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Abstract

DFA minimization is an important problem in algorithm design and is based on the notion of DFA
equivalence: Two DFA’s are equivalent if and only if they accept the same set of strings. In this paper,
we propose a new notion of DFA equivalence (that we call weak-equivalence): We say that two DFA’s
are weakly equivalent if they both accept the same number of strings of lengthk for everyk. The
motivation for this problem is as follows. A large number of counting problems can be solved by
encoding the combinatorial objects we want to count as strings over a finite alphabet. If the collection
of encoded strings is accepted by a DFA, then standard algorithms from computational linear algebra
can be used to solve the counting problem efficiently. When applying this approach to large-scale
applications, the bottleneck is the space complexity since the computation involves a matrix of order
k × k if k is the size of the underlying DFAM. This leads to the natural question: Is there a smaller
DFA that is weakly equivalent toM? We present an algorithm of time complexity O(k3) to find a
compact DFA weakly equivalent to a given DFA. We illustrate, in the case of a tiling problem, that
our algorithm reduces a (strongly minimal) DFA by a factor close to 1/2.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we explore an application of finite automata to counting problems. To count
the number of combinatorial structures of a certain sizen, we map each structure to a string
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Fig. 1. DFA forL = {x|x ends with a unique occurrence of 010 as a suffix}.

s from a carefully chosen alphabetSso that there is a 1-1 mapping between each object
we are counting and a subset of strings overS. When establishing this 1-1 mapping, we
can ignore the size parametern, taking care only that it is length-preserving. If the set of
such encoded strings is regular, then we have arrived at an efficient algorithm to solve our
counting problem. This is a consequence of the fact that there is an efficient algorithm for
counting the number of strings of lengthn accepted by a DFA.

We begin with an illustration of this approach to solve the following counting problem
drawn from Liu’s book [12]: “Find the number ofn-bit binary sequences that have the
pattern 010 occurring for the first time at thenth digit”. For this problem, the encoding is
trivial. We simply use the string itself as the encoding. The set of strings that have a unique
occurrence of 010 as suffix is regular and can be accepted by the DFA shown in Fig.1.

LetM be a DFA withk states. The transition matrixAof the DFA is ak× k matrix where
aij is the number of transitions from statei to statej. It is well-known and is easy to show
by induction on the length that the number of strings of lengthn that start in statei and
end in statej is given by[An]ij . Thus, the number of strings of lengthn accepted by DFA,
M is given byxAny′, wherex is the start vector (of order 1× k) such thatxj = 1 if and
only if j is the start state, andy′ is the transpose ofy wherey is the accepting vector (of
order 1× k) whereyj = 1 if and only if j is an accepting state. For the problem above, after
we remove thedead state(since it does not contribute to the number of strings accepted) is
easy to verify that

A =




1 1 0 0
0 1 1 0
1 0 0 1
0 0 0 0


 .

x = (1 0 0 0) and

yT =




0
0
0
1


 .



B. Ravikumar, G. Eisman / Theoretical Computer Science 328 (2004) 113–133 115

D 0, 1

Start

B

1

C

0

0

1

1

0

d 0, 1

start

bc

0,1

1

0

Fig. 2. A minimal, but not weakly minimalM andM ′ weakly equivalent toM.

The above technique to solve counting problems is sometimes called the transfer ma-
trix method [26]. A DFA based approach can be very effective in creating the transfer
matrix. For example, the closure properties of regular languages and other nice structural
features can be used to design the DFA systematically. What motivated this work is the
fact that the theory of finite automata can help in reducing the size of the transfer ma-
trix as well. Optimizations such as removing unreachable states, identifying symmetries,
minimization of the DFA (in the classical sense) are some of the ways to reduce the size
of the transfer matrix. However, there is room for further improvement as the following
example shows.

Example. Consider the DFAM shown in Fig.2. It is a minimal DFA, but it can be seen
thatM ′ is a smaller DFA that is weakly equivalent toM.

Since we are only interested in using the DFA for counting the number of strings of
given length, we need not limit the candidates (in the minimization) only to those DFA’s
that accept the same language. We can change the language so long as we do not change
the number of strings accepted for each length.

This leads to the notion of weak equivalence of DFA’s: We say that two DFA’s are weakly
equivalent if they both accept the same number of strings of lengthk for everyk. The main
goal of this paper is to describe an algorithm that finds a DFAM ′ with fewer states that
is weakly equivalent to a given DFAM. In this preliminary version, we will focus on the
algorithm for weak minimization but describe the applications only briefly, namely counting
domino tilings and self-avoiding walks.
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The rest of the paper is organized as follows. In Section 2, we describe an implementation
that takes as input an integerk and automatically creates a DFA that accepts encodings of
valid tilings of thek × n checkerboard (for alln). We also describe an implementation for
automatically synthesizing a DFA for self-avoiding walks in the lattice grids of a specified
width. In Section 3, we consider the time complexity of solving the counting problem after
the transfer matrix has been created and present a theoretical lower bound on the minimum
size of weakly equivalent DFAs. In Section 4, we present the main result of the paper—
an algorithm for weak minimization and prove its correctness. We also estimate its time
complexity, along with some implementation details. In Section 5, we state some open
problems and directions for future work.

2. DFA design for counting problems

In this section, we are concerned with the design of DFA for two counting problems—
tiling and self-avoiding walks. Both problems are parameterized byk, the number of rows
in a rectangular grid. These and other counting problems require that software tools be
developed to create DFA automatically from given specifications. We are currently in the
process of creating a software engineering framework for such a general purpose tool. In
a companion paper, we describe the details of such an implementation. However, in this
section, we describe a more focussed and more narrowly defined effort to create programs
tailor-made for the two specific applications. In Section 2.1, we will describe an algorithm to
design DFA that accepts encoded tilings, and in Section 2.2, we describe a similar algorithm
for self-avoiding walks on a rectangular grid.

