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Abstract

DFA minimization is an important problem in algorithm design and is based on the notion of DFA
equivalence: Two DFA's are equivalent if and only if they accept the same set of strings. In this paper,
we propose a new notion of DFA equivalence (that we call weak-equivalence): We say that two DFA's
are weakly equivalent if they both accept the same number of strings of lerdgtheveryk. The
motivation for this problem is as follows. A large number of counting problems can be solved by
encoding the combinatorial objects we want to count as strings over a finite alphabet. If the collection
of encoded strings is accepted by a DFA, then standard algorithms from computational linear algebra
can be used to solve the counting problem efficiently. When applying this approach to large-scale
applications, the bottleneck is the space complexity since the computation involves a matrix of order
k x k if kis the size of the underlying DFM. This leads to the natural question: Is there a smaller
DFA that is weakly equivalent tM? We present an algorithm of time complexityké) to find a
compact DFA weakly equivalent to a given DFA. We illustrate, in the case of a tiling problem, that
our algorithm reduces a (strongly minimal) DFA by a factor close to 1/2.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we explore an application of finite automata to counting problems. To count
the number of combinatorial structures of a certain sizge map each structure to a string
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Fig. 1. DFA for L = {x|x ends with a unique occurrence of 010 as a suffix

s from a carefully chosen alphab8tso that there is a 1-1 mapping between each object
we are counting and a subset of strings a8eWhen establishing this 1-1 mapping, we
can ignore the size parametgrtaking care only that it is length-preserving. If the set of
such encoded strings is regular, then we have arrived at an efficient algorithm to solve our
counting problem. This is a consequence of the fact that there is an efficient algorithm for
counting the number of strings of lengttaccepted by a DFA.

We begin with an illustration of this approach to solve the following counting problem
drawn from Liu’s book [12]: “Find the number oh-bit binary sequences that have the
pattern 010 occurring for the first time at thén digit”. For this problem, the encoding is
trivial. We simply use the string itself as the encoding. The set of strings that have a unique
occurrence of 010 as suffix is regular and can be accepted by the DFA shown1n Fig.

LetM be a DFA withk states. The transition matr#of the DFA is ak x k matrix where
a;; is the number of transitions from stédte state. It is well-known and is easy to show
by induction on the length that the number of strings of lengthat start in staté and
end in statg is given by[A"];;. Thus, the number of strings of lengtlaccepted by DFA,

M is given byxA"y’, wherex is the start vector (of order & k) such thatx; = 1 if and

only if j is the start state, ang is the transpose of wherey is the accepting vector (of
order 1x k) wherey; = 1 if and only ifj is an accepting state. For the problem above, after
we remove thelead stat€since it does not contribute to the number of strings accepted) is
easy to verify that
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Fig. 2. A minimal, but not weakly minima¥l and M’ weakly equivalent tov.

The above technique to solve counting problems is sometimes called the transfer ma-
trix method [26]. A DFA based approach can be very effective in creating the transfer
matrix. For example, the closure properties of regular languages and other nice structural
features can be used to design the DFA systematically. What motivated this work is the
fact that the theory of finite automata can help in reducing the size of the transfer ma-
trix as well. Optimizations such as removing unreachable states, identifying symmetries,
minimization of the DFA (in the classical sense) are some of the ways to reduce the size
of the transfer matrix. However, there is room for further improvement as the following
example shows.

Example. Consider the DFAV shown in Fig.2. It is a minimal DFA, but it can be seen
that M’ is a smaller DFA that is weakly equivalentith

Since we are only interested in using the DFA for counting the number of strings of
given length, we need not limit the candidates (in the minimization) only to those DFA's
that accept the same language. We can change the language so long as we do not change
the number of strings accepted for each length.

This leads to the notion of weak equivalence of DFA's: We say that two DFA's are weakly
equivalent if they both accept the same number of strings of ldafgtheveryk. The main
goal of this paper is to describe an algorithm that finds a DFAwith fewer states that
is weakly equivalent to a given DFR. In this preliminary version, we will focus on the
algorithm for weak minimization but describe the applications only briefly, namely counting
domino tilings and self-avoiding walks.
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The rest of the paper is organized as follows. In Section 2, we describe an implementation
that takes as input an integeand automatically creates a DFA that accepts encodings of
valid tilings of thek x n checkerboard (for al). We also describe an implementation for
automatically synthesizing a DFA for self-avoiding walks in the lattice grids of a specified
width. In Section 3, we consider the time complexity of solving the counting problem after
the transfer matrix has been created and present a theoretical lower bound on the minimum
size of weakly equivalent DFAs. In Section 4, we present the main result of the paper—
an algorithm for weak minimization and prove its correctness. We also estimate its time
complexity, along with some implementation details. In Section 5, we state some open
problems and directions for future work.

2. DFA design for counting problems

In this section, we are concerned with the design of DFA for two counting problems—
tiling and self-avoiding walks. Both problems are parameterizeki Hye number of rows
in a rectangular grid. These and other counting problems require that software tools be
developed to create DFA automatically from given specifications. We are currently in the
process of creating a software engineering framework for such a general purpose tool. In
a companion paper, we describe the details of such an implementation. However, in this
section, we describe a more focussed and more narrowly defined effort to create programs
tailor-made for the two specific applications. In Section 2.1, we will describe an algorithm to
design DFA that accepts encoded tilings, and in Section 2.2, we describe a similar algorithm
for self-avoiding walks on a rectangular grid.

