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In [2], conditions equivalent to the existence of exact embedding functors
R-Mod — S-Mod were studied. Another special result of this type is worth observing.

Theorem. Let R and S be nontrivial rings with 1, with R left artinian. Then the
following conditions are equivalent:

(1) There exists an exact embedding functor R-Mod — S-Mod.

(2) There exists a bimodule Ay such that Ag is faithfully flat.

(3) There exists a bimodule ¢Bg with Bg a (nontrivial) free R-module.

(4) There exists a ring homomorphism S— CFMg(R) preserving 1, where
CFMg(R) is the ring of (possibly infinite) X B column-finite matrices on R, 8 a
nonzero cardinal number.

Proof. For J the Jacobson radical of R, R left artinian implies R is left noetherian,
J is nilpotent and R/J is semisimple by Hopkin’s theorem [1, 15.20, p. 172}. In par-
ticular, conditions (1) and (2) are equivalent by [2, Theorem 2, p. 110]. Further-
more, conditions (3) and (4) are equivalent, since each is equivalent to the existence
of a ring homomorphism preserving 1 from S into the ring of R-linear endo-
morphisms of By (see [1, 4.10, p. 59] and [1, Exercises 11-12, p. 113]). Clearly
(3)=(2), and so we assume (2) and prove (3). '

Since J is nilpotent, hence right T-nilpotent, and R/J is semisimple, R is right
perfect and every flat right R-module is projective by Bass’ theorem (use the left-
right dual result [1, 28.4*% p. 315]). In particular, A is projective. But R is
semiperfect [1, 27.6* p. 304], and so has a basic set of primitive idempotents
€1, ...,6,, n=1[1, 27.10, p. 306] such that

Ar=(@ R @ (@R ® - ®(e,R)™,
and

Re=(e; R @ (e R) P ® -+ ® (€, R)*,
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for unique cardinals a; and §;, i=1,2,...,n, by [1, 27.11%, p. 306].

Suppose some o, =0. Now, T, =Re,/Je,#0 by [1, 27.10, p. 306], and Ax &g T}
is isomorphic to a direct sum of terms e,R®y 7T} for i#k by [1, 19.9, p. 223].
Also, e;Re, < Je, by the standard argument. (If e;se, in e;Re; is not in Je;, then
o(re;+ Je;)=re;se, + Je, defines a nonzero R-linear map ¢ from Re;/Je; into
Re, /Je,. Now, o is an isomorphism because its domain and codomain are simple
[1, 27.10, p. 306], so Re;= Re, by [1, 17.18, p. 200] with i # k, contradicting the ir-
redundancy of Re,, Re,, ..., Re,.) Then, elements

eV ® (we,+ Jey) =e;X (e;vwe, + Je,) =€, 0=0

generate ¢, R®y T;. So, sAQ®g T, =0, contradicting Ay faithfully flat.

Therefore, all o, >0, and similarly all ,>0. Then e=a,a=8a, k<n, for a
sufficiently large infinite cardinal «, and (3) follows because SA}“) is a bimodule
with AQ=R®. O
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