2.1. DFA design for tiling problem

We are interested in counting the number of ways to use 2× 1 tiles to completely tile
a k × n checker-board with some removed squares. This problem is identical to counting
the number of perfect-matchings of a subgraphG of the grid graph of orderk by n. The
connection between the two problems is as follows: We can create a graph from the checker-
board by making each unremoved square a vertex, and connecting two vertices by an edge
if the two squares share a common edge. It is clear that a 1× 2 or a 2× 1 tile corresponds
to an edge, and thus a set of tiles corresponds to a matching. A valid tiling thus corresponds
to a perfect matching. Counting perfect-matchings in a bipartite graph is known to be #P-
complete [25]. Even when the instance is restricted to a subgraph of a grid graph, the
problem seems to be hard, as recently shown by Ogihara and Toda[15]. The tiling problem
with the number of rows restricted to a constant has also been extensively studied, see, for
example[11,21,19,16], among others.

The encoding of tiling can be illustrated withk = 4. We represent the 2× 1 vertical tile
by the string[0 0]′, and the 1× 2 horizontal tile by[1 1].

Our alphabet consists of the pattern of vertical and horizontal tiles that are used to cover
each column of the grid.Thus the alphabet is encoded as� = {a0, a3, a9, a12, a15} where the
index of each symbol when expressed in binary indicates coverage with vertical or horizontal
tiles. For example,a12 = [1 1 0 0]′, meaning that the top two cells are covered with horizontal
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Fig. 3. A DFA for the 4× n tiling problem.

tiles and the bottom two with a vertical tile.The states of the DFA represent the binary pattern
of horizontal tiles that begin in a column. Each 1 in the pattern dictates that its matching 1
occurs in the next column. There are 6 states possible:Q = {q0, q3, q6, q9, q12, q15}. The
DFA M that accepts a valid tiling encoded using the above alphabet is shown in Fig.3.
(Here and throughout the paper dead states have been deleted since they do not contribute
to the number of strings that are accepted.)

Thus, DFA’s can be used to find the number of perfect-matchings in thek×n grid graph.
But we are interested in a more general problem, namely to count the number of perfect-
matchings in asubgraphof the grid graph. We can handle this more general problem as
follows: The input to this problem is integerk, followed by a sequenceI of squares (denoted
by the (row number, column number) pair) that have been removed from the board. First,
we design a DFA over ak-row alphabet in which each entry is{0,1,2}. Note thatI also has
information about the number of columnsr in the board. 0 and 1 have the same meaning as
above, but 2 now represents a removed square. Our program creates another DFAM(I, r)

that accepts all the strings of lengthr that have 2 in rowi and columnj if and only if the
square (i,j) is in I. (There is no other restriction placed on the accepted strings.) Clearly,
M(I, r) has size at most O(r ∗ 2k). The number of perfect matchings in the grid graph
associated withI (as the removed squares) is the number of strings of lengthr in the language
L(M(I, r))∩L(M(k)). We use the standard pair construction to obtain a DFA that accepts
this language and use the transfer matrix to count the number of perfect-matchings. It is
clear from the above discussion that significant optimizations should be done to speed up
the computation since the DFA’s generated automatically through a series of mechanical
steps tend to be rather large.

2.2. DFA design for self-avoiding walks in ak × n grid

Design of DFA to accept the encodings of self-avoiding walks in ak × n rectangular
grid is more complex than the tiling problem described above. We describe our encoding
scheme usingk = 2 (namely paths in 2× n grid) as strings over a finite alphabet. We will
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Fig. 4. Symbols to encode simple paths in a 2× n grid graph.
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Fig. 5. States for DFA for 2× n self-avoiding walks.

again traverse the grid from left to right.At each step we will add a path segment connecting
adjacent cells on the grid. There are four possible segments to use at each step as illustrated
in Fig. 4.

In order to avoid duplicate strings that represent the same path, we will enforce the rule
that inputs are prioritized in the order shown. For example, WN is the same path as NW,
but only the former will be allowed. The states of the DFA will by the 2× 2 and sometimes
2×3 cells containing the right most end of the path. There are 14 states as shown in Fig.5.

All states are final except for states 7 and 13 where the path consists of two pieces that
are not yet connected by a vertical edge. The transition table and matrix are shown below.
(Note that the ordering we have placed on inputs sometimes restricts transitions between
states.) The transition table and transition matrix are shown below.

� =




− W N S e

0 1 2 3 4
1 − 5 6 −
2 − 2 7 8
3 − 13 3 9
4 − − − −
5 − 2 10 8
6 − 13 3 11
7 − 13 − 4
8 − − 6 −
9 − 12 − −
10 − 5 6 −
11 − 12 − −
12 − 2 − 8
13 − − 7 −




,
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A =




0 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0




.

Counting self-avoiding walks is an important problem in statistical mechanics and has
been extensively studied[14]. The exact number of such walks is known forkup to 51 and
has been accomplished through extensive computational effort. The DFA based approach
is not likely to work for such large values ofk since the number of states in the DFA will be
very large. But asymptotic bounds on the number of self-avoiding walks can be obtained.
Of special interest is theconnective constant, � defined as limn→∞(f (n))1/n wheref (n)
is the number of self-avoiding walks of lengthn in two-dimensional lattice grid. Surpassing
the earlier work based on Golden and Jackson’s (inclusion–exclusion) technique, Ponitz
and Tittman [18] have obtained the best known upper-bound for the connective constant,
namely��2.6939. Their method is based on DFA based counting. LetL be the set of
strings that encode self-avoiding walks. Ponitz and Tittman designed a DFA for a subset
of the complement ofL. By determining the largest eigenvalue of the associated transfer
matrix, they were able to establish the new upper-bound. Weak minimization technique
proposed in this paper may be useful in solving similar problems, especially if we are only
interested in approximate counting results.