2.1. DFA design for tiling problem

We are interested in counting the number of ways to usel2tiles to completely tile
ak x n checker-board with some removed squares. This problem is identical to counting
the number of perfect-matchings of a subgr&pbf the grid graph of ordek by n. The
connection between the two problems is as follows: We can create a graph from the checker-
board by making each unremoved square a vertex, and connecting two vertices by an edge
if the two squares share a common edge. It is clear that  br a 2x 1 tile corresponds
to an edge, and thus a set of tiles corresponds to a matching. A valid tiling thus corresponds
to a perfect matching. Counting perfect-matchings in a bipartite graph is known to be #P-
complete [25]. Even when the instance is restricted to a subgraph of a grid graph, the
problem seems to be hard, as recently shown by Ogihara andT®ld&he tiling problem
with the number of rows restricted to a constant has also been extensively studied, see, for
examplg/11,21,19,16]among others.

The encoding of tiling can be illustrated with= 4. We represent the 2 1 vertical tile
by the string[0 0]’, and the 1x 2 horizontal tile by{1 1].

Our alphabet consists of the pattern of vertical and horizontal tiles that are used to cover
each column of the grid. Thus the alphabetis encodédadag, as, ag, a12, ais} where the
index of each symbol when expressed in binary indicates coverage with vertical or horizontal
tiles. Forexamples12 = [1 100/, meaning thatthe top two cells are covered with horizontal
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Fig. 3. A DFA for the 4x n tiling problem.

tiles and the bottom two with a vertical tile. The states of the DFA represent the binary pattern
of horizontal tiles that begin in a column. Each 1 in the pattern dictates that its matching 1
occurs in the next column. There are 6 states possible: {qo, ¢3, g6, 99, 912, q15}. The
DFA M that accepts a valid tiling encoded using the above alphabet is shown iB.Fig.
(Here and throughout the paper dead states have been deleted since they do not contribute
to the number of strings that are accepted.)

Thus, DFAs can be used to find the number of perfect-matchings ih fvegrid graph.
But we are interested in a more general problem, hamely to count the number of perfect-
matchings in asubgraphof the grid graph. We can handle this more general problem as
follows: The input to this problem is integkrfollowed by a sequendeof squares (denoted
by the (row number, column number) pair) that have been removed from the board. First,
we design a DFA over krow alphabet in which each entry{8, 1, 2}. Note thatl also has
information about the number of columna the board. 0 and 1 have the same meaning as
above, but 2 now represents a removed square. Our program creates another DFA
that accepts all the strings of lengtlthat have 2 in row and columrj if and only if the
squarei(j) is in I. (There is no other restriction placed on the accepted strings.) Clearly,
M(I,r) has size at most @ * 2k). The number of perfect matchings in the grid graph
associated with(as the removed squares) is the number of strings of lerigthe language
L(M(I,r))N L(M(k)). We use the standard pair construction to obtain a DFA that accepts
this language and use the transfer matrix to count the number of perfect-matchings. It is
clear from the above discussion that significant optimizations should be done to speed up
the computation since the DFA's generated automatically through a series of mechanical
steps tend to be rather large.

2.2. DFA design for self-avoiding walks inkax n grid
Design of DFA to accept the encodings of self-avoiding walks inxan rectangular

grid is more complex than the tiling problem described above. We describe our encoding
scheme using = 2 (namely paths in % » grid) as strings over a finite alphabet. We will
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Fig. 4. Symbols to encode simple paths in & 2 grid graph.
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Fig. 5. States for DFA for X n self-avoiding walks.

again traverse the grid from left to right. At each step we will add a path segment connecting
adjacent cells on the grid. There are four possible segments to use at each step as illustrated
in Fig. 4.

In order to avoid duplicate strings that represent the same path, we will enforce the rule
that inputs are prioritized in the order shown. For example, WN is the same path as NW,
but only the former will be allowed. The states of the DFA will by the 2 and sometimes
2 x 3 cells containing the right most end of the path. There are 14 states as showrbin Fig.

All states are final except for states 7 and 13 where the path consists of two pieces that
are not yet connected by a vertical edge. The transition table and matrix are shown below.
(Note that the ordering we have placed on inputs sometimes restricts transitions between
states.) The transition table and transition matrix are shown below.

[— WN S e
012 3 4
1 -56 —
2 — 2 7 8
3 -133 9
4 — — — _—
5 - 2 10 8

5= 6 — 13 3 11/,
7 — 13- 4
8 — — 6 —
9 — 12 — —

10— 5 6 —
11 — 12 — —
12— 2 — 8

| 18— — 7 — |
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(0111100000000
0000011000000
0010000110000
0001000001000
0000000000000
0010000000100
0001000000010
0000100000000O
0000001000000O
0000000000001
0000011000000
0000000000001
0010000010000

10000000100000

Counting self-avoiding walks is an important problem in statistical mechanics and has
been extensively studiefd 4]. The exact number of such walks is known karp to 51 and
has been accomplished through extensive computational effort. The DFA based approach
is not likely to work for such large values k&ince the number of states in the DFA will be
very large. But asymptotic bounds on the number of self-avoiding walks can be obtained.
Of special interest is theonnective constant defined as lim_ o ( f (n))Y" where f (n)
is the number of self-avoiding walks of lengtlin two-dimensional lattice grid. Surpassing
the earlier work based on Golden and Jackson’s (inclusion—exclusion) technique, Ponitz
and Tittman [18] have obtained the best known upper-bound for the connective constant,
namely u<2.6939. Their method is based on DFA based counting.LLbe the set of
strings that encode self-avoiding walks. Ponitz and Tittman designed a DFA for a subset
of the complement of. By determining the largest eigenvalue of the associated transfer
matrix, they were able to establish the new upper-bound. Weak minimization technique
proposed in this paper may be useful in solving similar problems, especially if we are only
interested in approximate counting results.

