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Abstract. In an earlier paper, one of the authors introduced a record-based, algebraically-oriented, 
event-driven model for describing historical data for objects (here called “object histories*‘). The 
major construct in the model is a computation-tuple sequence scheme (CSS) which specifies the 
set of all possible “valid” object histories for the same type of object. The current paper considers 
the problem of combining the global information residing in a number of object histories in a 
distributed system. A suggested solution is in the form of an operation called “cohesion”, which 
is the analogue for object histories of join for relational databases. 

The basic question considered in this paper is the following: Given two sets 9, and Yz of object 
histories described by CSS Ti and T,, does there exist a CSS which describes the cohesion of 
9, and Yz? The answer is shown to be yes by constructing a specific CSS (called the “cohesion” 
of 7’, and Tz) from T1 and Tz. The cohesion operation also turns out to be a useful tool for 
establishing some subsidiary results. 

Introduction 

In [2], a record-based, algebraically-oriented, event-driven model was introduced 
for describing historical data with computation for objects (called “object histories”). 
The major construct in ‘the model is a computation-tuple sequence scheme (abbrevi- 
ated CSS) which specifies the set of all possible ‘“valid” object histories for the 
object of interest. The study of object histories was continued in a sequence of 
articles [1, 3, 41. Essentially, all the work done so far has dealt with a single-site 
location. The question arises: How does one form a new object history which 
combines the global information residing in a number of object histories in a 
distributed system? The purpose of this paper is to suggest an answer by presenting 
a new operation called “cohesion”, which is the analoguz for object histories of 
join for relational databases. 

* This author was supported in part by the National Science Foundation under Grant DCR-8318752. 
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The basic question considered in this paper is the following: Given two sets Y1 
and 9’* of object histories described by CSS T1 and T2 respectively, does there exist 
a CSS which describes the cohesion of Y1 and &? The answer is shown to be yes 
by constructing a specific CSS (called the “cohesion” of Tl and Tz) from Tl and 
T2. The cohesion operation also turns out to be a useful tool for establishing some 
subsidiary results. 

The paper itself is divided into four sections. The first reviews the object history 
model. Section 2 introduces the cohesion operation and presents a number of 
elementary results. Section 3 treats the basic question raised earlier. The final section 
shows the preservation of some properties of CSS under the cohesion operation. 

1. Preliminaries 

In this section, we present the model of object history introduced in [2]. The 
reader is referred to [2j for a more detailed disc.ussion, together with motivational 
examples. 

Informally, an object history is a historical record of an object. (Here, each object 
stands for an individual “thing” or “entity”, such as a specific person’s checking 
account, a specific company’s sales record of an item, etc.) An object history is a 
sequence of occurrences, each occurrence consisting of some input data and, 
possibly, some calculation. (For example, in a checking-account history, one occur- 
rence might be, in part, the amount to be deposited or withdrawn, together with 
the computation of the new balance and new daily minimum balance.) In the model, 
each object history is represented as a sequence of tuples (over the same attributes), 
called a “computation-tuple sequence.” A CSS is a construct which defines the set 
of all possible “valid” computation-tuple sequences. (For example, a CSS for objects 
of the type “checking account” specifies the set of all possible ‘Valid” individual 
checking-account histories.) A CSS consists of 

(Al) a set of attributes, partitioned into state, input and evaluation attributes, 
according to their roles; 

(A2) functions which calculate values for state and evaluation attributes; 
(63) semantic constraints whose satisfaction is to hold uniformly throughout a 

computation-tuple sequence; and 
(64) a set of specific computation-tuple sequences of some bounded length with 

which to start a valid computation-tuple sequence until all states and evaluation 
functions can be applied. 

Turning to a formal treatment, Domao is an infinite set of elements (called domain 
values) and U, is an infinite set of symbols (called attributes). For each A in &,, 
Dam(A) (called the domain of A) is a subset of Domao of at least two elements. 
All attributes occurring are assumed to be elements of U,. The symbols A, B and 
C (possibly subscripted) denote attributes and U, V and W (possibly subscripted 
or primed) denote nonempty finite sets of attributes. 
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Consistent with (Al), we shall assume the following. 

Attribute Assumption. &, = Sao v Ia0 v &, where Sm, IO0 and Eoo are pairwise disjoint 
infinite sets (of state attributes, input attributes and t;vuZuation attributes respec- 
tively). Furthermore, +, is a total order over Uao such that A s.ao B eao C for each 
A in &,, B in Ia and C in Eao. 

Let X be a finite nonempty subset of U, and Al, . . . , A,, the listing of the elements 
of X according to scu. Then (X) denotes the sequence A,. . .A, and Dom((X)) the 
Cartesian product Dom(A,) x l l l x Dom(A,). For ia 2, (XIA,) denotes the prefix 
A Ai-1. 1.. . (A prefix of a sequence p 1. . .pm is a subsequence of the form pl. . l pi 

for some i, 1 s i s m.) 
We are now ready to formalize the notions of occurrence and sequence of 

occurrences as used earlier in this section. (Instead of “occurrence” and “sequence 
of occurrences” we shall use the terms “computation tuple” and “computation-tuple 
sequence”.) 

Definition. A computation tuple over (U) is an element in Dom(( U)). A computation- 
tuple sequence over (U) is a finite nonempty sequence of computation tuples over 
(U). The set of all computation-tuple sequences over ( U) is denoted by SEQ(( V)). 

Unless otherwise stated, u, v and w, possibly subscripted or primed, aiways 
represent computation tuples. Similarly, u, 1) and w always represent computation- 
tuple sequences. 

To formalize (Al) and (A2), we have the following definition. 

Definition. A computation scheme (abbreviated CS) over (U) is a quintuple % = 

((S), (0, (E), g, @), where 
(1) S=S,nU#& I=I,nU#fland E=E,nU; 
(2) 8 = {e# in Es ec a partial function (called an evaluation function) from 

Dom(( U))“c x Dom(( U)C)) into Dom( C) for some nonnegative integer PC}; and 
(3) 9 = {fAIA in S, fA a partial function (calied a state function) from Doml’ :J)) 

into Dom( A)}. 
The integer pc is called the rank of e c; and p( %) = max{pc, 1 I ec in %} is the rank 

of ce. 

Intuitively, the rank of a computat;on scheme is the minimum number of previous 
computation tuples on which each computation tuple computationally depends. 

Note that ( U) = (S)(I)(E). 

Example 1.1. Consider the sales manager’s record for a special souvenir, call it Sam 
Eagle, sold by a Los Angeles novelty company during (and after) the 1984 Olympic 
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games. For simplicity, suppose this company has two retail outlets. The sale manager 
is responsible for . 

(1) collecting daily information on 
l B,: the amount ordered by outlet 1, 
l B2: the amount ordered by outlet 2, 
@ B,: the price (in dollars) per item; and 

(2) reporting to the warehouse manager about . 
* Cl: the (daily) total number ordered, 
l C2: the cost of C, . 

Using A (= “DATE”) as a state attribute, B1, &, B3 as input attributes, and C, , 
C2 as evaluation attributes, the computation scheme is 

described as follows (with ( U) = (A)( B1 B2B3)( Cl C2)): 
(A) The domains of the attributes are the obvious ones. 
(3 elc, and elc are the functions from Dom(( UlC,)) to Dom( C,) and 

Dom(( UlC,)) to Do& C2) respectively defined for each u in Dom(( U)) by’ 

e,&[( ulG)l) = @I) + ~(4) and e&4( ulC,)l) = WW(G). 

(C) fiA is the function from Dom(( U)) to Dam(A) defined for each u in SEQ(( U)) 

bY 

flAW = “next date after u(A)“. 

The purpose of a computation scheme is to select those computation-tuple 
sequences whose values for the state and evaluation attributes are ultimately deter- 
mined by the corresponding state and evaluation functions. More formally, we have 
the following notation. 

Notation. Let % = ((S), (I), (E), 8,s) be a CS over ( U). For each A in S and 
0Z S’c S, let 

VSEQ(fA)={u,. . .u,,,ImH, ~,,(A)=f~(u,,-~) for each h, 2~ hsm) 
and 

VSEQ({f, 1 A in S’H = A2s, VSEQ(f,). 