3. Complexity of computing the matrix power formula

Counting the number of strings of lengthn accepted by a DFA raises many interesting
computational problems. A direct approach would focus on the most efficient way to com-
pute the matrix expressionxAny′ whereA is ak×kmatrix of integers,xandyarek-vectors.
Let T (k) be the number of arithmetic operations (additions and multiplication) sufficient
to compute the product of twok × k matrices. Coppersmith and Winograd’s algorithm
[2] establishes thatT (k) = (Oka) wherea is approximately 2.4. But more realistically,
� should be considered log2 7 using Strassen’s algorithm[9] which is known to give a
good performance even for moderate size matrices. Thus the arithmetic complexity of com-
puting xAny′ is at most min{O(ka log n),O(k2n)} based on two ways to compute the
product. To get the first bound, we could computeAn using repeated squaring with the fast
matrix multiplication algorithm (such as Strassen’s algorithm) as the base case, then pre-
and post-multiply by vectorsx andy′ respectively. To get the latter bound, we multiply the
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matrices from left to right. There aren+ 1 multiplications involved. Each of them (except
the last one) requires O(k2) operations since it involves multiplying ak-vector by ak × k
matrix. The final multiplication is a dot product that takes O(k) steps. The total cost is
clearly seen as O(k2n). In the following, we will refer to the two algorithms as Type-2 and
Type-3, respectively (This is the standard parlance used in computational linear algebra:
matrix–vector product is called Type-2 operation while matrix–matrix product is called
Type-3 operation.) For a fixedk, it is easy to see that there is ann beyond which the Type-
3 algorithm is faster. Asymptotically, ifn = �(k log k) then the Type-3 algorithm is the
faster one.

By combining the two algorithms, we can get the following upper-bound.

Theorem 1. The number of integer multiplications required to computexAny′ (where x is
a 1 by k vector, A is a k × k matrix, and c is ak × 1 vector—all with integer entries) is
O(min0� r��lg n� {rk� + k2(n− 2r )}).

This bound is obtained as follows: First computeA2r by repeated squaringr times. This
involves O(rk�)multiplications. The productxA2r An−2r y′ can be computed by left to right
matrix multiplication with at mostk2(n − 2r ) integer operations. Since we can chooser,
the bound follows.

We have implemented the above algorithm where the matrix entries can be unlimited
precision integers. We have been able to solve instances for which DFA’s have several
thousands of states andn (the length of the string) can also number in the thousands. In
fact, it is not hard to see that the size of the alphabet has less impact on the performance of
the algorithm than the number of states. The effect of large alphabets is that the entries inA
would be large. However, with well-designed unlimited precision arithmetic package, this
effect is not as significant as the increase in the size of the DFA.

Since the space complexity is even more critical in the above algorithms than the time
complexity, it is worth examining it in some detail. We will examine the two algorithms
described above, namely the Type-2 algorithm and Type-3 algorithm. We will assume that
the matrixA is small enough (or equivalently, our main memory is large enough) so that
it completely fits into the main memory. It is known[9] that Strassen’s algorithm can be
implemented using O(k2) additional memory. By implementing repeated squaring bottom-
up (non-recursively), we can keep the total additional storage for Type-3 algorithm down to
O(k2). But this bound (with a non-trivial multiplicative constant hidden in the O notation)
adds significant overhead to the memory requirement. In contrast, the Type-2 algorithm
requires only O(k) additional storage since we only need to store a single vector of size
O(k). The memory requirement for the hybrid algorithm is also O(k2), essentially the same
as that for the Type-3 algorithm. Analysis of space complexity becomes more complex
whenk is too large for the main memory to hold the entire matrixA. In this case, we have
to redesign the algorithm using standard techniques like block transfer. The time-space
trade-off for large matrix multiplication has been extensively studied and a trade-off for the
problem of computingxAny′ can be modeled on such studies. This problem is beyond the
scope of the present paper although it is an important one in view of the fact that many
transfer matrices arising in real applications are quite large. (It should be noted that only
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recently a detailed understanding of cache efficient algorithms for matrix computations has
started to emerge[6].)

A different approach to computingxAny′ is based on inverting a Toeplitz matrix. This
approach is particularly useful in the setting in which the counting problem will be in-
voked multiple times so that it is worth investing time for pre-processing so that the post-
processing for specific instances ofn is done fast. The basic idea behind this method is as
follows: if f (n) = xAny′ whereA is ak × k matrix, thenf (n) satisfies a linear recurrence
equation with constant coefficients[13]. We can computef (n) for anynby determining the
coefficients in the linear recurrence formula. This can be accomplished efficiently by invert-
ing a Toeplitz matrix. The details are as follows: Letf (n) satisfy the linear recurrence equa-
tionf (n) = �kj=1ck−j f (n−j). First we computeai = f (i) for i = 0,1, . . . ,2k−1 using
the algorithm described in Theorem 1. Then we determine the vectorc = [c0c1 . . . ck−1]′
as:c = B−1a wherea = [akak+1 . . . a2k−1]′ andB is given by

B =




a0 a1 . . . ak−1
a1 a2 . . . ak

...

ak−1 ak . . . ak−2


 .