3. Complexity of computing the matrix power formula

Counting the number of strings of lengthaccepted by a DFA raises many interesting
computational problems. A direct approach would focus on the most efficient way to com-
pute the matrix expressiom” y’ whereAis ak x k matrix of integersx andy arek-vectors.

Let T'(k) be the number of arithmetic operations (additions and multiplication) sufficient
to compute the product of twb x k& matrices. Coppersmith and Winograd’s algorithm

[2] establishes thal' (k) = (Ok%) wherea is approximately 2.4. But more realistically,

o should be considered lggr using Strassen’s algorithnf®] which is known to give a

good performance even for moderate size matrices. Thus the arithmetic complexity of com-
puting x A"y’ is at most min{O(k% log n), O(k%n)} based on two ways to compute the
product. To get the first bound, we could compateusing repeated squaring with the fast
matrix multiplication algorithm (such as Strassen’s algorithm) as the base case, then pre-
and post-multiply by vectorsandy’ respectively. To get the latter bound, we multiply the
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matrices from left to right. There are+ 1 multiplications involved. Each of them (except
the last one) requires@?) operations since it involves multiplyingkavector by ak x k
matrix. The final multiplication is a dot product that takegkDsteps. The total cost is
clearly seen as @2n). In the following, we will refer to the two algorithms as Type-2 and
Type-3, respectively (This is the standard parlance used in computational linear algebra:
matrix—vector product is called Type-2 operation while matrix—matrix product is called
Type-3 operation.) For a fixeld it is easy to see that there is abeyond which the Type-
3 algorithm is faster. Asymptotically, ifi = Q(k log k) then the Type-3 algorithm is the
faster one.

By combining the two algorithms, we can get the following upper-bound.

Theorem 1. The number of integer multiplications required to comput¢ y’ (where X is
a lby k vectorAis ak x k matrix, and c is ak x 1 vector—all with integer entrigss
O(MiNo<r < |ig n) (rk* + k2(n — 27)}).

This bound is obtained as follows: First comput® by repeated squaringtimes. This
involves Qrk*) multiplications. The produatA? A”~2'y’ can be computed by left to right
matrix multiplication with at most2(n — 2") integer operations. Since we can choose
the bound follows.

We have implemented the above algorithm where the matrix entries can be unlimited
precision integers. We have been able to solve instances for which DFAs have several
thousands of states amd(the length of the string) can also number in the thousands. In
fact, it is not hard to see that the size of the alphabet has less impact on the performance of
the algorithm than the number of states. The effect of large alphabets is that the erffries in
would be large. However, with well-designed unlimited precision arithmetic package, this
effect is not as significant as the increase in the size of the DFA.

Since the space complexity is even more critical in the above algorithms than the time
complexity, it is worth examining it in some detail. We will examine the two algorithms
described above, namely the Type-2 algorithm and Type-3 algorithm. We will assume that
the matrixA is small enough (or equivalently, our main memory is large enough) so that
it completely fits into the main memory. It is knowj®] that Strassen’s algorithm can be
implemented using @2) additional memory. By implementing repeated squaring bottom-
up (non-recursively), we can keep the total additional storage for Type-3 algorithm down to
O(k?). But this bound (with a non-trivial multiplicative constant hidden in the O notation)
adds significant overhead to the memory requirement. In contrast, the Type-2 algorithm
requires only @Qk) additional storage since we only need to store a single vector of size
O(k). The memory requirement for the hybrid algorithm is alg@4p, essentially the same
as that for the Type-3 algorithm. Analysis of space complexity becomes more complex
whenk is too large for the main memory to hold the entire ma&ixn this case, we have
to redesign the algorithm using standard techniques like block transfer. The time-space
trade-off for large matrix multiplication has been extensively studied and a trade-off for the
problem of computing A"y’ can be modeled on such studies. This problem is beyond the
scope of the present paper although it is an important one in view of the fact that many
transfer matrices arising in real applications are quite large. (It should be noted that only
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recently a detailed understanding of cache efficient algorithms for matrix computations has
started to emerg46].)

A different approach to computingA”y’ is based on inverting a Toeplitz matrix. This
approach is particularly useful in the setting in which the counting problem will be in-
voked multiple times so that it is worth investing time for pre-processing so that the post-
processing for specific instancesrois done fast. The basic idea behind this method is as
follows: if f(n) = xA"y’ whereAis ak x k matrix, thenf (n) satisfies a linear recurrence
equation with constant coefficienf$3]. We can computé (n) for anyn by determining the
coefficients in the linear recurrence formula. This can be accomplished efficiently by invert-
ing a Toeplitz matrix. The details are as follows: lfgh) satisfy the linear recurrence equa-
tion f(n) = 2];=1Ck_jf(l’l—j). Firstwe compute; = f(i)fori =0,1,...,2k—1using
the algorithm described in Theorem 1. Then we determine the vectofcocs . . . cx—1]’
as:c = B~la wherea = [arayy1 . .. az—1] andBis given by

aog ai ag—1
ax az 23
B =
ax—1 ag ... ag—2

(The algorithm for inversion should be modified to return the largest non-singular matrix
that coincides with a left-upper submatrix®fn caseB is singular. Any standard algorithm
for inversion including Trench'’s algorithm referred to below can be so modified. We can
then use this submatrix instead®j

