim supN→∞

−ρN log k

logψ(kN )
, we choose an increasing sequence {Mr : r ∈

N} ⊆ N such that

γ = lim
r→∞

−ρMr logk

logψ(kMr )
.

Choose N1 ∈ {Mr : r ∈ N} sufficiently large to guarantee that Lemma 3.6 holds for Y = Ω . Let

C′(N1) =
⋃

B∈G(N1)

⋃
D∈D(B)

D, c′(N1) =
∑

B∈G(N1)

∑
D∈D(B)

1.

Then

1

2

kρN1

ψ(kN1)
� c′(N1) � 2

kρN1

ψ(kN1)
.

As a consequence, we can choose [ 1
2

k
ρN1

ψ(kN1 )
] many “balls” D from C′(N1), and denote the union

of these “balls” by C(N1). For convenience, let c(N1) = [ 1
2

k
ρN1

ψ(kN1 )
]. This completes the first level

on the construction of the Cantor set. Clearly, C(N1) ⊂ C′(N1).
For the second level, Ω is further sub-divided into balls with centers in Γ (ρN2) and of radii

k−ρN2 . Choose N2 ∈ {Mr : r ∈ N},N2 > N1 large enough such that Lemma 3.6 holds for all
Y = D ∈ C(N1) and

ψ
(
kN2

)
� 2

(
ψ(kN1)

k−ρN1

)2

.

Then for such a D,

1

2

(μ × μ)(D)

k−2ρN2
� �GD(N2) � 2

(μ × μ)(D)

k−2ρN2
.

Let

C′(N2) =
⋃

B∈G (N )

⋃
D∈D(B)

D, c′(N2) =
∑

B∈G (N )

∑
D∈D(B)

1,
C(N1) 2 C(N1) 2
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where GC(N1)(N2) = {B ∈ G(N2): B ⊂ C(N1)}. Then

1

2

kρN2 ψ2(kN1)

ψ(kN2)
c(N1) � c′(N2) � 2

kρN2 ψ2(kN1)

ψ(kN2)
c(N1).

We choose [ 1
2

k
ρN2 ψ2(kN1 )

ψ(kN2 )
c(N1)] “balls” from C′(N2) and denote the union of these “balls” by

C(N2). Clearly, C(N2) ⊂ C′(N2). We also denote c(N2) = [ 1
2

k
ρN2 ψ2(kN1 )

ψ(kN2 )
c(N1)].

Repeat this construction to obtain Nr ∈ {Mr : r ∈ N} large enough to ensure Lemma 3.6 holds
for all Y = D ∈ C(Nr−1), and

1

2
k2ρNr ψ2(kNr−1

)
� �GD(Nr) � 2k2ρNr ψ2(kNr−1

)
, D ∈ C(Nr−1)

and

ψ
(
kNr

)
� 2

r−1∏
i=1

(
ψ(kNi )

k−ρNi

)r

.

Set

C′(Nr) =
⋃

B∈GC(Nr−1)(Nr )

⋃
D∈D(B)

D, c′(Nr) =
∑

B∈GC(Nr−1)(Nr )

∑
D∈D(B)

1,

where GC(Nr−1)(Nr) = {B ∈ G(Nr): B ⊂ C(Nr−1)}. Then

c′(Nr) = �GC(Nr−1)(Nr) �
{
D ∈ D(B): B ∈ GC(Nr−1)(Nr)

}
.

This gives

1

2
ψ2(kNr−1

)
k2ρNr c(Nr−1)

k−ρNr

ψ(kNr )
� c′(Nr) � 2ψ2(kNr−1

)
k2ρNr c(Nr−1)

k−ρNr

ψ(kNr )

and

1

2r

r∏
i=1

kρNi ψ
(
kNi

)
ψ−2(kNr

)
� c′(Nr) � 2r

r∏
i=1

kρNi ψ
(
kNi

)
ψ−2(kNr

)
.

Following the above fashion, we choose [ 1
2r

∏r
i=1 kρNi ψ(kNi )ψ−2(kNr )] “balls” D from C′(Nr)

and denote the union of these “balls” by C(Nr), also we put

c(Nr) =
[

1

2r

r∏
kρNi ψ

(
kNi

)
ψ−2(kNr

)]
.

i=1
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Then we define

C∞ =
∞⋂

r=1

C(Nr)

to be our desired Cantor set.
Given u ∈ C∞, for each r ∈ N, there exists q ∈ F[X] with |q| � kNr such that

0 < dist∞(u,Rq) < ψ
(
kNr

)
� ψ(q),

since the ball D ∈ D(B), D ∩ Rq = ∅ and ψ(kNr ) → 0 as r → ∞, so, for each u ∈ C∞,

0 < dist∞(u,Rq) < ψ
(
kNr

)
� ψ(q)

holds for infinitely many different q ∈ F[X]. Hence

C∞ ⊂ Λ(ψ).

We now give a mass distribution ν on C∞. For any D ∈ C(Nr), r � 1, we define

ν(D) = 1

c(Nr)
.