(The algorithm for inversion should be modified to return the largest non-singular matrix
that coincides with a left-upper submatrix ofB in caseB is singular. Any standard algorithm
for inversion including Trench’s algorithm referred to below can be so modified. We can
then use this submatrix instead ofB.)

The preprocessing stage can thus be summarized as follows:
(1) Use the algorithm of Theorem 1 to computef (i) for i = 0,1, . . . ,2k − 1.
(2) Invert the matrixB.
(3) Compute the vectorc.
The complexity of the preprocessing step is as follows: The complexity of step 1 is
O(kmin0� r��lg n� {rk� + k2(n− 2r )}). The complexity of Steps 2 and 3 (using Trench’s
algorithm [23] for inverting a Toeplitz matrix) is O(k2). Since the exponent ofk in the
expression for Step 1 is at least 3, replacing Trench’s algorithm by Gaussian elimination
will not change the asymptotic complexity of the preprocessing stage. But it makes a sig-
nificant difference in practice since Step 2 is the most time consuming step. Thus Trench’s
algorithm makes a significant difference in the actual performance of the algorithm.

The obvious algorithm for the postprocessing step involves computing iterativelyf (j) j
= k + 1,…, n using the linear recurrence equation. It requires storing the lastk computed
values off (r). This algorithm has time complexity O(kn) for computingf (n) for eachn.
However, faster algorithms are possible. Ifn is very large, we can do better using Fiduccia’s
algorithm [4]. The arithmetic complexity of Fiduccia’s algorithm is O(k log k log n).
This algorithm is based on O(log n) iterations of polynomial multiplication involving two
polynomials of degreek. Using Fast Fourier Transform[1], polynomial multiplication over
the field of integers can be performed in O(k log k) steps. The resulting algorithm has time
complexity O(k log k log n).

By combining the pre- and post-processing steps into a single algorithm, we obtain the
following.
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Theorem 2. The number of integer multiplications required to computexAny′ (where x is
a 1 by k, A is ak × k matrix, and c is ak × 1 vector—all with integer entries) is at most
O(k min0� r��lg n� {2rk� + k2(n− 2r )} + min{kn, k log k log n}).

Before we conclude this section, two additional observations are in order. First, it is
more realistic to usebit complexity model for this problem since the numbers involved
can be rather large. It is not difficult to convert the above upper-bounds to corresponding
upper-bounds in the bit complexity model: We have to multiply the arithmetic complexity
expression byM(s) wheres is the size of the largest number involved andM(t) is the
bit complexity of multiplying twot-bit integers.s can be seen to be bounded above by
O(k log �) where� is the largest row sum ofA. The easiest way to see this is as follows:
The largest row sum represents an upper-bound on the size of the alphabet over which
the automaton is defined. Sincef (n) is the number of strings of lengthn accepted by the
automaton, it cannot exceed�n. All the intermediate numbers generated obey this bound
as well.

Finally, we would like to address the question of whether the algorithms described above
are polynomial time algorithms. Ifk is fixed, andn is the input to the algorithm (which
means the input size is lgn), it is easy to see that the arithmetic complexity of the above
algorithm can be made a polynomial in logn by choosing Type-3 algorithm in Step 1 above
and by using Fiduccia’s algorithm. But the algorithm is still not a polynomial time algorithm
since the bit complexity involvesn, an exponential term. In fact, the (bit) complexity of this
problem is inherently exponential since the output size is exponential in input size. So, a
more interesting question is whether there is an�-approximation algorithm of polynomial
time complexity. Here the meaning of�-approximation is as follows:A is an�-approximation
forB if |A−B|��|B|. First note that for a fixed�, the leading�lg (1

� )� bits off (n) together
with the binary representation of length off (n) is anepsilon-approximation forf (n).
This floating-point representation is of size linear inn. This representation shows that it
is possible that such a polynomial time approximation algorithm exists. For a very special
case of this problem, such an algorithm has been recently presented by Hirvensalo and
Karhumaki [7].

3.1. Theoretical bounds on minimization

The motivation of this study is to explore methods for minimizing the size of a DFA
so that the computation of the expressionxAny′ is optimized. Classical linear algebra can
assist in determining a theoretical lower bound for the size ofA. If A is to represent a DFA,
then we are somewhat restricted in that its entries must be non-negative integers. But here
we consider the slightly more general case where the entries in the vectorsx, yandAbelong
to the set of non-negative rational numbers. Such matrices can be viewed as representing a
“weighted” FA, a model that has been extensively studied[20].

In determining a lower bound, we will make use of the following.

Theorem 3(Perron–Frobenius). Let A be ann× nmatrix with non-negative entries, then
A has a real eigenvalue�A�0, which dominates all eigenvalues of A. That is, if � is
any eigenvalue of A, then |�|��A. Moreover, at least one right eigenvector and one left
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eigenvector associated with�A is semi-positive,and to each eigenvalue� of A different from
�A, there corresponds an eigenvectorx �= 0which has at least one negative component.

Proof. See [3]. �

We will refer to�A as theFrobenius root. The matrixAmay have more than one eigenvalue
which in absolute value is equal to�A, i.e., which lies on the boundary of the circle of radius
�A about the origin in the complex plane, but if we create the matrixA′ =A+ In whereIn
is then× n identity matrix, thenA′ will have a unique maximum eigenvalue, 1+�A.