For each C in E and $3 # E’S E, let 

VSEQ(ec)={u,...u,Im~l, U~(C)=~C(U~-~=,...,U~-~,U~[(UIC)]) 

for each h, pc < h G m) 

’ Let(U)=A , . . . A, and ( V) be a subsequence of ( U). For each computation tuple u over ( U), u[( V)] 
is the computation tuple tl over (V) defined by v(A) = u(A) for each A in V. u[( V)] is frequently written 
as n,(u). For each u = u ,...u, in SEQ((U)), L!V(u)=&(u,)...17v(u,). For each YcSEQ((U)), 
n,(Y) = (I7,( u) 1 u in S}. 
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and 

VSEQ(b& in E'))= n VSEQ(e& 
C in E’ 

Let VSEQ(0) = SEQ(( U)) and VSEQ( U) = VSEQ( 8) n VSEQ( 9). 
Clearly, 

and 

vsEQ(s)={#,..*u,(m~1, uh(C)=eC(uh-pc,...,Uh_l,Uh[(uIC)]) 
for each C in B and each h, pc c h s m} 

VSEQ(9)={u,...u,Im 2 I, uh(A) =fA(uh__l) for each A in S 
and each h, 2 s h 6 m}. 

Obviously, u is in VSEQ( fA) iff each interval ulu2 of u is in VSEQ(fA); and u is 
in VSEQ(ec) iff each interval ul. . . u,-,~+~ of u is in VSEQ(e,). (An interval of a 
sequence pl. . . pnl is a subsequence of the form pi. . l pj for each i andj, 1 s i ~j s m.) 

Also, VSEQ( %) is an interval-closed set. Note that VSEQ(fA) contains all computa- 
tion tuples, and VSEQ(ec) all computation-tuple sequences of length at most pc. 
In effect, VSEQ(g), g a function, consists of all computation-tuple sequences which 
do not “contradict” the functioning of g. 

Example 1.1 (continued). From the definitions, it follows that 

VSEQ(elc,) ={u,. . . ~~(mal, Ui(C,)=Ui(B~)+Ui(B2)foralli,l~i~m), 

VSEQ(e& = {u,. . . U, I m a 1, ui(C2) = Ui( Bs)Ui(CI) for all i, 1 G is m}, 

VSEQ(f~~)={u,...~,,,lm~l, u,+*(A)= “next date after Ui( A)” for all i, 

%i<rn-1) and 

VSEQ( %,) = {u,. . . u, I m 2 1, ui(C,) = ui(B,) + ui(Bz), ui(G) 
= Ui(B3)ui(CI), uj+*(A) = “next date after Uj( A)” for all i 
and j, lsisrn andl<jcm-1). 

Turning to constraints, i.e. (A3), we have this definition. 

Definition. A constraint u over SEQ(( U)) is a mapping over SEQ(( U)) which assigns 

to each u in SEQ(( U)) a value of “true” or “false”. If a(u) = true, then u is said 

to satisfy o. For each set C of constraints over SEQ(( U)), the set {u in SEQ(( U)) I u 

satifies each a in 2) is denoted by VSEQ(Z). 
Note that VSEQ(C) = SEQ(( U)) if C = 0. 
We shall usually define a constraint CT by just specifying VSEQ(a). 
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The concept of a constraint given above is too general to be mathematically 
tractable. We shall restrict our constraints to a special class called “uniform”. These 
are characterized by the fact that satisfaction holds uniformly throughout a computa- 
tion-tuple sequence, i.e. holds in every interval of a computation-tuple sequence. 
(Most constraints encountered in real life are of this type.) 

Definition. A constraint gr over SF,Q(( U)) is uniform if VSEQ( u) is interval closed, 
i.e. if u is in VSEQ(o), then so is every interval of u. 

Clearly, VSEQ(Z) is interval closed for each set C of uniform constraints. 

Example 1.1 (continued). The set & of constraints is empty. 

The last concept needed for a computation-tuple sequence scheme is the “initializ- 
ation”. (See (A4)). 

Definition. Given a CS %’ over (U) and a finite set C of uniform constraints over 
SEQ(( U)), an initialization (with respect to %3 and 2) is any prefix-closed subset .9 of2 

{u in VSEQ( U) nVSEQ(T:) 1 lul s p( %)}. 

Given an initialization .%, let VSEQ(JJ) denote the set 

.%v{u in SEQ((U))l u = u1 u2 for some u1 in 9 of length p( (8)). 

Clearly, each VSEQ(S) is prefix closed but not necessarily interval closed. 

Example 1.1 (continued). The initialization J1 is 

{(date, bi, b2, b3, bl + b2, b3( bl + b2)) 1 date in Dom( A), bi in Dom( Bi), 1 s i s 3). 

We are 
scheme. 

now ready to define the fundamental. notion of computation-tuple sequence 

Definition. A computation-tuple sequence scheme ( CSS) over ((S), (I), (E)) (abbrevi- 
ated “over (U)“, with ( U) = (S)(I)(E)) is a triple T = (97, 2,9), where 

(1) Ce is a computation scheme over ( U); 
(2) C is a finite set of uniform constraints over SEQ(( U)); and 
(3) 9 is an initialization with respect to %? and C. 

Let p(T), called the rank of T, be p(U). 

’ IuI denotes the length of u. 
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A CSS determines valid computation-tuple sequences as follows. 

Definition. For each CSS T = (((S), (I), (E), %, 9), 2, JJ), let 

VSEQ( T) = VSEQ( 8) n VSEQ(9) n VSEQ(2) n VSEQ(S). 

A computation-tuple sequence is said to be valid (fir T) if it is in VSEQ( T). 

Thus, a computation-tuple sequence is valid if it 
(i) is “consistent” with %, 

(ii) satisfies each constraint in 2, and 
(iii) is either in the initialization or its prefix, of length p(U), is in the initialization. 

Example 1.1 (continued). A valid computation-tuple sequence ~1~2~3 for T1 = 
( %, , C, , .%,) is given in Table 1. 

Since both VSEQ(%) and VSEQ(2) are interval closed and VSEQ(S) is prefix 
closed, VSEQ( T) is prefix closed. However, VSEQ( T) is not necessarily interval 
closed. 

Note that if & = (((Si), (Ii), (Ei), 8i, Si), Zi, 9i) for i = 1,2 and VSEQ( Tl) c 
VSEQ( T2), then (S,) = (S2), (IJ = ( 12) and (E,) = ( E2) by the Attribute Assumption. 

Table 1. Sales manager’s record. 

w (4) (El) 

A 4 82 B3 G c2 

Date . Amount Amount Price per Total cost 
ordered by ordered by item number of Cl 
outlet 1 outlet 2 ordered 

Ul 7-26-84 3,000 WOO 5 8,000 40,000 
u2 7-27-84 3,000 6,000 6 ~$I00 54,000 

u3 7-28-84 4,000 7,000 6 11,000 66,000 

2. Basic concepts 

As mentioned in the Introduction, the purpose of this paper is to introduce and 
study the operation of cohesion, which is the analogue for computation-tuple 
sequences of natural join for database relations. In this section, we define the concept 
and that of rank-r minimum representation. We also note some elementary properties 
about cohesion and establish the existence of rank-r minimum representation. 

To motivate our central concept, we present the following example. 
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Example 2.1. Expanding on Example 1.1, the warehouse manager is responsible for 
(1) collecting information on 

l & price (in dollars) per item, 
@ Bs: (daily) amount delivered (for simplicity, we assume that the warehouse delivers 

to each outlet the exact number ordered), 
l Bg (daily) amount received (of Sam Eagle souvenirs from the manufacturer); and 

(2) reporting about 
l C2: cost of Cl (=daily total number ordered), 
l Ca: number (of souvenirs) available. 
A CSS for the records of the warehouse manager is 

q = (((Ah (B3hB5), (cZc3), k2C,, 4C,), hd, 22, $2) 

over (V) = (A)(B3B4B5)( C&'J described as follows: 
(A) The domains cf the attributes are the obvious ones. 
(B) e2c2 is the function from Dom(( V(C,)) to Dom( C2) defined for each v in 

SEQ(( W by 

e2&( W2?1) = v(B3j4&), . 

and e2cs is the function from Dom(( V)) x Dom(( VI C3)) to Dom( C3) defined for 
each vlv2 in SEQ((V)) by 

e2c,(v, 9 v2[( v(c3)l) = dc3) + v2U35) - v2(&)~ 

(C) &A is the function from Dom(( V)) to Dam(A) defined for each v in SEQ(( V)) 
by ftA( v) = “the next date after v(A)". 
(D) 22=0. 

@I 92=ua, b3, b4r b5, b3b4, bs-bJl a in Dam(A), bi in Dom( Bi) for 3 s i s 5). 
A valid computation-tuple secluence v102~3 for T2 is given in Table 2. 
The global information in Tables 1 and 2, call it a valid record for the general 

manager, is given in Table 3. 

The operation (called “cohesion”) which merges the information in Tables 1 and 
2 to yield that in Table 3 is the central concept of the present paper. It is formalized 
as follows. 