The preprocessing stage can thus be summarized as follows:
(1) Use the algorithm of Theorem 1 to compyté) fori =0,1,...,2k — 1.
(2) Invert the matrixB.
(3) Compute the vectar.
The complexity of the preprocessing step is as follows: The complexity of step 1 is
O(k mino< < |1 nj {rk* + k%(n — 2")}). The complexity of Steps 2 and 3 (using Trench’s
algorithm [23] for inverting a Toeplitz matrix) is @2). Since the exponent dfin the
expression for Step 1 is at least 3, replacing Trench’s algorithm by Gaussian elimination
will not change the asymptotic complexity of the preprocessing stage. But it makes a sig-
nificant difference in practice since Step 2 is the most time consuming step. Thus Trench’s
algorithm makes a significant difference in the actual performance of the algorithm.

The obvious algorithm for the postprocessing step involves computing iterafivé)y
=k + 1,...,nusing the linear recurrence equation. It requires storing th&lesiputed
values off (r). This algorithm has time complexity@») for computing f (n) for eachn.
However, faster algorithms are possible 1§ very large, we can do better using Fiduccia’s
algorithm [4]. The arithmetic complexity of Fiduccia’s algorithm is(fOlog k log n).
This algorithm is based on@g n) iterations of polynomial multiplication involving two
polynomials of degrek. Using Fast Fourier Transforifi], polynomial multiplication over
the field of integers can be performed iikQog k) steps. The resulting algorithm has time
complexity Qk log & log n).

By combining the pre- and post-processing steps into a single algorithm, we obtain the
following.
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Theorem 2. The number of integer multiplications required to computé y’ (where X is
albyk Aisak x k matrix, and c is ak x 1 vector—all with integer entriggs at most
O(k MiNo<r < |1g n) {2rk™ 4+ k?(n — 2°)} + min{kn, k log k log n}).

Before we conclude this section, two additional observations are in order. First, it is
more realistic to uséit complexity model for this problem since the numbers involved
can be rather large. It is not difficult to convert the above upper-bounds to corresponding
upper-bounds in the bit complexity model: We have to multiply the arithmetic complexity
expression byM (s) wheres is the size of the largest number involved amdt) is the
bit complexity of multiplying twot-bit integers.s can be seen to be bounded above by
O(k log o) whereg is the largest row sum d&. The easiest way to see this is as follows:
The largest row sum represents an upper-bound on the size of the alphabet over which
the automaton is defined. Sing&n) is the number of strings of lengthaccepted by the
automaton, it cannot exceed. All the intermediate humbers generated obey this bound
as well.

Finally, we would like to address the question of whether the algorithms described above
are polynomial time algorithms. K is fixed, andn is the input to the algorithm (which
means the input size is i9, it is easy to see that the arithmetic complexity of the above
algorithm can be made a polynomial in ledyy choosing Type-3 algorithm in Step 1 above
and by using Fiduccia’s algorithm. But the algorithm is still not a polynomial time algorithm
since the bit complexity involves an exponential term. In fact, the (bit) complexity of this
problem is inherently exponential since the output size is exponential in input size. So, a
more interesting question is whether there is-@pproximation algorithm of polynomial
time complexity. Here the meaning@approximation is as followg\ is ane-approximation
for Bif |A — B| <¢|B|. First note that for a fixeel, the leadind’lg (%)] bits of f (n) together
with the binary representation of length ¢in) is anepsilorapproximation forf (n).

This floating-point representation is of size lineaminThis representation shows that it

is possible that such a polynomial time approximation algorithm exists. For a very special
case of this problem, such an algorithm has been recently presented by Hirvensalo and
Karhumaki [7].

3.1. Theoretical bounds on minimization

The motivation of this study is to explore methods for minimizing the size of a DFA
so that the computation of the expressiofi’ y’ is optimized. Classical linear algebra can
assist in determining a theoretical lower bound for the siz& ¢f Ais to represent a DFA,
then we are somewhat restricted in that its entries must be non-negative integers. But here
we consider the slightly more general case where the entries in the vegtarsdA belong
to the set of non-negative rational numbers. Such matrices can be viewed as representing a
“weighted” FA, a model that has been extensively studi2d].

In determining a lower bound, we will make use of the following.

Theorem 3(Perron—Frobenius Let A be am x n matrix with non-negative entriethen
A has a real eigenvalué, >0, which dominates all eigenvalues of A. Thatifsi is
any eigenvalue of Ahen|A| < 44. Moreover at least one right eigenvector and one left
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eigenvector associated with is semi-positiveand to each eigenvalueof A different from
Aa, there corresponds an eigenvectoes 0 which has at least one negative component

Proof. See[3]. O

We will refertol 4 as theé=robenius root The matrixA may have more than one eigenvalue
which in absolute value is equaliq, i.e., which lies on the boundary of the circle of radius
A4 about the origin in the complex plane, but if we create the mattix A + I,, wherel,
is then x n identity matrix, thenA’ will have a unique maximum eigenvalue, /4

The matrix,A’, has an interpretation in terms of DFAsAlfis the transition matrix for a
DFA, D, we may introduce a new symba|,not belonging to the input alphabet and specify
that for each state in the DFAdetermines a transition from the state to itself (a self-loop),
then the transition matrix for the new DF&), will be A’. We will refer to the new DFA
so constructed as the augmented DFA. We have the following lemma.