The matrix,A′, has an interpretation in terms of DFAs. IfA is the transition matrix for a
DFA,D, we may introduce a new symbol,x, not belonging to the input alphabet and specify
that for each state in the DFA,xdetermines a transition from the state to itself (a self-loop),
then the transition matrix for the new DFA,D′, will be A′. We will refer to the new DFA
so constructed as the augmented DFA. We have the following lemma.

Lemma 4. LetD1 andD2 be two DFAs which are weakly equivalent. Then the augmenta-
tion ofD1 is weakly equivalent to the augmentation ofD2.

Proof. LetL1 be the language accepted byD1 andL2 byD2 over input alphabets�1 and�2
respectively. Then for everyk�0 there exists a 1:1 correspondence	k : L1∩�k1 → L2∩�k2.
Letu1 be any word accepted by the augmentation ofD1, and letv1 be obtained by removing
all occurrences ofx from u1. Clearlyv1 is accepted byD1. If |v1| = k, then we may use	k
to obtain a wordv2 accepted byD2, and by replacing the occurrences ofx in v2 precisely
where they occurred inu1 we obtain a wordu2 accepted by the augmentation ofD2. Since
each of these operations is invertible, we have obtained the 1:1 correspondence necessary
for weak equivalence. �

The advantage of consideringA′ overA may be seen in the following. Letn be the size
of A′. Then-dimensionalcomplex vector spaceCn may be decomposed in the traditional
way into a direct sum of cyclic subspaces determined by the eigenvalues ofA′. The vectors
x andymay then each be expressed as linear sums of basis vectors chosen from the cyclic
spaces. If there are non-zero components in these sums for the subspace determined by the
Frobenius root, then if we iterate multiplication byA′, the dominance of this eigenvalue
will overtake all other components and the resulting vector will converge to a direction in
the eigenspace of 1+ �A.

LetD be a DFA that accepts a languageL,A its transition matrix, and letLm be the words
in L of lengthm. We refer to the sequence{Lm| i�0} as the acceptance sets ofD. When it
exists, we define theasymptotic acceptance ratioof D as


D = lim
m→∞

|Lm+1|
|Lm| .

If we let x andy be the initial and final vectors, thenLm can be computed by

|Lm| = xAmy′
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and so


′
D = lim

m→∞
xA′m+1

y′

xA′my′ .

We may assume that we have removed all unreachable and non-terminating states fromD′
and that the resulting DFA hasn states. Since the vector space has dimensionn and the
vectors representing each state ofD′ form the standard basis and are thus independent, then
without using the dominant eigenvector,vA, it is impossible to span all the state vectors.
Thus, at least one state vector contains a non-zero component invA. Call one such state
qA, and consider the automaton withqA as the initial state. LetuA be the vector associated
with qA. IteratingA′ on a vector in each cyclic subspace results in a vector that eventually
approaches the eigenvector of that subspace. Thus, iteratingA′ onuA will result in a vector
approachingvA, and each non-zero component will grow at a rate asymptotic to(1+ �A)n.
Let qB be a state corresponding to a non-zero component ofvA. SinceqB terminates, then
the set of strings that determine a path that start atqA, go throughqB , and reach a final state
will also grow at the same rate as word length increases. Since some strings beginning at
q0 will determine paths that pass throughqA, thenL′

n will also grow at this rate as well,
and we have shown that


D′ = 1 + �A.

Moreover, since for any DFA,E, which is weakly equivalent toD,E′ is weakly equivalent
toD′, and so
E′ = 
D′ . This yields the following theorem.

Theorem 5. Let D be a DFA with transition matrix A, and assume that�A is the root of an
irreducible polynomial over the rationals of degree d. Then any DFA weakly equivalent to
D must have at least d states.

Proof. SupposeE is any DFA weakly equivalent toD with transition matrixB. As we have
seen above,
E′ = (1 + �A), and since�A is the root of the characteristic polynomial ofB,
thenB has size at leastd. This completes the proof. �

In general, the above theorem provides us with only a crude lower bound for the size
of the minimum DFA. In most cases, eigenvectors associated with other eigenvalues also
contribute non-zero components to the vectorsxandy, and a more detailed analysis of these
contributions would be required to determine the actual limit. However, as we shall see in
the results below, the lower bound does illustrate the effectiveness of our minimization
procedures at least in the cases where matrix size is reasonably small.

4. Weak minimization algorithm

From the discussion above, it is clear that reducing the number of states in the DFA
is crucial for the success of a DFA based approach for counting problems. The standard
optimizations we should first attempt are: (1) remove useless states and (2) perform DFA
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Fig. 6.M(on the left) is strongly minimal, but not weakly minimal as isM ′ (on the right).

minimization (in the classical sense).The following example illustrates how we can optimize
beyond standard DFA minimization.

Example. Consider the DFAM shown in Fig.6. It is a minimal DFA, but it can be shown
below thatM ′ is a smaller DFA that is weakly equivalent toM.

If we switch the transitions on input symbols 0 and 1 from stateB (an operation that
preserves weak equivalence) inM, the resulting DFA is not minimal and by (classical)
minimization of this DFA, we getM ′.

The above idea leads to the following concepts and problems.

Weak equivalence problem
Input: Two DFAsM1 andM2.Output: yesif M1 andM2 are weakly equivalent,noelse.

Weak Minimization Problem
Input:A DFA M. Output:A DFA M ′ with as few states as possible such thatM andM ′

are weakly equivalent.