Table 2. Warehouse manager’s record. 

A 
Date 

B3 

Price 
per item 

4 

Amount 
delivered 

4 

Amount 
received 

c2 

cost 
of c, 

c3 

Number 
available 

Vl 7-26-84 5 8,000 20,000 40,000 12,000 

u2 7-27-84 6 9,000 10,000 54,000 13,000 
03 7-28-84 6 11,000 10,000 66,000 12,000 
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Table 3. 

(S, S2) (W U&E,) 

A 4 B2 B3 B4 Jh G c2 c3 

w 7-26-84 3,000 5,000 5 8,000 20,000 8,000 40,000 12,000 
w2 7-27-84 3,000 6,000 6 9,000 10,000 9,000 54,000 13,000 
w3 7-28-84 4,000 7,000 6 11,000 10,000 11,000 66,000 12,000 

Definition. Given ( U) = (SJJJ and ( V) = (&I” Es), the cohesion of u in SEQ(( U)) 
and u in SEQ(( V)), denoted u @ u, is 

(1) the computation-tuple sequence w in3 SEQ((S,S,1,I,E, EJ) such that 

&*E,(W) = u and n sZ12E2(w) = u if L!‘(u) =&(u) for each A in (S,I,E,) A (SJ2E2), 
and 

(2) undefined, denoted 0, otherwise. 
The cohesion of YI E SEQ(( U)) and ZYZc- SEQ(( V)), denoted YI @ 9$, is the set 
{s@ulu in YI, u in &}. 

By the Attribute Assumption, cohesion is well defined. 
It is readily seen that cohesion is commutative, associative and idempotent. 

Because of associativity, we may omit the grouping parentheses when dealing with 
cohesion of more than two items. Also, YI @ 9$ = YI n YZ if Z& c SEQ(( U)) and 

% c_ SEQU W). 
Since grouping parentheses may be omitted, we have the following notation. 

Notation. For n 2 2 and i = 1, . . . , n, let Ui be in SEQ(( Ui)) and 9i c SEQ(( UJ). Then 

and 

A number of easily proved, frequently used, properties of cohesion with respect 
to projection are summarized (without proof) in the next result. 

Proposition 2.2. For i = 1,2 let 9i c SEQ(( Ui)) and Ui be in Yi. men 
(a) h?“j(U, @I U2) = Uj for j = 1,2 if U, @JU2 # 0; 

(b) UUj(YI @ sp2) E 4 for j = 1,2; 
(c) for each u in SEQ(( LJI UJ), u = lIU,( I) @ I&,..(u); and 
(d) for each 9 in SEQ(( U, U,)), 9s &,(sP) @ lI,(sP). 

We shall also have occasion to use the following readily established result on the 
distributivity of intersection with respect to cohesion (proof omitted). 

3 As usual, if X and Y are sets of attributes, then XY is the union of X and Y. 
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Proposition 2.3. For n a 2 and i = 1, . . . , n let YiS SEQ(( U)) and YiC SEQ((V)). 

7?2en ny==, (9i @ s) = (nFsl 9i) @ (m, SJ. 

Although not used in the sequel, we note that 

for all 9i G SEQ(( U)) and all 9j G SEQ(( V)). 
For the remainder of this section, we concentrate on the notion of a “minimum 

representation” (with respect to cohesion). .To motivate this concept, suppose a 
distributed system has a CSS T1 over ( U1) at site 1 and a CSS T2 over ( U2) at site 
2. Furthermore, suppose we wish to compute u1 @ u2 (for a given u1 in VSEQ( T1) 
and u2 in VSEQ( T2)) via a channel in which communication is relatively expensive. 
One approach to reducing the communication cost is to seek ?‘i over (&) and T$ 
over ( U2) such that VSEQ( T:) and VSEQ( Ti) are “minimum” (under the contain- 
ment relation) sets satisfying 

VSEQ( T’,) @ VSEQ( T$) = VSEQ( TJ @ VSEQ( T2). 

(That is, 
(a) VSEQ( T:) @ VSEQ( T$) = VSEQ( T*) @ VSEQ( T2), and 
(b) VSEQ( Tf) s VSEQ( Ty) for each CSS T:! over (Ui), 1 s is 2, such that 

VSEQ( T;) @ VSEQ( T;) = VSEQ( Tf) @ VSEQ( T;).) 
Indeed, suppose such a T: and T$ exist. Then we first determine whether or not ui 
(i = 1,2) is iq VSEQ( Tf). If Ui is not in VSEQ( TI), then there is no point in considering 
Ui for cc%sion purposes. Unfortunately, as we now show, such a T’, and Ti need 
not exist. 

Example 2.4~ Let Tl = (((AJ, (B), (CL M, LhJ), M, A) and T2 = (((A2), W), 
030, {fAJ), b2L 9 2 ) over(U) = (A,)(B)(C) and (V) = (A,)(B) respectively be defined 
as follows: 

(A) The domain of each attribute is the integers. 
(B) ec is the function on Dom((U)) x Dom((A$)) defined for each u1u2 in 

SEQ(( W) by ec(u~ 9 ~2M~)I) = 0. 
(C) fAl and fA2 are the mappings over Dom(( U)) and Dom( ( V)) respectively 

defined for each u in Dom(( U)) and v in Dom(( V)) by fA,(u) = 0, fA2(v) = v(A2) - 1 
if v(A2) > 1 and fA2( v) = v(B) + 1 otherwise. 

(D) Let VSEQ(u,) = SEQ(( U)). Let sl, s2,. . . be the infinite sequence of elements 
in Dom(( V)) where s1 = (1,1) and for each ia 1, Si+I(Az) =fA2(Si), s,+,(B) = Si(B) 
if Si+l(AZ) Z 1, and q+,(B) = si(B) + 1 if Si+l(Az) = 1. Thus, the sequence begins with 

(19 I), (292)s (I, 2), (3,3), (2,3), (I, 3), (4,4), (3,4). 

Let VSEQ(UJ = {Sisi+l. . . Sj 1 all i and j, 1 G i aj}. 

4 We wish to thank Stephen Kurtzman for providing this example, thereby replacing a much more 
complicated one originally given by us. 
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(E) $1 = WA n, 0) 1 n in Dom(A,)} and & = {(n, n) 1 n > 0). Clearly, 

VSEQ( T1) = ((0, il, 0). . .(O, i,, 0) 1 n 2 1, each 4 in Dom(A,)} and 

VSEQ( T2) = (Si. . s $lZ&=(n,nj for some nal, jai}. 

For each I, let ti be the tuple (O,x$AJ, q(B), 0) in Dom(( UV)). Then 

VSEQ( Tl) @ VSEQ( TJ = iti* : .G 1 ti = (0, I, 1, 0) for some Ia 1, j 2 i). 

We now show that (T,, TJ has no minimum representation. Indeed, suppose 
( Ti, Ti) is a minimum representation of ( TI , Tt). Thus, 

and 
VSEQ( T:) @ VSEQ( T:) = VSEQ( T,) @ VSEQ( T2) 

VSEQ( T;) c VSEQ( T2). 

Let 

let pc = y be the rank of ek and p the rank of T’,. Note that p = 1 if y = 0, and 
p=y if y>O. Let 

be the CSS of rank y+2 > p, where 

m ec(u,,... 9 uy+2, u,+3 CA,, 4) = eS3, l l . 9 uy+2, uT+J4 v 4) 

for all ul.. . u,,+~ in SEQ(( U)), 

(G) 97 = {I in VSEQ( Ti) 1 IuI < y+2, u @ v # p) for some u in VSEQ( T$)}. 

Clearly, 9; is prefix closed and VSEQ( Tf) G VSEQ( Ti). Also, it is straightforward 
to see that 

VSEQ( T;) @ VSEQ( T;) = \-SEQ( T;)@ VSEQ( T;). 

TO show that ( TI , T2) has no minimum representation it therefore suffices to prove 
that VSEQ( Ti) s VSEQ( T’,), i.e. there exists some u in VSEQ( Ti) -VSEQ( Tr). 

Let 

39, = (0, y+2,y+2,0)(0, y+ 1,7+2,0). l ml, r+z om r+% r+m= 

Obviously, w1 is in VSEQ( Ti) @ VSEQ( T$). Let 

(0 u1= n,( w,) = (0, y+2, o)Y+2(o, 7+3,0). 
By Proposition 2.2(a), 

(2) ul is in VSEQ( T’,). 

