ADDENDUM TO "EXACT EMBEDDING FUNCTORS BETWEEN CATEGORIES OF MODULES"

George HUTCHINSON

Division of Computer Research and Technology, National Institutes of Health, Bethesda, MD 20892, U.S.A.

Communicated by P.J. Freyd Received 9 August 1986

In [2], conditions equivalent to the existence of exact embedding functors R-Mod \rightarrow S-Mod were studied. Another special result of this type is worth observing.

Theorem. Let R and S be nontrivial rings with 1, with R left artinian. Then the following conditions are equivalent:

(1) There exists an exact embedding functor R-Mod \rightarrow S-Mod.

(2) There exists a bimodule ${}_{S}A_{R}$ such that A_{R} is faithfully flat.

(3) There exists a bimodule ${}_{S}B_{R}$ with B_{R} a (nontrivial) free R-module.

(4) There exists a ring homomorphism $S \rightarrow CFM_{\beta}(R)$ preserving 1, where $CFM_{\beta}(R)$ is the ring of (possibly infinite) $\beta \times \beta$ column-finite matrices on R, β a nonzero cardinal number.

Proof. For J the Jacobson radical of R, R left artinian implies R is left noetherian, J is nilpotent and R/J is semisimple by Hopkin's theorem [1, 15.20, p. 172]. In particular, conditions (1) and (2) are equivalent by [2, Theorem 2, p. 110]. Furthermore, conditions (3) and (4) are equivalent, since each is equivalent to the existence of a ring homomorphism preserving 1 from S into the ring of R-linear endomorphisms of B_R (see [1, 4.10, p. 59] and [1, Exercises 11-12, p. 113]). Clearly (3) \Rightarrow (2), and so we assume (2) and prove (3).

Since J is nilpotent, hence right T-nilpotent, and R/J is semisimple, R is right perfect and every flat right R-module is projective by Bass' theorem (use the leftright dual result [1, 28.4*, p. 315]). In particular, A_R is projective. But R is semiperfect [1, 27.6*, p. 304], and so has a basic set of primitive idempotents $e_1, e_2, \ldots, e_n, n \ge 1$ [1, 27.10, p. 306] such that

$$A_R \approx (e_1 R)^{(\alpha_1)} \oplus (e_2 R)^{(\alpha_2)} \oplus \cdots \oplus (e_n R)^{(\alpha_n)},$$

and

$$R_R \approx (e_1 R)^{(\beta_1)} \oplus (e_2 R)^{(\beta_2)} \oplus \cdots \oplus (e_n R)^{(\beta_n)},$$

0022-4049/87/\$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

for unique cardinals α_i and β_i , i = 1, 2, ..., n, by [1, 27.11*, p. 306].

Suppose some $\alpha_k = 0$. Now, $T_k = Re_k/Je_k \neq 0$ by [1, 27.10, p. 306], and $A_R \otimes_R T_k$ is isomorphic to a direct sum of terms $e_i R \otimes_R T_k$ for $i \neq k$ by [1, 19.9, p. 223]. Also, $e_i Re_k \leq Je_k$ by the standard argument. (If $e_i se_k$ in $e_i Re_k$ is not in Je_k , then $\sigma(re_i + Je_i) = re_i se_k + Je_k$ defines a nonzero *R*-linear map σ from Re_i/Je_i into Re_k/Je_k . Now, σ is an isomorphism because its domain and codomain are simple [1, 27.10, p. 306], so $Re_i \approx Re_k$ by [1, 17.18, p. 200] with $i \neq k$, contradicting the irredundancy of Re_1, Re_2, \dots, Re_n .) Then, elements

$$e_i v \otimes (we_k + Je_k) = e_i \otimes (e_i vwe_k + Je_k) = e_i \otimes 0 = 0$$

generate $e_i R \otimes_R T_k$. So, ${}_{S}A \otimes_R T_k = 0$, contradicting A_R faithfully flat.

Therefore, all $\alpha_k > 0$, and similarly all $\beta_k > 0$. Then $\alpha = \alpha_k \alpha = \beta_k \alpha$, $k \le n$, for a sufficiently large infinite cardinal α , and (3) follows because ${}_{S}A_{R}^{(\alpha)}$ is a bimodule with $A_{R}^{(\alpha)} \approx R_{R}^{(\alpha)}$. \Box

References

- [1] F. Anderson and K. Fuller, Rings and Categories of Modules (Springer, Berlin, 1974).
- [2] G. Hutchinson, Exact embedding functors between categories of modules, J. Pure Appl. Algebra 25 (1982) 107-111.