4.1. Algorithm for weak equivalence

An algorithm for weak equivalence follows directly from the algorithm for the equivalence
of probabilistic automata due to Tzeng[24]. The reason is as follows: Two probabilistic
automata are equivalent if their acceptance probabilities are the same for every string.
Tzeng presents a polynomial time algorithm for this problem. We can directly translate
this algorithm into a weak equivalence testing algorithm as follows: LetM1 andM2 be
two DFA’s whose weak equivalence we want to test. We can convert each of them to a
probabilistic automaton over a unary alphabet by assigning a transition probability1

� for
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each transition in the given DFA where� is the size of the input alphabet. Then, it is easy
to see thatM1 andM2 are weakly equivalent if and only if the corresponding probabilistic
automata are equivalent. Tzeng shows an upper bound of O(n4) for his algorithm where
n = |M1| + |M2|. The same bound thus holds for weak equivalence as well. We present
a faster algorithm below based on the following lemma. For a DFA,M, and a state,q, we
definefM(q, n) as the number of words of lengthn that determine paths fromq to a final
state. In the case, whereq is the initial state we simplify this tofM(n).

Lemma 6. LetM1 = 〈Q1,�1, �1, s1, F1〉 andM2 = 〈Q2,�2, �2, s2, F2〉 be two DFAs.
If fM1(n) = fM2(n) for all n = 0,1,2, . . . ,2(|Q1| + |Q2| − 1), thenM1 andM2 are
weakly equivalent.

Proof. Can be found in[17,22]. �

This lemma leads to the following algorithm for weak equivalence testing: Given two
DFAsM1 andM2 as above, we compute for eachj = 1,2, . . . , (|Q1| + |Q2| − 1), the
number of strings of lengthj using the Type-3 algorithm presented in the last section. If
they agree for every computedj, then they are weakly equivalent, else they are not. It is
easy to see that this algorithm has complexity O(n3 log n). It is an interesting problem to
find a faster algorithm for weak equivalence.

4.2. Algorithm for weak minimization

The basic idea behind this algorithm is as follows. Recall the Myhill–Nerode theorem
[8] that states that a DFAM is minimal if and only if (a)M has no unreachable states (from
starting state) and (b) for any two statespandq, there is some stringx such that exactly one
of �(p, x), �(q, x) is in F. A simple (strong) minimization algorithm is: Create an initial
partition of vertices intoS1 = F andS2 =Q− F . If there is a pair of statesp, q ∈ Si , and
an input symbola ∈ � such that�(p, x) and�(q, x) are in differentSj ’s, splitSi such that
all states that go to the sameSk on inputa are in the same partition ofSi . This process of
splitting continues until no split is possible. At this stage, each group contains states that
are equivalent to each other and hence they can be merged to form the minimal DFA.

We use a similar idea. Afterk steps, two states belong to the same class in the partition if
and only if the number of strings of lengthi = 0,1,2, . . . , k that are accepted by the DFA
starting from each of the states is the same. In the next step, for each state in an equivalence
class, we compute the number of strings of lengthk+1 that determine a path from that state
to a final state. The partition is then refined by subdividing the class into those subsets in
which the number of strings remain the same. Define two statespandqas weakly equivalent
if for all k, the number of accepting strings of lengthkstarting atp is the same as the number
of accepting strings of lengthk starting atq.

Lemma 7. Let M be a DFA and letP = {p1, p2, . . . , pr} be r states that are weakly
equivalent. Then, there exists aDFA,M ′, that is weakly equivalent toMobtained bymerging
states in P. Moreover, if q1 andq2 are two states not in P that are weakly equivalent in M,
then they remain weakly equivalent inM ′.



B. Ravikumar, G. Eisman / Theoretical Computer Science 328 (2004) 113–133 127

Proof. Merging is done as follows. First, label each arc inM with a unique label. (Note
that this does not change weak equivalence.) Choose one member ofP (say,p1) as the
representative of the set. The outgoing arcs fromp1 remain the same inM ′. For eachpi ,
i = 2, . . . , r, redirect all incoming arcs topi that originate outside ofP so that they now go
into p1 instead. In addition, redirect all incoming arcs topi that originate atp1 back top1
itself. If q0 is in P, then the representative ofP becomes the initial state. IfP is contained
in F, then the representative ofP is a final state.

We now demonstrate a 1:1 correspondence between paths inM and paths inM ′ that reach
a final state. First consider a path inM from initial state,q0, to a final state. We will prove
by induction that there is a 1:1 correspondence between terminating paths inM that pass
throughP k times, and terminating paths inM ′ that pass throughp1 k times.

For k = 0, we note that if the path inM does not pass through a member ofP, then it
remains unchanged inM ′.

For k = 1, the path can be segmented into two pieces: the segment leading fromq0 to
somepi belonging toPand the path frompi to a final state. In the case thatq0 ispi , i.e. the
initial segment is the empty path, then the second segment, the path fromq0 to final state
corresponds to the path from initial state to final state inM ′.

Now suppose the path fromq0 to pi is not empty. Suppose the last arc on this path is
〈qj , aj , pi〉. Since none of the states in the initial segment of the path are inP then the
path up to the last arc remains unchanged inM ′, and the last arc inmhas been replaced in
M ′ by 〈qj , aj , p1〉. Since the labels on arcs inM are unique, the replacement determines
a unique path top1 inM ′. Now assume that the second segment of the path has lengthm.
(Note thatm could be 0 ifpi is final.) Sincepi andp1 are weakly equivalent, then there
is a 1:1 correspondence between paths of lengthm from pi to a final state and paths of
lengthm from p1 to a final state inM. InM ′ we may replace the second segment with its
corresponding path inM from p1. This yields a 1:1 correspondence fork = 1.