Let u = (0, y+2, O)p(O, 7+3,0). Since p is the rank of T’,, u is a suffix of ul, and 
since VSEQ( e>), VSEQ(f,,) and VSEQ( a:) are interval closed, it follows that u is 
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in VSEQ( e>) n VSEQ( fA,) n VSEQ(o’,). Since p = y or p = y + 1, (0, y +2, O)p is in 
4: by (1) and (2). Hence, u is in VSEQ(&) and therefore in VSEQ( Ti). Suppose 
u is in VSEQ( Ty). Since lul = p + 16 r+2, u is in .%:. By (G), there exists a L) in 
VSEQ( Ti) such that u @ u Z 0. Now 

tr=(y+2,7+2)(7+1, y+2)...(Y+2-P,Y+2) 

is the only sequence in VSEQ( Ts) c VSEQ( T2) of length p + 1 which begins with a 
tuple v such that v(B) = y + 2. However, u @ o = 0. Thus u is not in Sf, i.e. u is in 
VSEQ( T’,) - VSEQ( Ty) as was desired. 

The above example shows that if the ranks of the various T:! are allowed ta be 
arbitrarily large, then no minimum representation need exist. However, it will be 
shown in Proposition 2.5 below that if the ranks of the Ty are required to be 
bounded, then there is a minimum representation. (We will not consider the problem 
of presenting reasonable sufficient conditions for a minimum representation to exist 
when the rank of the various Ty are allowed to be arbitrarily large.) In preparation 
for that result we have the following definition. 

Definition. For n 2 2 and each i, 1 s i G n, let 1;: be a CSS over (Ui). Let r be a 
positive integer. An n-tuple (T:, . . . , T:) of CSS is said to be a rank-r minimum 
representation of ( TI, . . . , Tn) (with respect to cohesion) if 

(a) @lSiSn VSEQ( T:) = @l<i<n VSEQ( T), and 
(b) VSEQ( T,‘)sVSEQ(T:!) for each i, 1 s s n, for each CSS Ty over (Ui), of i 

rank at most r, such that 

@ VSEQ(T:!)= @ VSEQ(T). 
Isisn I<isn 

(T,,..., T,) is said to be a rank-r minimum representation if it is a rank-r minimum 
representation of itself. 

Obviously, if ( T:, . . . , Tk) and ( Ty, . . . , Tz) are both rank-r minimum representa- 
tions of (T,,..., T,), with each Tj and Ti of rank at most r, then VSEQ(Ti) = 
VSEQ( Ty) for all i, 1~ i < n. 

We now show that a rank-r minimum representation always exists. 

Proposition 2.5.5 For aN CSS TI, . . . , T,, and all r 2 max(p( T) 11 s i G n}, a rank-r 
minimum representation (T’,, . . . , Tk) of ( TI, . . . , Tn) exists. Furthermore, p( T:) G r 
for each i. 

Proof. For n = 1, there is nothing to prove. Thus, assume n 2 2. For each i, let 

T = ((t&)9 (li>, (Ei)9 Ze,, RI, Z, $i)* 

’ The authors wish to thank Mr. Guozhu Dong for discussions leading to a clarification of the argument 
in Proposition 2.5. 
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(a) Suppose that for each i, either p( I;:) = r or Ei =0. For each 4 let (UJ = 
(Si)( Ii)( Ei), @j+i VSEQ( ?;.) be the cohesion of all VSEQ( Tj), j Z 4 and 

where 

and 

VSEQ( vi) = Interval6 uinVSEQ(T)Iu@v#@ 

for some v in @ VSEQ( lJ 
j#i 

Jp 1 uin~~~u@VZ~fOrsomevin@~SEQ(~) . 

j#i I 

For each i, it is clear that VSEQ(ui) is interval closed (so that ui is a uniform 
constraint), 9: is prefixed closed and p( T:) = p(F) s r. 

We now show that (Ti, . . . , TL) is a rank-r minimum representation of 

(T 1, . . . , T,). To do this, it is enough to prove that 

(I) @lSiSn VSEQ( T:) = @*<is” VSEQ( F), and 
(2) VSEQ( T:) c VSEQ( T:!) for all i, 1 s is n, and all CSS T:! over (U’), of rank 

at most r, such that @Isis” VSEQ( Tf) = @Isign VSEQ( T:). 
Consider (1). Obviously, the left side is a subset of the right. We now examine 

the reverse inclusion. For each i let 

spi = u in VSEQ( T) 1 u @ v Z 0 for some v in @ VSEQ( q) . 

j#i 

Clea& @ISiS” VSEQ(C) = @lsi<n 9i. Let i, 1 s i G n, be fixed. We first show that 
(3) 9i c VSEQ( Ti). 
TO this end, let u be in Spi. Then 
(4) u is in VSEQ( ‘I;-) and 
(5) there exists some v in @j+i VSEQ( q) such that u @J v # 0. 

By (4), u in VSEQ( %i) nVSEQ($i). By (S), u is in VSEQ(ui). TO establish (3), it 
thus suffices to show that 

(6) u is in VSEQ(4:). 
Two cases arise. 

Case (0~): suppose IuI G r. By (4), 17 is in VSEQ($i) and hence in 9i. Combining 
this with (5), it follows that u is in 9: c VSEQ( 9:). 

Case (p): suppose I+ r. Let u = uluz and v = v1v2, where lull = lvll = r. Since 
VSEQ( T) is closed under prefix for ail CSS T, (4) and (5) hold when u and v are 
replaced by u1 and vl respectively. By (oL), u1 is in .%i. Hence (6) holds, and (3) is 
proven. 

6 For each set % c SEQ(( U)), Interval( %) = (FZ’IU’ an interval of some u in %I). 
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@ VSEQ( I;:)= @ Yi G @ VSEQ( Ti) 
ISian ISiSn ISiSn 

as desired, so (1) holds. 
Consider (2). For each i, 1 s is n, let T: = (((Si), (Ii), (Ei), Sg, sy), Zr, 9:) be 

CSS, of rank at most r, such that @lsien VSEQ( Tr) = @ISiS” VSEQ( q). Let i be 
arbitrary, 1 SiSn. If a(q)=p; then ~(Tr)sr=p(T:). If Ei=(b, then p(Ty)= 
p( Ti) = 1. In either case, 

(7) P( G’) s P( T:). 
Now 

&= ~in&1u@##0forsomeuin@VSEQ(~) 
j#i 

c_ u in VSEQ(T,)lu @ c#@ for some u in @VSEQ(T,) 
j#i 

by Proposition 2.2(a) 

= &( @ VSEQ( a)) by assumption 
1<jsn 

c_ VSEQ( T;), by Propositi& 2.2(b) 

c_ VSEQ(#). 
i 

That is, 
(8) 9: c_ VSEQ(S:). 

Then 

VSEQ(&) = $i v {UW~ u in .%:, Iu~= p( Ti, , w in SEQ((Ui))} 
C_ VSEQ(Jy) u {UW in VSEQ($p), )uI = p( Ti), w in SEQ(( Ui))} 

c VSEQ(&‘) u {VW IX in &‘, ]xI= p( Tr), YW in SEQ(( Ui)), 
y possibly empty} by (7) 

c_ VSEQ(5:) u VSEQ(&) 

= VSEQ(§;). 

That is, 
(9) VSEQ($:) G VSEQ(4:). 
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Clearly, , 

VSEQ( ai) = Interval 
(1 

u in VSEQ(Ti)lu@v#fl 

= Interval 
(1 

for some v in @ vSEQ(~))) 
j#i 

nu, (Ui @ V) 1 Ui @ V # 0 

Ui in VSEQ( q), v in @ VSEQ( q) 
j#i 1) 

by Proposition 2.2(a) 

= Inte~al(&(@j,, VSEQ( 5))) 
= InteITVal(nU,(@i,j,, VSEQ( Tj’))) by assumption 

E Interval(VSEQ( Tf)) by Proposition 2.2(b) 

C_ Interval(VSEQ( 8:) n VSEQ( 9:) n VSEQ(&‘)) 

e_ Interval(VSEQ( %y)) n Interval(VSEQ( 9:)) 
n Interval(VSEQ( C I)) 

= VSEQ( 8:) n VSEQ(Py) A VSEQ(&‘), 

since VSEQ( &‘), VSEQ( ZFY) and VSEQ(Zl) are interval closed. That is, 
(10) VSEQ(ui) G VSEQ( 87) n VSEQ( $f) n VSEQ(Zy). 