Lemma 4. Let D; and D, be two DFAs which are weakly equivalent. Then the augmenta-
tion of D1 is weakly equivalent to the augmentation/af.

Proof. LetL1bethelanguage acceptedbyandL; by D, overinputalphabets; andX»
respectively. Then for evey> 0 there exists a 1:1 correspondenge LlﬂZ’i — LZDZ’E.

Letus be any word accepted by the augmentatioPgfand letv; be obtained by removing

all occurrences of from uq. Clearlyvs is accepted by1. If |v1] =k, then we may use;

to obtain a wordv, accepted byD,, and by replacing the occurrencesxah v, precisely

where they occurred in; we obtain a wordio accepted by the augmentation@$. Since

each of these operations is invertible, we have obtained the 1:1 correspondence necessary
for weak equivalence. [J

The advantage of considering overA may be seen in the following. Letbe the size
of A’. Then-dimensionatomplex vector spac€” may be decomposed in the traditional
way into a direct sum of cyclic subspaces determined by the eigenvaldésTdfe vectors
x andy may then each be expressed as linear sums of basis vectors chosen from the cyclic
spaces. If there are non-zero components in these sums for the subspace determined by the
Frobenius root, then if we iterate multiplication By, the dominance of this eigenvalue
will overtake all other components and the resulting vector will converge to a direction in
the eigenspace of + /4.

LetD be a DFA that accepts a langudgd\ its transition matrix, and let,, be the words
in L of lengthm. We refer to the sequen¢é,, | i > 0} as the acceptance setsiafWhen it
exists, we define thasymptotic acceptance rated D as

|Lm+l|
pp = lim

m—00  |L,,|

If we let x andy be the initial and final vectors, thdt),, can be computed by

|[Lm| = xA™y’
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and so

m4+1_
Py = fim A
m—oco  x A"y’

We may assume that we have removed all unreachable and non-terminating stat®$ from
and that the resulting DFA hasstates. Since the vector space has dimensiand the
vectors representing each statddfform the standard basis and are thus independent, then
without using the dominant eigenvectoy, it is impossible to span all the state vectors.
Thus, at least one state vector contains a non-zero component @all one such state
ga, and consider the automaton wighy as the initial state. Lei4 be the vector associated
with g 4. IteratingA’ on a vector in each cyclic subspace results in a vector that eventually
approaches the eigenvector of that subspace. Thus, iterdtimyu 4 will result in a vector
approaching 4, and each non-zero component will grow at a rate asymptotittoi4)".
Let ¢gp be a state corresponding to a non-zero component oincegz terminates, then
the set of strings that determine a path that stayfiago throughy z, and reach a final state
will also grow at the same rate as word length increases. Since some strings beginning at
qo Will determine paths that pass through, thenL) will also grow at this rate as well,
and we have shown that

Moreover, since for any DFAE, which is weakly equivalent tB, E’ is weakly equivalent
to D', and sopy: = pp. This yields the following theorem.

Theorem 5. Let D be a DFA with transition matrix Aand assume that, is the root of an
irreducible polynomial over the rationals of degree d. Then any DFA weakly equivalent to
D must have at least d states

Proof. Supposé is any DFA weakly equivalent t with transition matrix8. As we have
seen abovey = (14 14), and sincel, is the root of the characteristic polynomial Bf
thenB has size at least This completes the proof. [J

In general, the above theorem provides us with only a crude lower bound for the size
of the minimum DFA. In most cases, eigenvectors associated with other eigenvalues also
contribute non-zero components to the veckandy, and a more detailed analysis of these
contributions would be required to determine the actual limit. However, as we shall see in
the results below, the lower bound does illustrate the effectiveness of our minimization
procedures at least in the cases where matrix size is reasonably small.

4. Weak minimization algorithm
From the discussion above, it is clear that reducing the number of states in the DFA

is crucial for the success of a DFA based approach for counting problems. The standard
optimizations we should first attempt are: (1) remove useless states and (2) perform DFA
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1

o)

Fig. 6.M(on the left) is strongly minimal, but not weakly minimal asii& (on the right).

minimization (in the classical sense). The following example illustrates how we can optimize
beyond standard DFA minimization.

Example. Consider the DFAV shown in Fig 6. It is a minimal DFA, but it can be shown
below thatM’ is a smaller DFA that is weakly equivalentib

If we switch the transitions on input symbols 0 and 1 from s&f@n operation that
preserves weak equivalence) My the resulting DFA is not minimal and by (classical)
minimization of this DFA, we geM’.

The above idea leads to the following concepts and problems.

Weak equivalence problem
Input: Two DFAs My andM>. Output yesif My andM» are weakly equivalenhoelse.

Weak Minimization Problem
Input: A DFA M. Output:A DFA M’ with as few states as possible such tikaand M’
are weakly equivalent.