Since

ν(D) =
∑

D′⊂C(Nr+1)∩D

ν(D′),

so ν is a mass distribution.
Notice that for any D ∈ C(Nr), l(D) = ψ(kNr ), where l(D) denotes the radius of D. Then

ν(D) = 1

c(Nr)
� 2r−1

r∏
i=1

k−ρNi ψ−1(kNi
)
ψ2(kNr

)

= 2r−1k−ρNr ψ
(
kNr

) r−1∏
i=1

k−ρNi ψ−1(kNi
)

� 2r−1k−ρNr ψ
(
kNr

)
ψ− 1

r
(
kNr

)
.

For any ε > 0 and r large enough, we can get

logν(D)

log l(D)
� 1 + γ − ε,

where γ = limr→+∞ −ρNr log k

logψ(kNr )
. It follows that for each D ∈ C(Nr), the measure ν satisfies

ν(D) �
(
l(D)

)1+γ
.
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In order to obtain the Lemma 3.4, it suffices to show

Lemma 3.7. For any small | · |∞-ball C in Ω,ν(C) � (l(C))1+γ , where l(C) is the radius of C.

Proof.

ν(C) = ν(C∞ ∩ C) � ν
(
C(Nr) ∩ C

)
.

Take r sufficiently large to make sure that

ψ
(
kNr

)
< l(C) � ψ

(
kNr−1

)
.

We prove Lemma 3.7 in two steps.
(1) If l(C) > k−ρNr , then by Lemma 3.5 we have

ν(C) � ν
(
C(Nr) ∩ C

)
� k−ρNr

ψ(kNr )

(
l(C)

k−ρNr

)2

ν(D)

� 1

2

c(Nr)

c(Nr−1)

(
k−ρNr

ψ(kNr−1)

)2(
l(C)

k−ρNr

)2

ν(D)

= 1

2

1

c(Nr−1)

(
l(C)

ψ(kNr−1)

)2 (
D ∈ C(Nr)

)

� 1

2
l2(C)ψ−2(kNr−1

)
ψ1+γ

(
kNr−1

) (
ν(D) = 1

c(Nr)
� ψ1+γ

(
kNr

))

= 1

2
l2(C)ψγ−1(kNr

)
� 1

2

(
l(C)

)1+γ
.

(2) If l(C) � k−ρNr , then we have

ν(C) � ν
(
C(Nr) ∩ C

)
� l(C)

ψ(kNr )
ν(D) � l(C)ψγ

(
kNr

)
<

(
l(C)

)1+γ
. �

Now Lemma 3.4 follows from the preceding lemma by the mass distribution principle [8].
For ρN = �2N − logN	,ψ(q) = |q|−(v+1), we have γ = 2

v+1 and Λ(ψ) = Φv . Therefore

dimH Φv � 1 + γ.

Combining Lemmas 3.2 and 3.4, we get Theorem 1.5.

Acknowledgment

The authors thank Professor J. Wu, Wuhan University, for valuable advice and discussions.



378 C. Ma, W.-Y. Su / Finite Fields and Their Applications 14 (2008) 361–378
References

[1] B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France, Suppl. Mém. 21 (1970).
[2] S. Kristensen, On the well-approximable matrices over a field of formal series, Math. Proc. Cambridge Philos.

Soc. 135 (2003) 255–268.
[3] M.M. Dodson, B.P. Rynne, J.A.G. Vickers, Diophantine approximation and a lower bound for Hausdorff dimension,

Mathematika 37 (1990) 59–73.
[4] J.W.S. Cassels, An Introduction to Diophantine Approximation, Cambridge Univ. Press, 1951.
[5] V.I. Bernik, M.M. Dodson, Metric Diophantine Approximation on Manifolds, Cambridge Tracts in Math., vol. 137,

Cambridge Univ. Press, 1990.
[6] W.M. Schmidt, Diophantine Approximation, Lecture Notes in Math., vol. 785, Springer, Berlin, 1980.
[7] A. Lasjaunias, A survey of Diophantine approximation in fields of power series, Monatsh. Math. 130 (2000) 211–

229.
[8] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, 1990.
[9] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Stud. Adv. Math., vol. 44, Cambridge

Univ. Press, 1995.
[10] M. Fuchs, On metric Diophantine approximation in the field of formal Laurent series, Finite Fields Appl. 8 (2002)

343–368.
[11] M. Fuchs, Invariance principles in metric diophantine approximation, Monatsh. Math. 139 (2003) 177–203.
[12] M. Fuchs, An analogue of a theorem of Szüsz for formal Laurent series over finite fields, J. Number Theory 101

(2003) 105–130.
[13] E. Deligero, M. Fuchs, H. Nakada, Invariance principles for Diophantine approximation of formal Laurent series

over a finite base field, Finite Fields Appl. 13 (3) (2007) 535–545.
[14] K. Inoue, H. Nakada, On metric diophantine approximation in positive characteristic, Acta Arith. 110 (2003) 215–

218.
[15] V.G. Sprindžuk, Metric Theory of Diophantine Approximations, Winston, Washington, DC, 1979.
[16] A. Rényi, Probability Theory, North-Holland, Amsterdam, 1970.