Then 

VSEQ( Ti) G VSEQ($:) n VSEQ(ci) 

EVSEQ(~~)nVSEQ(&‘)nVSEQ(~:!)nVSEQ(Z~) 
by (9) and (10) 

= vSEQ( Ty), 

as desired. 
(b) Consider the general case. The following result was established in 13, Lemma 

2.23: “Let T = (%, Z, 3) be a CSS with at least one evaluation attribute. Then for 
each integer r > p(T), there exist; a CSS T’ J= (%I, 2, .%‘) such that p( T’) = I and 
VSEQ( T’) = VSEQ( T)“.’ By this result, for each i, either 

(i) there exists a 5 of rank r such that VSEQ( TJ = VSEQ( F) or 
(ii) Ei = 0, in which case, let Ti = Ti l 

By case (a) above, tblere ex,ists a rank-r minimum representation ( T:, . . . , Tk) of 
(T 1,***, T,), with p( TI) s r for each i. Since VSEQ( F) = VSEQ(T,) for each i, 
U I l,. . . , T’,) is a rank-r minimum representation of (T,, . . . , T,). 0 

’ Indeed,Pet T= (((S), (I), (E), Es, 9), 2, .%).Onesuch T’is(((S),(I),(E), 8’, 9% 2, J%where$‘= iu 
in VSEQ( 7’) 1 lui 6 r), 9’ = 9 and 64’ = { ek 1 C in E}. Here, el, is the (partial) function from Dom(( WI” X 
Dom(( UlC)) into Dom( C) defined by 

&04,. . . , up-,, q,. . . , up=, u,,+WlC)I) = e&4,. . . 9 t(pr, UPC+1 C( wm 

for each q.. . v,_,,ul.. . u,,~+~ in SEQ(( U)). 
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We now illustrate the rank-r minimum representation. 

Example 2.6. Let T1 and T2 be the CSS, of rank 1 each, given in Examples 1.1 and 
2.1 respectively. Let ( Ti, Ti) be the rank-l minimum representation of ( T, , T2) as 
constructed in the argument of Proposition 2.5. Then 

where 

VSEQ( a,) = Interval( { u in VSEQ( Tl) 1 u @ v # 0 
for some v in VSEQ( T2)}), 

VSEQ( q) = Interval({ v in VSEQ( Tz) 1 u @ v # Q) 
for some u in VSEQ( TJ}), 

and 
.%i = {u in &I u @ v # 0 for some v in VSEQ( T2)}, 

&={v in &(u @ v#@ for some u in VSEQ(T,)}. 

It is readily seen that VSEQ( Ti) = VSEQ( T,) and VSEQ( Ti) =VSEQ( Tz). Thus 
( Tl , TJ is a rank-l minimum representation of itself. On the other hand, suppose 
WC! modify the original Tz so that & = {u}, where a is the constraint defined by t 

VSEQ(a) = {v, . . . V, in VSEQ(( Uz)) 1 vi( Cs) G 50,000 for each i}, 

(This means that the warehouse can accommodate at most 50,000 “Sam Eagles” at 
one time.) Then ( Tl, Tz) is not a rank-l minimum representation. For example, 
u = (8-l-84,30 000,30000,5,60 000,300 000) is in VSEQ( Tl) but not in VSEQ( T’,), 
i.e. there is no v in VSEQ( T2) such that u @ v # 0. 

3. Cohesion of CSS 

As already noted, we are interested in the cohesion of VSEQ( T,) and VSEQ( T2). 
It is thus natural to ask: does there exist a CSS T3 such that VSEQ( T3) = 
VSEQ( Tl) @ VSEQ( T2)? In this section we show that the answer is yes. Indeed, 
we shall “construct” a specific such T3 and refer to its as the “cohesion” of Tl and 

T2* 
We start by introducing some special symbolism. 

Notation. (1) ]Let fiA and f2A be (state) functions from Dom(( U)) into Dom( A). 
Then fi A @I &A denotes the function fA from Dom(( V)) into Dom( A) defined for 
each u in Dom(( L’))< by ,f4r( u) =fiA( u) if j’iA(u) =,f=&!$,, #and jA( u) = 0 otherwise. 
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(2) Let elc and e 2c be (evaluation) functions from Dom(( U)jP, x Dom(( U(C)) 
into Dnm( (I,)# *from Dom(( U))4 x Dom(( VI C)) into Dom( C) respectively. Let 
p = max{pi, p2}. Then elc @J e2c denotes the function ec from Dom(( U)jP x 
Dom(( UlC)) into Dom( C) defined for each ul.. l I+,+~ in SEQ(( U)) by 

ec(4 9 l l l 9 Up, up+1 cwla) = ~lc(up-p,+l,” l l 9 up, up+*rwIcm 
if 

and is undefined otherwise. 

Thus, fiA @f2A is the function representing exactly where fiA and f2A coincide. 
elc @ ezc is the function representing exactly where eic and e& coincide, eic and 
eic being the functions e 1c and e2c respectively converted to rank max{pl , p2}. 

It is easily seen that @ is commutative and associative among state functions and 
among evaluation functions. 

Notatiorr. Let St G S, I1 G I, El G E, ( U) = (S)(I)(E) and ( V) = ($)(I,)( E,). 
(1) Suppose A is in S1 and fA is a (state) function from Dom(( V)) into Dam(A). 

Then fz is the (state) function from Dom(( U)) to Dam(A) defined for each u in 

SEQ(( WI by f ,“(u> =fA(Wu)). 
(2) Suppose C is in El and ec is an (evaluation) function from Dom(( V)jPc x 

Dom(( VJC)) into Dom( C). Then eg is the (evaluation) function from Dom(( U)jPc x 
Dom((U1C)) into Dam(C) defined for each ul.. . u,-,~+~ in SEQ(( U)) by 

eg(q,... 9 up@ Upc+l i [ “U[C)]) = e&&(24,);. . . , E”~~pc), u,,+l C( wm* 

Thus, f 2 is the function obtained from fA by extending the domain from (V) to 
(U) and then ignoring the effect of the added attributes. e: is obtained from ec in 
essentially the same manner. 

We are now ready to present the central concept of the section. 

Definition. Let T1 = (((S,,, , 1 , \ ‘1 Z (El), %, %I, 4, 61, and G = U!M, U2), W2), 

%, %j, Z;, 4) be CSS, i W = (S~S,)WWl~2) and p = max{p( ?i), p(G)). The 

cohesion of T1 and T2, denoted T, @ Tz, is ((( S,S2), (I, 12), (El Et), 8, S), {a}, $1, 
where 

(a) 8=(ecIec=ez, C in E,-E2}u{ecIec=ez, C in E2-El}u 

i I = e15 @ e2T, C in El n E,); 

(b) z$AlfA=fE3 A in S,-S2}u{fAIfA=fz, A in S2-Sl}u 

If I A .h =,f,“A @ f E9 A in SI n Sk 
(c) VSEQ(CF) = VSEQ(Z,) @ VSEQ(Z2); and 
(d) 9 = {u @ ul u in VSEQ( T1), ZJ in VSEQ( T2), lul G p, 1~16 p}. 

Clearly, T is a CSS over ( W) of rank p; and .% = J1 @ & if p( 7’1) = p( T2). Also, 
the cohesion of CSS is associative, commutative and idempoternt. 
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Example 3.1. For T1 and T2 as in Examples 1 .l and 2.1 respectively, 

G 0 T2 = (((A), UW2B,B,B5), GC2G), k,, ec,, ec,L IfAH, 4 $1 
is the CSS over ( W) = (A)(B,B2B3B4B5)(ClC2C3) defined as follows: 

(A) ec, is the function from Dom(( WlCJ) to Dom( C1) defined for each w in 
SEQ(( W)) by ec,( w[( WIG,)]) = w( B,)+ w( B2), ec, is the function from 
Dom(( WlC,)) to Dom(C2) defined for each w in SEQ(( W)) by ec,(w[( W1C2)]) = 
w( B3) w( Cl), and ecs is the evaluation function from Dom(( W)) x Dom(( 
Dom(C,) defined for each wlw2 in SEQ(( w)) by e&+ 9 wd( WI W) = 
WI(G) + w2V35) - w2(&). 

(B) fA is the state function from Dom(( W)) to Dam(A) defined for each w in 
SEQU -W)) by fA( w) = “the next date after w(A)“. 

(C) c=0. 
(D) .% = {u @ vlu in VESQ( T,), v in VESQ( T2)}. 
The main result about Tl @ T2 is that VSEQ( Tl @ T2) = VSEQ( T1) @ VSEQ( T2). 

To prove this, we first establish a lemma dealing with relationships between the 
various VSEQs of ;U; @ T2 and the cotresponding VSEQs of Tl and T2. 