4.1. Algorithm for weak equivalence

An algorithm for weak equivalence follows directly from the algorithm for the equivalence
of probabilistic automata due to Tzef@@]. The reason is as follows: Two probabilistic
automata are equivalent if their acceptance probabilities are the same for every string.
Tzeng presents a polynomial time algorithm for this problem. We can directly translate
this algorithm into a weak equivalence testing algorithm as follows:Metand M» be
two DFA's whose weak equivalence we want to test. We can convert each of them to a
probabilistic automaton over a unary alphabet by assigning a transition prob%bﬂiﬂy
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each transition in the given DFA wheseis the size of the input alphabet. Then, it is easy
to see thai; and M» are weakly equivalent if and only if the corresponding probabilistic
automata are equivalent. Tzeng shows an upper bound:df@r his algorithm where

n = |M1| + |M2|. The same bound thus holds for weak equivalence as well. We present
a faster algorithm below based on the following lemma. For a DfAand a stateg, we
define fys (¢, n) as the number of words of lengththat determine paths froupto a final

state. In the case, wheggs the initial state we simplify this tg, (n).

Lemma 6. Let M1 = (Q1, 21, 01, s1, F1) and My = (Q2, 2>, 2, 52, F») be two DFAs.
If fa,(n) = fu,(n) foralln = 0,1,2,...,2(101] + |Q2| — 1), then M1 and M are
weakly equivalent

Proof. Can be found if17,22] O

This lemma leads to the following algorithm for weak equivalence testing: Given two
DFAs M1 and M, as above, we compute for eagh= 1,2, ..., (|Q1] + |Q2| — 1), the
number of strings of lengthusing the Type-3 algorithm presented in the last section. If
they agree for every computédthen they are weakly equivalent, else they are not. It is
easy to see that this algorithm has complexity8og n). It is an interesting problem to
find a faster algorithm for weak equivalence.

4.2. Algorithm for weak minimization

The basic idea behind this algorithm is as follows. Recall the Myhill-Nerode theorem
[8] that states that a DFM is minimal if and only if ()M has no unreachable states (from
starting state) and (b) for any two stapeandq, there is some stringsuch that exactly one
of 4(p, x), d(q, x) is in F. A simple (strong) minimization algorithm is: Create an initial
partition of vertices intd51 = F andS2 = Q — F. If there is a pair of stateg, ¢ € S;, and
an input symbok € X such thab(p, x) andd(g, x) are in differents;’s, split S; such that
all states that go to the sanSg on inputa are in the same partition . This process of
splitting continues until no split is possible. At this stage, each group contains states that
are equivalent to each other and hence they can be merged to form the minimal DFA.

We use a similar idea. Aftdesteps, two states belong to the same class in the partition if
and only if the number of strings of length= 0, 1, 2, . . ., k that are accepted by the DFA
starting from each of the states is the same. In the next step, for each state in an equivalence
class, we compute the number of strings of lerigthl that determine a path from that state
to a final state. The partition is then refined by subdividing the class into those subsets in
which the number of strings remain the same. Define two spetedqg as weakly equivalent
if for all k, the number of accepting strings of lenggtstarting ap is the same as the number
of accepting strings of lengthstarting af.

Lemma 7. Let M be a DFA and letP = {p1, p2, ..., p,} be r states that are weakly
equivalent. Therthere exists a DFAM’, that is weakly equivalent to M obtained by merging
states in P. Moreoveif g1 andg2 are two states not in P that are weakly equivalent in M
then they remain weakly equivalentiy.
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Proof. Merging is done as follows. First, label each ardMnwith a unique label. (Note
that this does not change weak equivalence.) Choose one memBgsay, p1) as the
representative of the set. The outgoing arcs frgnmremain the same iM’. For eachp;,
i=2,...,r, redirect all incoming arcs tp; that originate outside d® so that they now go
into p; instead. In addition, redirect all incoming arcsptothat originate ap1 back top;
itself. If go is in P, then the representative Bfbecomes the initial state. H is contained
in F, then the representative Bfis a final state.

We now demonstrate a 1:1 correspondence between padthand paths i/’ that reach
a final state. First consider a pathNhfrom initial state go, to a final state. We will prove
by induction that there is a 1:1 correspondence between terminating paéhthat pass
throughP ktimes, and terminating paths i’ that pass througp; k times.

For k = 0, we note that if the path iNM does not pass through a membeiPptthen it
remains unchanged itf’.

Fork = 1, the path can be segmented into two pieces: the segment leadingditom
somep; belonging tadP and the path fronp; to a final state. In the case thatis p;, i.e. the
initial segment is the empty path, then the second segment, the patlggranifinal state
corresponds to the path from initial state to final stat&fin

Now suppose the path frogy to p; is not empty. Suppose the last arc on this path is
(gj,a;, pi). Since none of the states in the initial segment of the path aketiren the
path up to the last arc remains unchangedifinand the last arc im has been replaced in
M'by (gqj,aj, p1). Since the labels on arcs M are unique, the replacement determines
a unique path te; in M’. Now assume that the second segment of the path has lemgth
(Note thatm could be 0 ifp; is final.) Sincep; and p; are weakly equivalent, then there
is a 1:1 correspondence between paths of lengfrom p; to a final state and paths of
lengthmfrom p; to a final state ifM. In M’ we may replace the second segment with its
corresponding path iM from p1. This yields a 1:1 correspondence for 1.