For k > 1, we may proceed inductively. We divide paths inM passing throughP k + 1
times into three segments: a path throughP k times ending inpi , a path frompi topj with
no intermediate visits toP, and a terminating path frompj . To find its corresponding path
in M ′, we first remove the middle segment of the path (the piece frompi to pj ). Since
the first segment ends inpi and the last begins inpj andpi andpj are equivalent, we
replace the final segment with its corresponding path beginning atpi and adjoin this to the
initial segment to obtain a path that passes throughP k times. Inductively we find the path
in M ′ corresponding to it and then reinsert the path frompi to pj changingpi andpj to
p1 inM ′.

Conversely, the paths inM ′ can be mapped back into paths inM by examining the labels
on the arc to each visit top1. Since these labels are unique, then the map back toM can be
determined uniquely.

The last statement in the lemma may also be proved inductively by the number of visits
toP. This completes the proof.�

The idea behind the algorithm is to compute in an incremental manner the number of
accepting strings of lengthk starting from each state and maintain an equivalence class that
includes all the states that have the same count for allj = 0,1, . . . , k. In other words,
two states arek-weakly equivalent iffM(p, j) = fM(q, j) for all j�k. We refine the



128 B. Ravikumar, G. Eisman / Theoretical Computer Science 328 (2004) 113–133

partition during the next iteration based on(k+ 1)-weak equivalence, just as in the strong-
minimization algorithm. The algorithm terminates after 2|Q| − 1 iterations. Now we can
merge the elements of an equivalence class into a single state. A more formal description
of the algorithm follows.

Algorithm WeakMinimizeDFA
Input: DFAM =< Q,A, q0, F >

//Assume that M is strongly minimal DFA with useless states removed.
//A is the transition matrix for M

1. NF =Q− F // non-final states
Partition ={F,NF }
len = 0 //string length
vP =< 1,0>
// vP represents the number of paths from each member of the partition to
// final state.vP will grow in length as the Partition is refined.
p = size(Partition)
2. while (len�2 ∗ |Q| − 1)

{ Refinement= {} // Initially Refinement is empty
refinev = <> // Initially refinev is an empty vector
for everyPi in Partition

{//create vectorsi of size = |Pi |
for every stateq in Pi

//create vectorvq of sizepwherevq [k] is the number of arcs fromq to Pk.
vq [k] = sum of the elements of matrix A in the row corresponding to q

and the columns corresponding to elements ofPk
si [q] = vq . vP // si [q] is the number of paths of lengthlen+ 1 from q to F
if (not all values ofsi are the same)

{refinePi by grouping elements with like values insi ;
Adjoin refinement ofPi to Refinement
Adjoin corresponding values ofsi to refinev
}

else
{ Adjoin Pi to Refinement
Adjoin unique value ofsi to refinev

}
Partition= Refinement
p = size of Partition
vP = refinev
len = len+ 1

}
3. //ConstructM ′ as follows.
For eachPi = {p1, p2,…, pr } in Partition, choose one member (say,p1)
as the representative of the set.
//The outgoing arcs fromp1 remain the same inM ′.

For eachpj , i = 2…r
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remove the row of A corresponding topj from A // This removespj from the DFA
add the column of A corresponding topj to the column corresponding top1.
//This redirects all incoming arcs topj that originate outside ofPi
// so that they now go intop1 instead.
//The arcs that originate atp1 and terminate atpj are now self-loops back top1
remove the column of A corresponding topj from A

If q0 is in Pi , then the representative ofPi becomes the initial state.
If the representative ofPi belongs toF, then it remains a final state.

4.3. Correctness of the algorithm and its time complexity

We claim thatM ′ is weakly equivalent toM. This can be shown as a direct consequence
of the above lemma since we are computing for all statesp, the set of strings of lengthk
accepted starting fromp. If the two vectors are identical afterk iterations, it follows from
the above theorem that the two states are weakly equivalent. Thus, we can combine them
into a single state as done in Step 3. It is clear thatM ′ has no more states thanM and in
practice, the algorithm reduces the number of states significantly. However, as shown below,
the algorithm does not always produce a weakly minimal DFA.

Example. Minimal DFA for 2 × n self-avoiding walk.

In an earlier section, we described a DFA for the 2×n self-avoiding walk problem. It had
14 states. The weak minimization algorithm reduces the size of the DFA to 9 states. The
characteristic polynomial for the transition matrix isp(x) = x2(x−1)3(x+1)2(x2−x−1)

with dominant eigenvalue =(1+√
5)

2 . As it turns out, eigenvectors for the non-dominant
eigenvalues also contribute to the computation of the number of strings of lengthn that
are accepted. A full analysis of eigenvectors allows for the construction of the optimally
minimal DFA. If we consider only strings of length 2 or more (the nilpotent portion of the
matrix has dimension 2 because of the multiplicity of the 0 eigenvalue), then we find that a
matrix of size 6, shown below, with initial vectorx = [1 0 0 0 1 1] andy = [2 6 0−3 −1 0]
is a transfer matrix of a DFA that is weakly equivalent to the above DFA.

A =




0 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 1 1 0 0



.

A Transition matrix of minimal size for the 2× n self-avoiding walk.
Time complexity. Letk be the number of states in the DFAM. Step 1 requires O(k) steps

to partition the states into final and non-final subsets. The algorithm then performs 2k-1
iterations of Step 2. In each iteration, we consider each state ofM once, as we construct the
si vectors. Each term in the vector is computed by forming the dot product of the vectorvq
with the vectorv where each vector has size,p, equal to the size of the partition. The dot
product requirespmultiplications andp − 1 additions, i.e. 2p − 1 arithmetic steps. Since
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qf

q0

q1 q2 q3 q4

Fig. 7. Statesq1 andq2 are right weak equivalent. Their merger contains two incoming arcs and is thus becomes
left weak equivalent toq3. Merging these on the left creates a single state with three outgoing arcs which is now
right equivalent toq4. The last reduction produces a three-state DFA with 5 edges initiating atq0 and 3 terminating
atqf .

p is bound byk, each iteration requires O(k2) steps. Grouping the elements of each vector
si by like value is O(k2) in total. Thus, Step 2 is O(k3). Finally, because Step 3 involves
adding columns of transition matrix together (as we merge states) and eliminating rows, the
cost of Step 3 is easily seen to be O(k2). Thus we have.