Lemma 3.2. For i = 1,2 let ;rl, = (((Si), (Ii), (Ei), %i, $i), Zi, $i), T = Tl@ T2 = 

M&S& U&L (EIEz), 8, s), 14, 9) and 9: = dv in VSEQ(Ti) I 1~1~ p(T)). men 
(a) VSEQ( %) n VSEQ(.%) = (VSEQ( 8,) n VSEQ(S’,)) @ (VSEQ(g2) 

n VSEQW)), 
(b) VSEQW) = VSEQ(%) 0 VSEQ(%), 
(c) VSEQ(c) = VSEQ(&) @ VSEQ(.C,), and 
(d) VSEQ(9) = VSEQ(9;) @ VSEQ(&). 

Proof. It follows from the definition of cohesion of CSS that (c) holds and that 

Clearly, (d) follows from (*). Thus, only (a) and (b) need to be examined. Let 
(U)=(S,IIEJ, (V)=(S,l,E,) and (W)=(UV). Let w=wl...w, be in SEQ((W)), 
&J(w) =u=u1... u,,, and &(w)=v=v,...v,,,. By Proposition 2.2(c), w = u @ v. 

Turning to (a), it suffices to verify that 

(1) VSEQ(%‘)nVSEQ(I) 

and 
C (VSEQ( 8,) n VSEQ(4:)) @ (VSEQ( g2) n VSEQ(Si)) 

(2) WSEQWA n VSEQW’,)) @ (VSEQ(%2) n VSEQ(Si)) 

c VSEQ(%) n VSEQ(9). 

Consider (1). Suppose w is in the left side of (1). To show that w is in the fight 
side of (l), it suffices (by symmetry and the fact that w = I @ v) to prove that 

(3) u is in VSEQ@,) n VSE-Q($‘,). 
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Consider (3). Two cases arise: 
Case (0~): m ~p( T). Since w is in VSEQ(9) and IwI = m sp( T), w is in ~6 = 

9: @ $5. Thus u =&(w) is in 

position 2.2(b) 

s VSEQ( TJ by definition of .%i 

cVSEQ(%,)nVSEQ(J;) 

as desired. 
Case (p): m > p( T). Since the left side of (1) is prefix closed, 

(4) Ul l l l Up(T) is in 9; 
by (ar). Hence, u is in VSEQ($‘,). Let 8 = {ec 1 C in E&}, 8, = {elc 1 C in E,} and 
& = &- I C in E2}. To complete the argument for (3) it is enough to show that u 
is in VSEQ( &), i.e. 

(5) Ul... U, is in VSEQ(eIc j for each C in El. 
Consider (5). Two subcases arise. 
Subcase (pl): C is in El - E2. Let plc be the rank of elc. By the definition of 

cohesion of CSS, ec = e,: and hence is of rank 

Then for each i, plc -#- 1 G i G m, 

Ui(C)= Wi(C) 

since IIu ( Wi) = Ui 

= fkh--p,C, wi--plc+19 l l l 9 wi-l 9 wiC( wlC)l) 

since w is in VSEQ@) c VSEQ(e,) 

.= elC(Ui-plc9 l l l 9 R-1 9 Ui[( ulC)l) 
since ec = eIT. Hence, u is in VSEQ( eIc) as desired. 

Subcuse (p2): C is in El n E2. Let plc and p2c be the ranks of elc and e2c 
respectively. Then ec = eIy @ e2T has rank pc = max{plc, p2c}. By (4), 

(6) u1. . . Up(T) is in .%i G VSEQ( TJ G VSEQ(eIc). 
Note that pc s p(T). For each i, p(T) + 1 G i G m, 

(7) Ui = Wi( C), 

since lI”( Wi) = Ui 

= eC ( wi--pc, l l l 9 Wi-19 Wi[( WlOl) 

since w is in VSEQ( T) c VSEQ(e,) and ec is of rank pc 

= elC (Ui-p,c, . . . , ui-l 9 Ui[( WC)11 

since ec = ei: @ e2T and elc is of rank plc. By (6) and (7), ul.. .u, is in 
VSEQ(e, & as desired. 
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In each case (cw) and (p), (3) is true. Hence, (1) is true. 
Now consider (2). Suppose that w is in the left side of (2). Then u = n”(w) is in 

&((VSEQ(%) nVSEQ(W @ (VSEQ(‘&,) n VSEQ(&))) 

c VSEQ( 8,) n VSEQ(J’,) 

by Proposition 2.2(b). Similarly, o is in VSEQ(S,) n VSEQ(&). Two cases arise. 
Case (7): m sp( T). Since u is in VSEQ(.%l,) and lul= m <p( T), u is in 9:. 

Similarly, o is in S& Hence, w = u @ u is in 

Case (6): m > p( T). Let C be in E. Three subcases arise. 
Subcase (61): C is in El- &. Let plc be the rank of elc. Then ec = e& is of 

rank plc. For each i, plc + 1 s is m, 

Wi+l(C) = W+lCc) 

since lI” ( Wi) = Ui 

= e,c (%p,c, l l l 9 ui-l 9 uil( ulC)l) 

since u is in VSEQ( 8,) G VSEQ(e,,) 

= eC( wi--plc9 l l l 9 wi-l 9 wi[( wlc)l) 
since ec = elT. Thus, w is in VSEQ(ec). 

Subcase (52): C is in E2- El. By a manner similar to (M), w is seen to be in 

VSEQW. 
Subcase (83): C is in El n E2. Since wl. . . wPtT) is in the left side of (2), we have 

(8) WI... w,(T) is in VSEQ(%) 

by W- Let P 1c and p2c be the ranks of e 1c and e2c respectively and pc = 

max{plc, ptc). Then ec = elF @ e2F and is of rank pc. Clearly, for each 5 pc c 

p(T)+lGi<m, 

(9) wi(C) = ui(C) = elC(Ui-plc, l l l 9 %-I 9 Ui[( ulC)l) 

since u is in VSEQ(%,) G VSEQ(elc) and elc is of rank plc 

= eC(,vi-pc9 l l l 9 wi-l 9 Wi[( WlC)l) 
since ec = elT @ e25 and is of rank pc. By (8) and (9), wl. . . w,,, is in VSEQ(ec). 

In each case (y) and (S), w is in the right side of (2). Hence, (a) holds. 
NOW, consider (b). The proof here is similar to, but simpler than, that of (a). 

Indeed, let 9 = {fA 1 A in S, S2}, & = {fi A I A in S,} and s2 = {f2A I A in St). Suppose 
W=W 1.. . W,,, is in VSEQ(9). For each A in S1 and each i, 1 < i s m, 

Ui(A) = wit A) =f,i( wi-1) =fL(&( wi-1)) 

since fA =fz or fA =f,“A @f,w, 

“f;*(Ui-1). 
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Thus u is in VSEQ(fiA) for each A in S, . Hence u is in VSEQ(Z&). Similarly, u is 
in VSEQ(&). Thus, w = u @ u is in VSEQ(&) @ VSEQ(%). 

Conversely, let w = u @ v, with u in VSEQ(&) and v in VSEQ(&). Suppose A 
is in S1. For each i, l<ism, 

wi(A) = u,(A) 

since II” ( Wi) = Ui 

=hA(Ui-1) 

since u is in VSEQ&) 

=fA( wi-l) 

since fA =fz or fA =f15 @f2WA. 
Similarly, w is in VSEQ( fA) for each A in S,S,, i.e., w is in VSEQ( 9). Therefore, 

(b) holds. Cl 

Using the lemma, we now demonstrate the following theorem. 

Theorem 3.3. For all CSS TI and T2, 

@ T2) = VSEQ( TI) @ VSEQ( T2). 

Proof. We shall use the notation of Lemma 3.1. We first claim that 

(a) VSEQ( T,) = VSEQW,) n VSEQ(@,) n VSEQ(&) n VSEQ(4;) 

and 

(b) VSEQ( G) = VSEQ(%) n VSEQ( &) n VSEQ(C,) n VSEQ(&). 

By symmetry, it suffices to establish (a). 
By do&ition, 

&={u in VSEQ(T,)(lulap(T)} 
an& 

&={u in VSEQ(T,)l~ul~p(T,)~p(T)}. 

Then 

VsEQ(.P’,) = 9; v {uz 1 u in 9’1, lul = p(T)} 

r 6 u{uzlu in &,~ul=p(T,)~p(T)) -- - i 

= VZEQ(9,). 

Hence, 

VSEQ(Ee,)nVSEQ(%)nVSEQ(&)nVSEQ(4;3 

G VSEQ( 8,) n VSEiJ(@,) n VSEQ(&) n VSEQ(.%,) 

= VSEQ( TI). 
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To see the reverse inclusion, note that 

VSEQ( 7’J = 9’1 v {rrt in VSEQ( 7’,) 1 u in 9;) 

E VSEQ#) by definition of VSEQ(.%l,), 

and 
VSEQ( Tl) G VSEQ(S,) n VSEQ( sl) n VSEQ(X,). 