Fork > 1, we may proceed inductively. We divide pathdMrpassing throug® £ + 1
times into three segments: a path throfgktimes ending irp;, a path fromp; to p; with
no intermediate visits t®, and a terminating path from;. To find its corresponding path
in M’, we first remove the middle segment of the path (the piece fppito p;). Since
the first segment ends ip; and the last begins ip; and p; and p; are equivalent, we
replace the final segment with its corresponding path beginnipgatd adjoin this to the
initial segment to obtain a path that passes thrdagttimes. Inductively we find the path
in M’ corresponding to it and then reinsert the path frento p; changingp; and p; to
p1in M.

Conversely, the paths i’ can be mapped back into pathdvinoy examining the labels
on the arc to each visit tp;. Since these labels are unique, then the map bakkdan be
determined uniquely.

The last statement in the lemma may also be proved inductively by the number of visits
to P. This completes the proof.[J

The idea behind the algorithm is to compute in an incremental manner the number of
accepting strings of lengthstarting from each state and maintain an equivalence class that
includes all the states that have the same count foj all 0,1, ..., k. In other words,
two states ard-weakly equivalent iffy (p, j) = fu(q, j) for all j <k. We refine the
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partition during the next iteration based @G+ 1)-weak equivalence, just as in the strong-
minimization algorithm. The algorithm terminates afte©2 — 1 iterations. Now we can
merge the elements of an equivalence class into a single state. A more formal description
of the algorithm follows.

Algorithm WeakMinimizeDFA
Input: DFAM =< Q, A, qo, F >
/[Assume that M is strongly minimal DFA with useless states removed.
/[A is the transition matrix for M
1. NF= Q — F /I non-final states
Partition ={F, N F}
len = 0 //string length
vp=<10>
/I vp represents the number of paths from each member of the partition to
Il final statewvp will grow in length as the Partition is refined.
p = size(Partition)
2. while (en<2x* Q] —1)
{ Refinement= {} // Initially Refinement is empty
refing, = <> // Initially refing, is an empty vector
for every P; in Partition
{//create vectos; of size = |P;|
for every statey in P;
llcreate vecton, of sizep wherev, [k] is the number of arcs fromto 7.
vy [k] = sum of the elements of matrix A in the row corresponding to g
and the columns corresponding to element®,of
si[a] = vy - vp /1 5;[q] is the number of paths of lengtlan + 1 fromqto F
if (not all values ofs; are the same)
{refine P; by grouping elements with like values i
Adjoin refinement ofP; to Refinement
Adjoin corresponding values af to refing,
}
else
{ Adjoin P; to Refinement
Adjoin unique value of; to refine,
}
Partition= Refinement
p = size of Partition
vp = refing,
len=len+1
}
3. /IConstructM’ as follows.
For eachP; = {p1, p2,..., pr} in Partition, choose one member (say,)
as the representative of the set.
/[The outgoing arcs frorp; remain the same in’.
Foreachp;,i=2...r
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remove the row of A corresponding g from A // This removes ; from the DFA
add the column of A corresponding tg to the column corresponding @ .
/IThis redirects all incoming arcs to; that originate outside af;
/I so that they now go intp; instead.
/[The arcs that originate at and terminate ap; are now self-loops back tp;
remove the column of A corresponding g from A

If gois in P;, then the representative &f becomes the initial state.

If the representative af; belongs td-, then it remains a final state.

4.3. Correctness of the algorithm and its time complexity

We claim thatM’ is weakly equivalent td1. This can be shown as a direct consequence
of the above lemma since we are computing for all stptebe set of strings of lengtk
accepted starting from. If the two vectors are identical aft&iterations, it follows from
the above theorem that the two states are weakly equivalent. Thus, we can combine them
into a single state as done in Step 3. It is clear fathas no more states thamand in
practice, the algorithm reduces the number of states significantly. However, as shown below,
the algorithm does not always produce a weakly minimal DFA.

Example. Minimal DFA for 2 x n self-avoiding walk.

In an earlier section, we described a DFA for the2self-avoiding walk problem. It had
14 states. The weak minimization algorithm reduces the size of the DFA to 9 states. The
characteristic polynomial for the transition matrixjér) = x2(x — 1)3(x + 1)2(x2 —x — 1)
with dominant eigenvalue £1+2—‘/§) As it turns out, eigenvectors for the non-dominant
eigenvalues also contribute to the computation of the number of strings of lerigtt
are accepted. A full analysis of eigenvectors allows for the construction of the optimally
minimal DFA. If we consider only strings of length 2 or more (the nilpotent portion of the
matrix has dimension 2 because of the multiplicity of the 0 eigenvalue), then we find that a
matrix of size 6, shown below, with initial vecter= [10001 Jandy = [260—-3 —-10]
is a transfer matrix of a DFA that is weakly equivalent to the above DFA.

010000
110000
000010
000001
001000
001100

A Transition matrix of minimal size for the 2 n self-avoiding walk.

Time complexitylL etk be the number of states in the DIFA Step 1 requires @) steps
to partition the states into final and non-final subsets. The algorithm then perftrins 2
iterations of Step 2. In each iteration, we consider each stdfkeavice, as we construct the
s; vectors. Each term in the vector is computed by forming the dot product of the wgctor
with the vectorv where each vector has sizg,equal to the size of the partition. The dot
product requirep multiplications andp — 1 additions, i.e. 2 — 1 arithmetic steps. Since
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Fig. 7. Stategy andg» are right weak equivalent. Their merger contains two incoming arcs and is thus becomes
left weak equivalent tg3. Merging these on the left creates a single state with three outgoing arcs which is now
right equivalent tg4. The last reduction produces a three-state DFA with 5 edges initiatipgeaid 3 terminating

atqf.

p is bound byk, each iteration requires(@?) steps. Grouping the elements of each vector

s; by like value is @k?) in total. Thus, Step 2 is @3). Finally, because Step 3 involves
adding columns of transition matrix together (as we merge states) and eliminating rows, the
cost of Step 3 is easily seen to b&®). Thus we have.