Theorem 8. The time complexity of constructing a reduced weakly equivalent DFA to a
given DFA with k using the algorithm presented above isO(k3).

4.4. Left weak equivalence

The definition of weak equivalence concerns the number of paths from each state to final
states. Symmetrically, one could as easily consider the number of paths from the initial state
to any given state and define two states asleftweakly equivalent if this number is the same
for all string lengths. (To distinguish this new definition from our preceding one, we will
refer to the former asrightweak equivalence.) Except in one case, the algorithms and proofs
carry over merely by considering the transpose of the transition matrix. The one exception
is that in the case of left equivalence, it is not always possible to merge equivalence classes
consisting of final states.A DFA and its reverse DFA is symmetric in every regard except for
the uniqueness of the initial state in the former and the multiplicity in the latter. However,
if we exclude classes of final states, we may utilize left weak equivalence to reduce the size
of the DFA.

In fact, after performing a reduction based on right weak equivalence it is sometimes
the case that the resulting DFA now contains left weak equivalent states that can allow a
further reduction. Moreover, it is a simple matter to demonstrate that given any positive
integerk there are DFAs for which a sequence ofk alternating right minimizations and left
minimizations may be performed with a reduction at each step. Fig.7 illustrates one such
DFA in which right, left, and right minimizations reduce the DFA.

A feed-forward network such as the one in Fig. 7 also illustrates that a sequence of
alternating right and left reductions does not always yield the absolute minimal DFA. For
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Table 1
Minimal DFA vs. Weak reduced DFA

k = Column width Strong-minimal DFA Weak-reduced DFA

5 20 10
6 20 14
7 70 32
8 70 43
9 252 114

10 252 142
11 924 418
12 924 494
13 3432 1646
14 3432 1780
15 12870 6272
16 12870 6563

example, consider a DFA with four statesq0, q1, q2, andq3 whereq0 is the initial state and
q3 is the final state and in which there are 9 arcs fromq0 to q1 and 1 arc fromq1 to q3 and
2 arcs fromq0 to q2 and 3 arcs fromq2 to q3. Minimization, on the left or right, does not
reduce this DFA though its behavior is identical to that in Fig.7.

4.5. Implementation results

We have implemented the above algorithm and have tested it on several examples includ-
ing the tiling DFA’s described in Section 2.1. In most of the examples, we found moderate
to significant reduction in the number of states when we applied the algorithm on strong-
minimized DFA’s.

The following table (Table 1) shows the size of the strongly minimized DFA from the
DFA generated the by program of Section 2.1 and the size of the weak-reduced DFA (based
on the algorithm presented above) for various values ofk.

The above results indicate that the reduction in the number of states for this family of
DFA’s by applying the weak minimization algorithm is nearly by a factor of 1/2. In addition
in the casek = 5, a reduction using left weak minimization further reduces the number of
states to 8, the optimum size as determined by examining eigenvalues. (Left minimization
did not further reduce the DFA fork > 5.)

4.6. Extension of the algorithm to unambiguous NFA’s

Recall that the original goal of this paper is to show that many counting problems can
be solved in a unified manner using a DFA model. It is easy to see that this approach
works even if the strings that we want to count can be accepted by a NFA so long as it
is unambiguous. The matrix power formulaxAny′ for the number of strings of lengthn
also holds for unambiguous NFAs. This fact was implicitly shown by Stearns and Hunt
[22]. Our weak-minimization algorithm works for unambiguous NFA as well. Although
converting a DFA to a minimal equivalent unambiguous NFA is known to be NP-complete
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[10], the weak minimization may be an effective way to reduce the number of states of an
unambiguous NFA when the application involves counting, and not membership.

5. Summary of contributions and directions for further work

We have accomplished the following goals in this paper: (1) We showed that a number
of counting problems can be solved in a unified manner using a DFA based approach. As
examples, we showed that the DFA based approach can be used to count the number of
simple paths in a grid graph and the number of ways to tile a lattice grid using dominoes. (2)
The problem of evaluating a matrix power formula has lead to the development of a hybrid
algorithm based on a number of optimizations including the use of Trench’s algorithm for
inverting a Toeplitz matrix and Fiduccia’s algorithm for solving a linear recurrence formula.
(3) Further optimization issues (with the aim of reducingk, the size of the transfer matrix)
led us to propose new notions of weak equivalence and weak minimization of DFA’s. (4)
Finally, we designed and implemented an efficient algorithm for the weak minimization
problem.

This study has raised several interesting practical and theoretical problems. Here is a
short list of them: (1) Determine for which classes of automata the algorithm presented in
Section 4 always finds a weakly minimal DFA. (2) Develop a software design framework
that converts a DFA specification into a DFA realization. Implicit representations and other
compact representations can be pursued in counting applications to surmount the storage
requirements of transfer matrix. (3) It is obvious that there are non-regular languages that
have the same counting function as regular languages. A systematic identification of such
languages will extend the scope of counting problems that can be solved using the transfer
matrix approach.
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