Thus, 

VSEQ( T*) C_ VSEQ( a,) n VSEQ( &) n VSEQ(&) n VSEQ(Sl,) 

and (a) holds. 
Now let T= & @ G= ((&Sz), (1,&), (El&), 8, s), {a}, 9). By the definition of 

cohesion of CSS, p(T) = max(p( &), p( &)}. Then 

VSEQ( 7’1) 0 VSEQt T2) 

= (VSEQ(&) n VSEQ( a,) n VSEQ( &) n VSEQ(Z,)) 

@ (VSEQ(&) n VSEQ( &) n VSEQ(S,) n VSEQ(&)) 

by (a) and W 

= WSEQV ‘r) n VSEQ(W 0 (VSEQW n VSEQ(%&))) 

dVSEQ(%) 0 VSEQWd) n WSEQ(C,) @ VSEQ(&)) 

by Proposition 2.3 

= (VSEQ(S) n VSEQ@)) n VSEQ(S) n VSEQ(o) 

by Lemma 3.2(a)-(c) 

= VSEQ( T) = VSEQ( Tl @ T2). tl 

Corollary. For all CSS T1,. . . , T,, VSEQ( Tl@ l l l @ T,) = @IsiGn VSEQ( T). 

Suppose Tl, . . . , T, are CSS in a distributed object-history system. The effect of 
the corollary to Theorem 3.3 is that the cohesion of the q may be viewed as a CSS 
describing the object history system from a centralized point of view. 

We conclude the section with a comment on rank-r minimum represent Ation and 
cohesion. A natural question is: if (T, , . . . , Tn) is a rank-r minimum representation, 
is (T&I T2, T&..., T,,) a rank-t minimum representation? The answer is no (so 
that a rank-r minimum representation reflects some global, rather than local, proper- 
ties of a collection of CSS). Indeed, let x = (1,2,3), y = (1,4,5) and z = (1,6,7) be 

in SEQWV4XG)), and u=(l,8,9), u=(l,lO,ll) and w=(l,l2,13) be in 
SEQ((A)(BZ)(C2)). It is easy to construct (details omitted) CSS T,, T2 and T3 of 
rank 1 over (A&Cl), (AB&) and (ABJ3,C,C2) respectively such that VSEQ( Tl) = 
1x3 Y, ~1, VSEQ( 7’s) = { u, q w} and VSEQ( T3) = {x @ u, y @ v, z @ w}. Obviously, 
( TI , T2, T3) is a rank-l minimum representation. Note that VSEQ( TI @ T2) consists 
of nine tuples and VSEQ( T3) s VSEQ( Tl @ Tz). Thus, ( Tl @ T2, T3) is not a rank-1 
minimum representation. (( T3 y T3) is a rank-l minimum representation of 

(Tr 0 T2, T3)J 
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4. Preservation of CSS properties under CSS cohesion 

In the previous section, we proved that the cohesion of T1 and T2 has the important 
feature of defining the cohesion of VSEQ( T*) and VSEQ( T2), i.e. VSEQ( TI @ T2) = 
VSEQ( TJ @ VSEQ( TJ. In this section we shall see that if both TI and T2 have 
certain properties, then so does TI @ T2. Specifically we shall show that if T, and 
T2 are both “locally representable,” respectively both “b-representable,” then so is 

T& T2* 
We start with the notion of “local representability”, a concept introduced in [2]. 

Definition. A CSS T = ( %, 2, 9) is called (k, , k&local if 
(1) k+2 and k+l, 
(2) for each u, 1~13 k, , u is in VSEQ( %) iff {w 11 WI = kl, w an interval of u} G 

VSEQ( U), and 
(3) for each u, 1~13 k2, u is in VSEQ(Z) iff (wll~tl= kz, w an interval of s} 

z VSEQ(Z). 
T is said to be local if it is (k, , k&local for some k, and k2. T is said to be ZocaZly 
representable if there exists a local CSS T’= (%$ .X’, 9) over (U) such that 
VSEQ( T’) = VSEQ( T). 

If T = (%, Z,4) is (k, , k&local, then the maintenance of a computation-tuple 
sequence being in VSEQ( U) just involves checking the last k, computation tuples, 
and the maintenance of being in VSEQ(X) the last k2 tuples. 

If T is (k, , k&local, k! - > k, and k$a kz9 then T is (k’,, ic;)-local. 
We now turn to the problem of showing that cob,,, -;on preserves the property of 

being locally representable. Suppose T = ((( Si), (Ii), (Ei j, %i, R), Zig 9i), i = 1,2, is 
locally representable. If El # 0 and E2 # 0, then the argument is simple. We use the 
following result established in [1]: 

(*) Let T = (S’, 2, J) be a CSS over (S)(I)(E), with E # 0. Then T is locally 
representable iff there exist a CSS T’ = (%‘, f&S’) over (S)(1){ E) such that 
VSEQ( T’) = VSEQ( T). 

By (*), there exist a CSS Ti = (Vi, 0,Ca:) over (SJIE1) and a Ti = (%i, 0, 9;) over 
(S&E,) such that VSEQ( Ti) = VSEQ( Tl) and VSEQ( TS) and VSEQ( T2). Let T = 
T’, @ T$. By the definition of cohesion of CSS, the constraint set of T is {a}, where 
VSEQ( U) s= SEQ(( S&1, I2 E, E2j). Thus, T is local. Clearly, 

VSEQ( Tl @ T2) = VSEQ( T,) @ VSEQ( T2) by Theorem 3.3 

= VSLQ( T;) @ VSEQ( T;) 

= VSEQ( T’, @ T;) 

= VSEQ( T). 

Therefore, Tl @ T2 is locally representable. 
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We next establish the local representability of & @ Tz even if one of the Ei is 
empty. Indeed, we derive a slightly stronger result, namely, that cohesion preserves 
(k, , k2) Aocalness, localness, and local-representability. 

Theorem 4.1. Let TI and T2 be CSS over (U) and (V) respectively. 
(a) If T, and Tz are ( kl , k&local, then so is TI @ T2. 
(b) If T, and T2 are local, then so is T, @ T2. 
(c) rf T1 and T2 are locally representable, then so is TI @ T2. 

Proof. It obviously suffices to just demonstrate (a). Let TI = (VI, Cl, .%,), T2 = 
(Ce,, &, .i$) and T = TI @ T2 = (%, 2, 9). Suppose that T1 and T2 are ( kl, k&local. 
To establish (a), it is enough to verify that 

(1) For each w in SEQ(( UV)) of length at least kl , w is in VSEQ( %!) iff 

b in SEQ(( uv)) Ilyl= kl , y an interval of w} G VSEQ( %); and 

(2) For each w in SEQ(( UV)) of length at least k2, w is in VSEQ(u) iff 

dv in SEQ(( UV)) 1 lyl = kz, y an interval of w} c_ VSEQ(o). 

We shall give the argument for (2), that for (1) being similar but more complicated 
notationally. 

Let w=wl... w, be in SEQ((UV)), u=u~...u,=&(w) and L)=v~...v~= 
D,,(w). By Proposition 2.2(c), w = u @ v. Consider (2). Since VSEQ(cr) is interval 
closed, the “only-if” is obvious. Turning to the “if”, suppose that 

(3) b ir SEQ(( UV)) 1 Iyl = k2, y an interval of w} c_ VSEQ( a). 
It is enough to show that w is in VSEQ(c). 

Suppose u’ is an interval of u = 1&,(w) of length kz . Then there exists an interval 
y of w such that &(y) = u’. Let v’= &(y). Note that lyl = 10’1 = kz . By Proposition 
2.2(c), y = u’ @ 0’. By (3), y is in VSEQ(a). Then u’ = n”(y) is in 

n,(VSEQ(u)) = n,(VSEQ(&) @ VSEQ(&)) 

by definition of cohesion of CSS 

E VSEQ(&) 

by Propssition 2.2(b); that is, 
(4) u” is in VSEQ(&). 