Theorem 8. The time complexity of constructing a reduced weakly equivalent DFA to a
given DFA with k using the algorithm presented abov@ ().

4.4. Left weak equivalence

The definition of weak equivalence concerns the number of paths from each state to final
states. Symmetrically, one could as easily consider the number of paths from the initial state
to any given state and define two stateteftsveakly equivalent if this number is the same
for all string lengths. (To distinguish this new definition from our preceding one, we will
refer to the former asght weak equivalence.) Except in one case, the algorithms and proofs
carry over merely by considering the transpose of the transition matrix. The one exception
is that in the case of left equivalence, it is not always possible to merge equivalence classes
consisting of final states. A DFA and its reverse DFA is symmetric in every regard except for
the uniqueness of the initial state in the former and the multiplicity in the latter. However,
if we exclude classes of final states, we may utilize left weak equivalence to reduce the size
of the DFA.

In fact, after performing a reduction based on right weak equivalence it is sometimes
the case that the resulting DFA now contains left weak equivalent states that can allow a
further reduction. Moreover, it is a simple matter to demonstrate that given any positive
integerk there are DFAs for which a sequencekaditernating right minimizations and left
minimizations may be performed with a reduction at each step.7Rimstrates one such
DFA in which right, left, and right minimizations reduce the DFA.

A feed-forward network such as the one in Fig. 7 also illustrates that a sequence of
alternating right and left reductions does not always yield the absolute minimal DFA. For
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Table 1
Minimal DFA vs. Weak reduced DFA
k = Column width Strong-minimal DFA Weak-reduced DFA
5 20 10
6 20 14
7 70 32
8 70 43
9 252 114
10 252 142
11 924 418
12 924 494
13 3432 1646
14 3432 1780
15 12870 6272
16 12870 6563

example, consider a DFA with four staigs g1, g2, andgz whereqgg is the initial state and
g3 is the final state and in which there are 9 arcs figyo ¢; and 1 arc fromy; to g3 and

2 arcs fromgg to g2 and 3 arcs frongz to g3. Minimization, on the left or right, does not
reduce this DFA though its behavior is identical to that in Fig.

4.5. Implementation results

We have implemented the above algorithm and have tested it on several examples includ-
ing the tiling DFA's described in Section 2.1. In most of the examples, we found moderate
to significant reduction in the number of states when we applied the algorithm on strong-
minimized DFA's.

The following table (Table 1) shows the size of the strongly minimized DFA from the
DFA generated the by program of Section 2.1 and the size of the weak-reduced DFA (based
on the algorithm presented above) for various valuds of

The above results indicate that the reduction in the number of states for this family of
DFA's by applying the weak minimization algorithm is nearly by a factor of 1/2. In addition
in the cas& = 5, a reduction using left weak minimization further reduces the number of
states to 8, the optimum size as determined by examining eigenvalues. (Left minimization
did not further reduce the DFA fdr > 5.)

4.6. Extension of the algorithm to unambiguous NFA’s

Recall that the original goal of this paper is to show that many counting problems can
be solved in a unified manner using a DFA model. It is easy to see that this approach
works even if the strings that we want to count can be accepted by a NFA so long as it
is unambiguous. The matrix power formula”y’ for the number of strings of lengtf
also holds for unambiguous NFAs. This fact was implicitly shown by Stearns and Hunt
[22]. Our weak-minimization algorithm works for unambiguous NFA as well. Although
converting a DFA to a minimal equivalent unambiguous NFA is known to be NP-complete
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[10], the weak minimization may be an effective way to reduce the number of states of an
unambiguous NFA when the application involves counting, and not membership.

5. Summary of contributions and directions for further work

We have accomplished the following goals in this paper: (1) We showed that a number
of counting problems can be solved in a unified manner using a DFA based approach. As
examples, we showed that the DFA based approach can be used to count the number of
simple paths in a grid graph and the number of ways to tile a lattice grid using dominoes. (2)
The problem of evaluating a matrix power formula has lead to the development of a hybrid
algorithm based on a number of optimizations including the use of Trench’s algorithm for
inverting a Toeplitz matrix and Fiduccia’s algorithm for solving a linear recurrence formula.

(3) Further optimization issues (with the aim of reducinghe size of the transfer matrix)

led us to propose new notions of weak equivalence and weak minimization of DFA's. (4)
Finally, we designed and implemented an efficient algorithm for the weak minimization
problem.

This study has raised several interesting practical and theoretical problems. Here is a
short list of them: (1) Determine for which classes of automata the algorithm presented in
Section 4 always finds a weakly minimal DFA. (2) Develop a software design framework
that converts a DFA specification into a DFA realization. Implicit representations and other
compact representations can be pursued in counting applications to surmount the storage
requirements of transfer matrix. (3) It is obvious that there are non-regular languages that
have the same counting function as regular languages. A systematic identification of such
languages will extend the scope of counting problems that can be solved using the transfer
matrix approach.
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