Since u’ is an arbitrary interval of u of length kz and & is ( kI , k&local, it follows 
from (4) that 

(5) u is in VSEQjZ,). 
Similarly, 

(6) v is in VSEQ(&). 
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By (5) and (6), w=u@v is in 

VSEQ(&) @ VSEQ(&) = VSEQ(a) 

as desired. Thus, (2) holds. Cl 

The converse to each part of Theorem 4.1 is false. Indeed, let T = 

((A), (B1 B*), (09 {ec), {fA)s Oi9 $J, i = l, 29 where 

(1) the domain of each attribute is” (0, 1); 
(2) ec is the function from Dom((AB, B2)) to Dom( C) defined for each (a, bl, bt) 

in Dom((AB,B*)) by e&z, bl, &) =0 if bl = bz and e&u, bl, &) = 1 otherwise; 
(3) fA is the function from Dom((AB,B,C)) to Dam(A) defined for each u in 

Dom((Al B1 B&)) by fA(u) = 1 if u(A) = 0 and fA(u) = 0 otherwise; 
(4) for k and I in {1,2}, k # 1, 

VSEQ( uk) = { ul. . . u,,, in SEQ((AB,B,C)) 1 m 2 1; for each i and j, 
1s i, j s m, ui(BI) = 0, and if Ui( Bk) = uj(Bk), then 
Ui( C) = Uj( C)}; and 

(5) 3 = I@, 1, b, a), (a, (4% (‘0, (a, b, 1, ah b in {O,l)h 
It can be shown that T1 @ T2 is (2,2)-local, but neither Tl nor T2 is locally 
representrible. 

Our second result on preservation under cohesion (of CSS) concerns “b- 
representability,” a concept introduced in [l]. 

Notation. For u and v in SEQ(( U)), vlu means that v is a subsequence of u. 

Definition. For each 48 c SEQ(( U)), let c( $58) be the constraint (over SEQ(( U)) 
defined by u is in VSEQ(c(Se)) if there is no y in 48 such that ylu. A constraint c 
is called bad subsequence if u - - c( 48) for some 48. Given k > 0, v is called a k-bound- 

uence constraint if CT = c(S) for some k-bounded9a. A constraint is 
called bounded bad-subsequence if it is a k-bounded bad subsequence constraint 
for some k 

Clearly, each bad-subsequence constraint is uniform. 

Definition. A CSS T = (%, 2, .%) is said to be b-representable (respectively, k-dounded 
b-representable, k some positive integer) if there exists some T’ = ( %, Z, 9) such 
that C’ is a set of bad-subsequence constraints (respectively, k-bounded bad- 
subsequence constraints) and VSEQ( T’) = VESQ( T). A CS.3 is said to be bounded 
b-representable if it is k-bounded b-representable for some k > 0. 

In order to establish our result on the preservation of b-representability, we need 
the following lemma. 

’ The example can easily be modified so that the domains 
9 9s SEQ(( W) is k-bounded if 1~1 G k for all u in 98. 

are 
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Lemma 4.2. Let 48, G SEQ(( U)) and 9&c, SEQ(( V)). Then 

(a) VSEQ(cW,)) @ VSEQWM) = V=Q( c( a)), 

where 48 = (Se, @ SEQ(( V))) v (SEQ(( U)) @ 48,); and 
(b) If !B1 and 48* are k-bounded cfor some k), then 

VSEQ( c( Se,)) @ VSEQ( c( Se,)) = VSEQ( c( Btk’)), 

Proof. We first note the following easily seen facts (proof omitted): 
(1) If Y1csP, then 9, @sP2=Y1. 

(2) SEQN uv)) = SEQU WI 0 SEQ(( v)). 
(3) VSEQ(@4)) 0 SEQWN = VSEQ(c(% 0 SEQ(( v))))- 
(4 VSEQWW 0 SEQ(( WI = VSEQ(cW, 0 SEQ(( WN. 
(5) VSEQ( c( Se,)) n VSEQ( c( Se,)) = VSEQ( c( B1 v Sg,)).” 
Consider (a). Clearly, 

= PSEQWW 0 V=Q(d%))l 0 SEQUJW by (1) 

= WEQWW 0 SEQ(( UWI 0 WQ(( WO 0 VSEQ(c(W)l, 

by idempotency, associativity and commutativity 

= PSEQ(cWJ) 0 SEQ(( WI Q SEQU WI 0 LSEQU W) 

0 SEQ(( v)) 0 VSEQ(c(Wl by (2) 

= IVf=Q(dse,)) 0 SEQ(( WI 0 WQW)) 0 V~EQWM)l 
by (1) 

= VSEQ(c(% 0 SEQ(( v)))) 0 VSEQWJ, 0 SEQ(( W) 
by (3) and (4) 

= VSEQ(d% 0 SEQU v)))) n V=QW% 0 SEQU UN), 

since both sets are over the same set of attributes 

=VSEQ(c(B)) by (5). 

Hence (a) holds. 
Now consider (b). Suppose 9& and B2 are k-bounded (for some k). For each 

set X of attributes, let 

SEQk((X)) = { x in SEQ((X)) 11x1 s k}. 

lo This appears in Lemma 2.2 of [l] in a slightly different form. 
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Since, for arbitrary u and u, u @ v#0 implies Irr) = 101, it follows that 

%@ SEQ(( v)) = 3, @ =Qd( v))- Similarly, 92 @ =Q(( W) = @ SEQk(( u)). 
Then 

a= WI 0 SEQW9)~ u (32 0 SEQ(W)) 

=(% OSEQk((V)))u(~2OSEQk((U)jj 

= gp. 

Hence, 

VSEQ( c( 481 jj @ VSEQ(c( 32)) = VSEQ( c(Se)) by (a) 

= VSEQk( c( a)). 

Thus, (b) holds. 0 

Using the previous lemma, we now have the following theorem. 

Theorem 4.3. Let 9, s SEQ(( U)), SB2r SEQ(( V)), T1 = ( sl, c( Se,), 4,) and T2 = 
w2, cW2h 92). lkn 

(a) T1 @ T2 is of the form ((8, c@?), 4), where 

3 = WI 0 SEQW)) u (SEQWJ)) 0 %I; and 

(b) If 3, and 9B2 are k-bounded (for some k), then T1 @ T2 is of the form 
(%, c(@~)) .%j, where 9 

Btk) = ( 911 @ (u in SSQ(( V)) 1 ICI s k}) u ({u in SEQ((U)j 1 lul s kl@ 992). 

Hence, T1 @ T2 is b-representable (respectively k-bounded b-representable) if T1 and 
T2 ore b-representable ( respectively k-bounded b-representable). 

Proof. We shall use the notation in Lemma 4.2. Let T1 @ T2 = (%, a, .%j. Then s 

VSEQW = VSEQ(c(W) 0 V=Q(c(%j) 
by definition of cohesion 

=VSEQ(c(B)) 

by Lemma 4.2(a) 
Hence, (a) holds. If 8, and B2 are k-bounded (for some k), then VSEQ(a) = 

VSEQ(C(~‘~‘)) by Lemm;ll4.2(b). Thus (b) holds. Cl 

The converse to Theorem 4.3 is false. Indeed, let T = (((A), (B&), (C), {ed, 
{fA)j, Ui, 91, i = 1,2, where 

(1) each domain is the set of integers; 
(2) ec is the function from Dom((AB,B2)) to Dom( C) defined for each (a, b1 , bJ 

in Dom((AB,B2)) by e&, bl 9 b2) = b, + b,; 
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(3) fA is the function from Dom((ABJ,C)) to Dam(C) defined for each u in 
Dom((AB,B&)) by fA( u) = u(A) + 1; 

(4) For each k and I in { 1,2}, k # l, 

VSEQ(c&) = (u,. . . u,,, in SEQ((AB&C)) 1 m a 1; for each i, 1 G i < m, 

(5) 9 = {(a, b,, b2, b, + bJ 1 a, b, , bz integers}. 
It can be shown that TI and T2 are not b-representable but Tl @ T2 is of form 
( %, c( Se), 9), where 5B is 2-bounded. 

In connection with negative results, we note that cohesion does not preserve 
rank-r minimum representation, i.e. ( Tl, . . . , Tn) and (Ti, . . . , T:) may be rank-r 
minimum representations without ( Tl @ T:, . . . , Tn @ Tk) being one. Indeed, using 
the CSS TI , T2 and Tj mentioned at the end of Section 3, ( Tl, T2, Ts) and ( T2, Tl , T3) 
are rank-l minimum representations but ( Tl @T2, T2 @ T, , T3 0 T3) is not. 
(( TB, T3, TJ) is a rank-l minimum representation of ( Tl @ T2, T2 @ Tl , T3 @ T3).) 

In conclusion, the present paper has studied the analysis of cohesion, i.e. given 
T 1,. . . , T, over (UJ, . . . , (V,) respectively, perhaps with special properties, what 
can be said about @Isis” VSEQ( T). The synthesis problem is the converse (and 
of importance in design), namely given T over (V,. . . V,), perhaps with special 
properties, can one find Tl, . . , T, over (UJ, . . . , ( Un) respectively such that 

0 c ldisn VSEQ( T) = VSEQ( T). We leave this problem for a future investigation. 
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